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ON THE SPECTRUM OF THE DISTRIBUTIONAL KERNEL
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ABSTRACT. We study the spectrum of the distributional kernel K g(x), where ocand p are
complex numbers and x is a point in the space R" of the n-dimensional Euclidean space.
We found that for any nonzero point £ that belongs to such a spectrum, there exists the

residue of the Fourier transform (71)kK2k,2k(§), where & = B = 2k, k is a nonnegative
integer and & € R".

2000 Mathematics Subject Classification. 46F10, 46F12.

1. Introduction. Gel’fand and Shilov [2, pages 253-256] have studied the general-
ized function P?, where

p p+a
P=3xi- > x (1.1)
i1 jeptl

is a quadratic form, A is a complex number, and p +q = n is the dimension of R™".
They found that P* has two sets of singularities, namely A = —1,-2,...,—k,... and
A=-n/2,—n/2-1,...,—n/2—k,..., where k is a positive integer. For the singular
point A = —k, the generalized function P* has a simple pole with residue

(=D*
(k—1)!

(-D*

(k-1)
-1 51 (p) (1.2)

sy or  resyo_iP=

for p +q = n is odd with p odd and g even. Also, for the singular point A = —n/2 -k

they obtained
A (=DAPLR§(x)
resA =2k P T (n2) + K) (1-3)
for p +q = n is odd with p odd and g even.

Now, let K4 g(x) be the convolution of the functions RH (u) and Rﬁ(v), that is,

Kap(x) =RE(u) % R§(v), (1.4)

where R (u) and Rﬁ(v) are defined by (2.1) and (2.3), respectively. Since R¥ (1) and
Rg (v) are tempered distributions, see [4, pages 30-31], thus K« g(x) is also a tempered
distribution and is called the distributional kernel.

In this paper, we use the idea of Gel'fand and Shilov to find the residue of the
Fourier transform (—l)ngk/,ZFE), where Ky ok is defined by (1.4) with & = § = 2k
and k is a nonnegative integer. We found that for any nonzero point & that belongs
to the spectrum of (—1)"K2k,2k(x), there exists the residue of the Fourier transform
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(fl)kK;,z—k\(E). Actually (—1)¥Ky 2k (x) is an elementary solution of the operator o
iterated k times, thatis, o*[(—1)XKoy 2x (x)] = §, where § is the Dirac-delta distribution.

The operator ¥ was first introduced by Kananthai [4] and named as the Diamond
operator defined by

X 82 32 aZ 2 82 82 aZ 29k
o=tttz |+ +eit , 1.5
(v o) (axsﬂ o7, ) ] 09
where p + q = n is the dimension of R™.

Moreover, the operator ¢* can be expressed as the product of the operators o* and
Ak, that is,

ok = gkaAk = AkgK (1.6)

where 0¥ is an ultra-hyperbolic operator iterated k times defined by
Poa2 pra. 52 k
ok (Z S 2) , (1.7)
, T -

where p +q = n. The operator A¥ is an elliptic operator or Laplacian iterated k times

defined by
k
02 02 02
Ak — B e —— | . 1.8
(axf +ax§ * +axﬁ) (1:8)

Trione [7, page 11] has shown that the function R?k(u) defined by (2.1) with « = 2k
is an elementary solution of the operator O¥. Also, Aguirre Téllez [1, pages 147-148]
has proved that the solution R (u) exists only for odd n with p odd and g even
(p +q = n). Moreover, we can show that the function (fl)kng(v) is an elementary
solution of the operator AK, where R, (v) is defined by (2.3) with g = 2k.

