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Abstract. Let E be a uniformly convex Banach space, C a nonempty closed convex subset
of E. In this paper, we introduce an iteration scheme with errors in the sense of Xu (1998)
generated by {Tj : C → C}rj=1 as follows: Un(j) = an(j)I+bn(j)Tnj Un(j−1)+cn(j)un(j), j =
1,2, . . . ,r , x1 ∈ C , xn+1 = an(r)xn+bn(r)Tnr Un(r−1)xn+cn(r)un(r), n≥ 1, where Un(0) :=
I, I the identity map; and {un(j)} are bounded sequences in C ; and {an(j)}, {bn(j)}, and
{cn(j)} are suitable sequences in [0,1]. We first consider the behaviour of iteration scheme
above for a finite family of asymptotically nonexpansive mappings. Then we generalize
theorems of Schu and Rhoades.
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1. Introduction. Let C be a nonempty convex subset of a Banach space E. A map-

ping T : C → C is called asymptotically nonexpansive with sequence {kn}∞n=1 if kn ≥ 1

and limn→∞kn = 1 such that

∥∥Tnx−Tny∥∥≤ kn‖x−y‖ (1.1)

for all x,y ∈ C and all n∈N. T is called uniformly L-Lipschitzian if

∥∥Tnx−Tny∥∥≤ L‖x−y‖ (1.2)

for all x,y ∈ C and all n∈N. It is clear that every asymptotically nonexpansive map-

ping is also uniformly L-Lipschitzian for some L > 0. In [7], Schu introduced the mod-

ified Ishikawa iteration method as

xn+1 =αnTn
(
βnTnxn+

(
1−βn

)
xn
)+(1−αn)xn, n= 1,2, . . . , (1.3)

where {αn} and {βn} are suitable sequences in [0,1] and the modified Mann iteration

method as

xn+1 =αnTnxn+
(
1−αn

)
xn, n= 1,2, . . . , (1.4)

where {αn} is a suitable sequence in [0,1].
Using the iteration method (1.4), Schu [9, Lemma 1.5] and Rhoades [6, Theorem 1]

obtained the following result: let C be a bounded closed convex subset of a uniformly

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


654 JUI-CHI HUANG

convex Banach space E, T : C → C an asymptotically nonexpansive mapping with

sequence {kn} such that
∑∞
n=1(kn−1) < ∞, and {αn} a sequence in [0,1] satisfying

the condition ε ≤αn ≤ 1−ε for all n∈N and some ε > 0. Suppose that x1 ∈ C and that

{xn} is given by (1.4). Then limn→∞‖xn−Txn‖ = 0.

Note that
∑∞
n=1(kn−1) <∞ if and only if

∑∞
n=1(ksn−1) <∞ for some s > 1 (see [5,

Remark 3]).

Let C be a nonempty convex subset of a Banach space E. Let Tj : C → C be a given

mapping for each j = 1,2, . . . ,r . We now introduce an iteration scheme with errors in

the sense of Xu [11] generated by T1,T2, . . . ,Tr as follows: let Un(0) = I, where I is the

identity map,

Un(1) = an(1)I+bn(1)Tn1 Un(0)+cn(1)un(1),
Un(2) = an(2)I+bn(2)Tn2 Un(1)+cn(2)un(2),

...

Un(r) = an(r)I+bn(r)Tnr Un(r−1)+cn(r)un(r),
x1 ∈ C, xn+1 = an(r)xn+bn(r)Tnr Un(r−1)xn+cn(r)un(r), n≥ 1.

(1.5)

Here, {un(j)}∞n=1 is a bounded sequence in C for each j = 1,2, . . . ,r , and {an(j)}∞n=1,

{bn(j)}∞n=1, and {cn(j)}∞n=1 are sequences in [0,1] satisfying the conditions

an(j)+bn(j)+cn(j) = 1 (1.6)

for all n ∈ N and each j = 1,2, . . . ,r . This scheme contains the modified Mann and

Ishikawa iteration methods with errors in the sense of Xu [11] (cf. [5]): for r = 1, our

scheme reduces to Mann-Xu type iteration and for r = 2, T1 = T2 to Ishikawa-Xu type

iteration.

In 1972, Goebel and Kirk [1] proved that if C is a bounded closed convex sub-

set of a uniformly convex Banach space E, then every asymptotically nonexpansive

selfmapping T of C has a fixed point. After the existence theorem of Goebel and

Kirk [1], several authors including Schu [7, 9], Rhoades [6], Huang [3] and Osilike and

Aniagbosor [5] have studied methods for the iterative approximation of fixed points

of asymptotically nonexpansive mappings. In this paper, we first extend the result

above of [9, Lemma 1.5] and [6, Theorem 1] to the iteration scheme (1.5) and without

the restrictions that C is bounded. Then, using this result, we generalize [9, Theorems

2.1, 2.2, and 2.4] and [6, Theorems 2 and 3].

In the sequel, we will need the following results.

Lemma 1.1 (see [5, Lemma 1]). Let {an}∞n=1, {bn}∞n=1, and {δn}∞n=1 be sequences of

nonnegative real numbers satisfying the inequality

an+1 ≤
(
1+δn

)
an+bn, n≥ 1. (1.7)

If
∑∞
n=1δn <∞ and

∑∞
n=1bn <∞, then limn→∞an exists. In particular, if {an}∞n=1 has a

subsequence which converges strongly to zero, then limn→∞an = 0.
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Lemma 1.2 (see [8, Lemma 2]). Let {βn}∞n=1 and {ωn}∞n=1 be sequences of nonnega-

tive numbers such that for some real numbers N0 ≥ 1,

βn+1 ≤
(
1−δn

)
βn+ωn (1.8)

for alln≥N0, where δn ∈ [0,1]. If
∑∞
n=1δn =∞ and

∑∞
n=1ωn <∞, then limn→∞βn = 0.

Theorem 1.3 (see [10, Theorem 2]). Let E be a uniformly convex Banach space and

r > 0. Then there exists a continuous, strictly increasing and convex function g : R+ →
R+ such that g(0)= 0 and

∥∥λx+(1−λ)y∥∥2 ≤ λ‖x‖2+(1−λ)‖y‖2−λ(1−λ)g(‖x−y‖) (1.9)

for all x,y ∈ Br := {x ∈ E : ‖x‖ ≤ r} and λ∈ [0,1].
A Banach space E is said to satisfy Opial’s condition [4] if xn→ x weakly and x �=y

imply

liminf
n→∞

∥∥xn−x∥∥< liminf
n→∞

∥∥xn−y∥∥. (1.10)

Lemma 1.4 (see [2, Lemma 4]). Let E be a uniformly convex Banach space satisfying

Opial’s condition and C a nonempty closed convex subset of E. Let T : C → C be an

asymptotically nonexpansive mapping. Then (I−T) is demiclosed at zero, that is, for

each sequence {xn} in C , the conditions xn → x weakly and (I −T)xn → 0 strongly

imply (I−T)x = 0.

2. Main results. For abbreviation, we denote the set of fixed points of a mapping

T by F(T), and now prove the following results.

Theorem 2.1. Let C be a nonempty closed convex subset of a uniformly convex

Banach space E and Tj : C → C an asymptotically nonexpansive mapping with

sequence {kn(j)}∞n=1 for each j = 1,2, . . . ,r such that
∑∞
n=1(kn−1) < ∞, where kn :=

max1≤j≤r{kn(j)} ≥ 1 and ∩rj=1F(Tj) �= ∅. Let {un(j)}∞n=1 be a bounded sequence in C
for each j = 1,2, . . . ,r and let {an(j)}∞n=1, {bn(j)}∞n=1, and {cn(j)}∞n=1 be sequences in

[0,1] satisfying the conditions:

(i) an(j)+bn(j)+cn(j) = 1 for all n∈N and each j = 1,2, . . . ,r ;

(ii)
∑∞
n=1 cn(j) <∞ for each j = 1,2, . . . ,r ;

(iii) 0 < a ≤ αn(j) ≤ b < 1 for all n ∈ N, each j = 1,2, . . . ,r , and some constants a,

b, where αn(j) := bn(j)+cn(j).
Suppose that {xn} is given by (1.5). Then limn→∞‖xn−Tjxn‖ = 0 for each j = 1,2, . . . ,r .