2. Preliminaries

DEFINITION 2.1. Let x = (x1,X2,...,X,) be a point of R", and write u = xf +

X5+ X5 X5~ X3, P+q=n.Denoteby I' = {x e R":x; >0, u > 0}
the set of an interior of the forward cone, and I, denotes the closure of I',. For any
complex number «, define

ule—n)/2

RE(u) = ] Kalo + TrX <l @1

0, for x €T,

where the constant K, («) is given by the formula

T DRI ((2+a—n)/2)T (1 -x)/2)I(x)

K () = I((2+a-p)/2)T((p-x)/2)

(2.2)

The function R¥ (u) is called the ultra-hyperbolic kernel of Marcel Riesz and was
introduced by Nozaki [6, page 72]. The function R¥ is an ordinary function or classical
function if Re() = n and is a distribution of « if Re() < n. Let suppRY (u) c T,
where suppR¥ (1) denotes the support of RH (u).
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DEFINITION 2.2. Let x = (x1,X2,...,X,) be a point of R", and write v = x]2 +
X5 4o+ x2. For any complex number B, define

2P "L ((n—p)/2)vF
L(B/2)

Rf(v) = (2.3)

The function Rﬁ(v) is called the elliptic kernel of Marcel Riesz and is an ordinary
function for Re(f) = n and is a distribution of 8 for Re(f) < n.

DEFINITION 2.3. Let f be a continuous function, then the Fourier transform of f,
denoted by 3 f or f(&), is defined by

gf=f(&= e &Y f(x)dx, (2.4)

o |
(2mT)n/2 Jgrn
where x = (x1,X2,...,Xn) € R", & = (&1,82,...,&x) € R", and (§,x) = &1x1 + Eoxo +
-+ -+ &y xp. From (2.4), the inverse Fourier transform of f(&) is defined by

1

_e-1p _ i(€x) £
00 =5 E) = | e i@, 2.5)

If f is a distribution with compact support, by [8, Theorem 7.4.3, page 187] (2.5) can
be written as

_ ey L —i(E%)
LEMMA 2.4. Given the equation
oku(x) =6, (2.7)

where o is the operator defined by (1.5), and § is the Dirac-delta distribution, u(x) is
an unknown, k is a nonnegative integer and x € R"™, where n is odd with p odd, q even
(n=p+q). Thenu(x) = (fl)kKZk,Zk(x) is an elementary solution of the operator .
Here Kook (x) = R (w) x RS, (v) from (1.4) with o« = B = 2k.

PROOF. See [4, page 33]. O

In this paper, we study the spectrum of (—1)"K2k,2k(x), relate to the residue of the
Fourier transform (—1)XKoy 21 (E).

LEMMA 2.5. The Fourier transform

_ (i)12%+Frn I'(a/2)T(B/2)
~ (2m)"2Kn () Hu (B) T((n—)/2)T((n—B)/2)

|4 r+q o n -8
x| 1 2&8- 2 F (‘Za?) ;=YL
i=1 j=p+1 i=1

(2.8)
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In particular, if x = B = 2k, k is a nonnegative integer,
1 1

2102 (2182 4. +E2)° (Epe1+Eprat- - +&+a)’)

(—1)*Kak 2t (€) = ( o, (2.9)

where RE (1) and Rg(v) are defined by (2.1) and (2.3), respectively.
PROOF. See [2, page 194] and [5, pages 156-157]. O

DEFINITION 2.6. The spectrum of the distributional kernel K g(x) is the support

of the Fourier transform Ko(/,l;?é) or the spectrum of Kyg(x) = suppKqp(E). Now,
from Lemma 2.5 we obtain

suppK:,;(\‘g‘) = (suppSR{j(u))m(suppSRg(v)). (2.10)

In particular, from (2.9) the spectrum of

1
(=1 *Kog 2k (x) —supp[ . — } (2.11)
22k @Rmn2 (S0, €2)° - (304, £2)%)F

LEMMA 2.7. Let P(x1,X>,...,Xn) be a quadratic form of positive definite, and is de-
fined by

p 2 p+a 2
P=P(xi,x2,.0xn) = | 2x7 | = 2 %7, (2.12)
i=1 j=p+1

then for any testing function @ (x) € D, the space of infinitely differentiable function
with compact support,