In order to prove Theorem 2.1, we first prove the following lemmas.

Lemma 2.2. Let C be a nonempty convex subset of a Banach space E. Let Tj : C → C be

a uniformly L-Lipschitzian mapping for each j = 1,2, . . . ,r , and let {xn} be as in (1.5).
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Set en(j) := ‖xn−Tnj Un(j−1)xn‖ for all n,j ∈N. Then for all n≥ 2,

∥∥xn−T1xn
∥∥≤ en(1)+(L2+L)en−1(r)+Len−1(1)+

(
L2+L)cn−1(r)

∥∥un−1(r)−xn−1

∥∥,∥∥xn−Tjxn∥∥≤ en(j)+(L2+L)en−1(r)+L2en(j−1)+L2en−1(j−1)+Len−1(j)

+(L2+L)cn−1(r)
∥∥un−1(r)−xn−1

∥∥+L2cn(j−1)
∥∥un(j−1)−xn

∥∥
+L2cn−1(j−1)

∥∥xn−1−un−1(j−1)
∥∥,

(2.1)

for each j = 2,3, . . . ,r .

Proof. Observe that for j = 2,3, . . . ,r we have

∥∥Un(j−1)xn−Un−1(j−1)xn−1

∥∥
=
∥∥(an(j−1)xn+bn(j−1)Tnj−1Un(j−2)xn+cn(j−1)un(j−1)

)
−(an−1(j−1)xn−1+bn−1(j−1)Tn−1

j−1 Un−1(j−2)xn−1

+cn−1(j−1)un−1(j−1)
)∥∥

=
∥∥(xn−xn−1

)+bn(j−1)
(
Tnj−1Un(j−2)xn−xn

)
+cn(j−1)

(
un(j−1)−xn

)+bn−1(j−1)
(
xn−1−Tn−1

j−1 Un−1(j−2)xn−1
)

+cn−1(j−1)
(
xn−1−un−1(j−1)

)∥∥
≤
∥∥xn−xn−1

∥∥+en(j−1)+en−1(j−1)+cn(j−1)
∥∥un(j−1)−xn

∥∥
+cn−1(j−1)

∥∥xn−1−un−1(j−1)
∥∥,

(2.2)

∥∥xn−xn−1

∥∥= ∥∥an−1(r)xn−1+bn−1(r)Tn−1
r Un−1(r−1)xn−1+cn−1(r)un−1(r)−xn−1

∥∥
≤ bn−1(r)

∥∥Tn−1
r Un−1(r−1)xn−1−xn−1

∥∥+cn−1(r)
∥∥un−1(r)−xn−1

∥∥
≤ en−1(r)+cn−1(r)

∥∥un−1(r)−xn−1

∥∥.
(2.3)

Therefore,

∥∥xn−Tjxn∥∥≤ ∥∥xn−Tnj Un(j−1)xn
∥∥+∥∥Tnj Un(j−1)xn−Tjxn

∥∥
≤ en(j)+L

∥∥Tn−1
j Un(j−1)xn−xn

∥∥
≤ en(j)+L

∥∥Tn−1
j Un(j−1)xn−Tn−1

j Un−1(j−1)xn−1

∥∥
+L
∥∥Tn−1

j Un−1(j−1)xn−1−xn−1

∥∥+L∥∥xn−1−xn
∥∥

≤ en(j)+L2
∥∥Un(j−1)xn−Un−1(j−1)xn−1

∥∥
+Len−1(j)+L

∥∥xn−1−xn
∥∥.