® a k y —
(6("’(P),Q9)=IO [(45385) (sq-L(Z S)>erp Ldr, (2.13)
T8 N\ payr s))] _
(k) — (_1\k p-a P, a-1
(0™ (P), @) =(-1) L [(47387) (r 1 st (2.14)
Where r? = x{+ X5+ +x2, 8> = X5, + X5, 0+ +X2,,, and
Y(r,s) = Jcde”dQ“, (2.15)

where dQP and dQ4 are the elements of surface area on the unit sphere in R? and
R4, respectively. Both integrals (2.13) and (2.14) converge if k < (1/4)(p +q—4) for
any @(x) € D. If k = (1/4)(p + q — 4), these integrals must be understood in the
sense of their regularization and (2.13) defined as (65") (p),p) and (2.14) defined as
(65’”(;9),(1)). Moreover, if we putu =2, v = s2, thus (2.13) and (2.14) become

1 (™[ o
(k) - = (q-4)/4 (1/4)(p—4)
(6% (p),®) = 16 JO [avk(v Wl(u,v))]v:uu du, (2.16)
(6% (p),p) = (-1 ro [—ak (uP My, (u v))] p1/dE-9 gy (2.17)
’ 16 Jo Louk ’ u=v ’

where Y1 (u,v) = @(r,s).
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PROOF. See [2, pages 247-251]. O

LEMMA 2.8. Let G, = {E € R": |&| < by, |&2| < bo,...,1En| < by} be a parallelepiped
inR™ and b; (1 < i <n) is a real constant and the inverse Fourier transform of K« g(&)
is defined by

Kop(x) = 37 Kup(E) = el EX K (E)dE, 2.18)

o |
(2mm)n/2 Jg,
where Ky g is defined by (1.4) and x,& € R™, then K4 g(x) can be extended to the entire
function K« g(z) and be analytic for all z = (zy,z;,...,zy) € C", where C" is the n-tuple
space of complex number and

|Kup(z)| < Cexp (b|Im(2)]), (2.19)

where exp(b|Im(z)|) = exp[bi|Im(z1)| + b2|Im(z2)| + - -+ + by|Im(z,)|] and C =
(1/(21T)"/2) ij |Ka,g(&)1dE is a constant. Moreover, K g(x) has a spectrum contained
in Gh.

PROOF. Since the integral of (2.18) converges for all & € Gy, thus Ky g(x) can be
extended to the entire function K« g(z) and be analytic for all z € C". Thus (2.18) can
be written as

Kap(2) = WJG eiE2 K, 4(E)dE. (2.20)
b
Now,
1 — = , . .
|K0(,B(Z) ’ =< WJQ, |Ko<,B(§) | | exp (i&1z1 +i&zo+ - - +18nzn) |d§
_ 1 % ; . , 2.21
—WLh |Kag(E) | | exp (i&101 +i& 00+ - - +i&n0n (2.21)
=& —Eaplp — - -+ = Enin) | AE,
where
zi=0o+iu; (j=1,2,...,n), (2.22)
thus
1 —
K@) = oy |, |Kecp ) [ dEexp (bl + bolpol -+ bulunal) - 2:23)

for |&;| < bj, or |Kyp(z)| < Cexp(b1|Im(z1)| + b2|Im(z2)| + - - - + by |Im(zy)[), or
[Kag(2)] < Cexp(b|Im(z)]), where C = (1/(217)"/2)be [Ku,g(&)|dE is a constant. O

We must show that the support of Ko(/,g(\E) is contained in Gy. Since K g(z) is an
analytic function that satisfies the inequality (2.19) and is called an entire function of
order of groﬂh\ < 1 and of type < b, then by Paley-Wiener-Schartz theorem, see [3,
page 162], K (&) has a support contained in Gy, that is the spectrum of K g(x) is
contained in Gp.
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In particular, for « = B = 2k, the spectrum of (—1)*K 2 (x) is also contained in Gy,
that is supp[(fl)kKZk/,g—k\(E)] C Gp, where (—1)XKo 2 (x) is an elementary solution of
the Diamond operator ¢ by Lemma 2.4, and the Fourier transform (—1)k1<2k/,2k\(§)
given by (2.9) can be defined as follows.

DEFINITION 2.9. The Fourier transform

L foréeG
—_— + y hl
(D)X Kap 2 (§) = 1 m)n/2[( legiz)z_( 5’7:;11 EJZ')Z]k (2.24)
0, for & € CGy,

where & = (&£1,&2,...,&,) € R™ and CGy, is the complement of Gy,

3. Main results

THEOREM 3.1. For any nonzero point & € M where M is a spectrum of (— l)kKZk,gk (x),
and (—l)ngk,Zk(x) is an elementary solution of the operator o* by Lemma 2.4. Then
there exists the residue of the Fourier transform (—l)szfz—k\(E) at the singular point
A = —k and such a residue is

(—1)k-1 (k-1)(p) ke Ty (DR (k-1)(p)
—(27‘()”/2(](—1)!61 or  resx——k(—=1)"Kok 2k (&) = (ZW)"/Z(k—l)!6 ,
(3.1)
where
P=(E+8+ - +52) = (82, + 85,0+ +E2,,), (3.2)

p+aq=mn and 5%V (P) is defined by (2.16) with %~V (P) = §*"V(P) and n is odd
with p odd, q even.

PROOF. We define the generalized function P?, where P is given by (3.2) and A is a
complex number, by

(PN, @) = L OPM&)qo(&)dz, (3.3)

where & = (&1,&2,...,&n) and dE =d& dE, - - -d&, and (&) € D, the space of contin-
uous infinitely differentiable function with compact support. Now,

(PAa('p> = JP>0 [(E% + E% +- +§;27)2 - (§§)+1 +§5J+2 +- +§§+q)])\(p(§)d’§ (3.4
We transform to bipolar coordinates defined by

Si=rwi, & =rwy, ..., § =rwy,
14 14

3.5)
Epi1 =SWpi1, Epi2 = SWpy2, ooy Epig =SWpiyq, P+4=1,

where 37 w? =1and 377 | w? = 1. Thus

14 p+a
r= g, s | Y E (3.6)
i=1 j=p+1
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We have (P}, @) = [[r*—s*]1 @ (E)dE. Since the volume d& = r?~ 1591 drdsdQ, dQ,
where dQ, and dQ; are the elements of surface area on the unit sphere in R” and R4,
respectively. Thus

(P, @) :J 0(1f4—34))‘q91f"”15‘4’1drdsd(2’”d(2‘4
>
g (3.7)

00 v
:J J (1f4—34))‘(//(1’,3)7”’15‘1’1615(711/,
o Jo

where @ (7,s) = [ @ dQ, dQ,.

Since @ (&) is in D, then y(7,s) is an infinitely differentiable function of »* and
s* with bounded support. We now make the change of variable u = ¥*, v = s4, and
writing @ (7,s) = @1 (u,v). Thus we obtain

00 u
(P @) = %J oj O(ufv))‘(,ul(u,v)u(”"*)/“v(q"‘”“dvdu. (3.8)
u=0Jv=
Write v = ut. We obtain

(o] 1
(PN, @) = % JO MU Er-1 gy, L (1 -t a4y, (u,ut)dt. (3.9)

Let the function

1
d(A,u) = %J (1-t) a4y, (u,ut)dt. (3.10)
0

Thus ®(A,u) has singularity at A = —k where it has simple poles. By Gel'fand and
Shilov [2, page 254, equation (12)] we obtain the residue of ®(A,u) at A = —k, that is,

1 (_1)k—1 [ ak—l

reSA:_ka(A;u) = E (k—1)! otk-1

{t(q’4>/4w1(u,ut)}] . (3.11)

Thus, res)-_x®(A,u) is a functional concentrated on the surface P=0(t =1, u=v,
p = u—v = 0). On the other hand, from (3.9) and (3.10) we have

(PM, @) =I uMWHED-1¢ (A u)du. (3.12)
0
Thus (P*, @) in (3.12) has singularities at A = —n/4,-n/4—1,...,—n/4 — k. At these
points,
11 ok n
A _ 2 _t_
resy——nja—k (P, @) = X [aukq)< 2 k,u)]u:o. (3.13)

Thus the residue of (P*, @) at A = (-1/2)n —k is a functional concentrated on the
vertex of the surface P. Now consider the case when the singular point A = —k. Write
(3.10) in the neighborhood of A = —k in the form ®(A,u) = ®o(u)/(A+k) + D1 (A, u)
where ®g(u) = resy-_x®(A,u) and ®;(A,u) is regular at A = —k. Substitute ®(A,u)
into (3.12) we obtain

1 oo (&)
(P, @) = mjo u““/“(%’*q)*lcpo(u)alu+JO utMWDPr-1¢ (A u)du. (3.14)
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Thus resy—_(P), @) = [; u*+1/HP+0-1¢ (1) du. By substituting ®(u) and (3.11),
we obtain

(-D*

A =
16(k—1)!

o Ak-1
resy_—x (P, @) J [a {t1<‘4*4”4w1(u,ut)}] u k-1 gy
o Lotk! t=1

(3.15)
since, we put v = ut. Thus 0¥-1/0tk-1 = yk-1(9%k-1/9vk-1), by substituting 0k~! /otk-!

we obtain

_1\k Y k-1
resy__ (P), @) = — 1) J [a {vl(q74)/4%(u’v)}]
0

(1/4)p-1
T6k—1)! Sph1 vu P=tdu. (3.16)

u=

Now, by (2.16)
(_1)k—1

resy—_i (P, ) = D] sV (p). (3.17)
Since, by Definition 2.9 we have
[ 1 A
(=1)*Kok,2k (&) = (217)"/2P for A = -k, (3.18)

and & € Gp. Let M be a spectrum of (—1)"K2k,2k(x) and M C Gp by Lemma 2.8. Thus
for any nonzero & € M we can find the residue of (—1)’<K2k,2k(§), that is,

_— 1
k _ A
resa——k {(—=1)*Kor2k (E), @ (8)) = 2z TesA=—k (P, @) 1o
(=D (k-1) .
- (Zn)n/z(k71)|<51 (P),(p)
or resa—_k (—1)¥Kagok (€) = ((=1)*=1/(2(m) 2 (k—1)1)5% Y (P) for £ € M and £ 4 0.
Now consider the case £ = 0. We have from (3.13) that, the residue of (P}, @) occurs
at the point A = (-1/2)n—k thatis resx—_«,2)n-«k (PA, @) is a functional concentrated
on the vertex of surface P. Since u = 0 and v = ut, then u = v = 0, that implies

VE+E 4+ E =B+t Epaq = 0. (3.20)

It follows that & = & = --- = &y4q = 0, p + q = n. Thus, the residue of (PA, @) is
concentrated on the point & = 0.

Since, from Definition 2.9, (1/(27)"/2)P? = (fl)ngk/,z—k\(E) if A = —k. Thus we only
consider the residue of (—l)kKy;k\(‘g') at A = —k. From (3.12), we consider the residue
of (P),@) only at A = —k. That implies (1/4)(p+q) -1 =0orn=4 (p+q = n).
Since n = 4 is an even dimension which contradicts Lemma 2.4, the existence of the
elementary solution (—1)"K2k,2k(x) that exists for odd n. Thus cases (3.12) and (3.13)
do not occur. This implies that the case & = 0 does not happen. It follows that

(-t

(k—-1)

resa_ i (—1)* Kok ok () =

for nonzero point & € M concentrated on the surface P = 0, where M is a spectrum of
(— 1)Kok 2k (x). O
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