(2.4)

Using (2.3) in (2.4) for j = 1 we have

∥∥xn−T1xn
∥∥≤ en(1)+(L2+L)∥∥xn−xn−1

∥∥+Len−1(1)

≤ en(1)+
(
L2+L)en−1(r)+Len−1(1)

+(L2+L)cn−1(r)
∥∥Un−1(r)−xn−1

∥∥.
(2.5)
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Using (2.2) and (2.3) in (2.4) for j = 2,3, . . . ,r we have

∥∥xn−Tjxn∥∥≤ en(j)+(L2+L)∥∥xn−xn−1

∥∥+L2en(j−1)+L2en−1(j−1)+Len−1(j)

+L2cn(j−1)
∥∥un(j−1)−xn

∥∥+L2cn−1(j−1)
∥∥xn−1−un−1(j−1)

∥∥
≤ en(j)+

(
L2+L)en−1(r)+L2en(j−1)+L2en−1(j−1)+Len−1(j)

+(L2+L)cn−1(r)
∥∥un−1(r)−xn−1

∥∥+L2cn(j−1)
∥∥un(j−1)−xn

∥∥
+L2cn−1(j−1)

∥∥xn−1−un−1(j−1)
∥∥.

(2.6)

This completes the proof of Lemma 2.2.

Lemma 2.3. Let C be a nonempty convex subset of a Banach space E. Let {T1,T2, . . . ,
Tr}, {un(j)}, and {xn} be as in Theorem 2.1 and let {an(j)}, {bn(j)}, and {cn(j)} sat-

isfy conditions (i) and (ii) of Theorem 2.1. Then limn→∞‖xn−x∗‖ exists for all x∗ ∈
∩rj=1F(Tj).

Proof. Let x∗ ∈ ∩rj=1F(Tj). Since {un(j)}∞n=1 and {kn}∞n=1 are bounded, there

exists a constant N > 0 such that supn∈N{‖un(j) − x∗‖ : j = 1,2, . . . ,r} ≤ N and

supn∈N{1+kn+···+kr−1
n } ≤N . Then, we have

∥∥xn+1−x∗
∥∥= ∥∥an(r)xn+bn(r)Tnr Un(r−1)xn+cn(r)un(r)−x∗

∥∥
≤ an(r)

∥∥xn−x∗∥∥+bn(r)∥∥Tnr Un(r−1)xn−x∗
∥∥+cn(r)∥∥un(r)−x∗∥∥

≤ an(r)
∥∥xn−x∗∥∥+bn(r)kn∥∥Un(r−1)xn−x∗

∥∥+Ncn(r)
= an(r)

∥∥xn−x∗∥∥+bn(r)kn
×
∥∥an(r−1)

(
xn−x∗

)+bn(r−1)
(
Tnr−1Un(r−2)xn−x∗

)
+cn(r−1)

(
un(r−1)−x∗

)∥∥+Ncn(r)
≤ [1−bn(r)+(1−bn(r−1)

)
bn(r)kn

]∥∥xn−x∗∥∥
+bn(r)bn(r−1)k2

n
∥∥Un(r−2)xn−x∗

∥∥+Ncn(r)+N2cn(r−1)

...

≤
[
1−bn(r)+

(
1−bn(r−1)

)
bn(r)kn

+···+(1−bn(1))bn(r)bn(r−1) ···bn(2)kr−1
n +bn(r)bn(r−1) ···bn(1)krn

]
·
∥∥xn−x∗∥∥+N(cn(r)+Ncn(r−1)+···+Ncn(1)

)
=
[
1+bn(r)

(
kn−1

)+bn(r)bn(r−1)kn
(
kn−1

)
+···+bn(r)bn(r−1) ···bn(1)

(
kr−1
n
)(
kn−1

)]∥∥xn−x∗∥∥+ψn
≤ [1+(kn−1

)(
1+kn+···+kr−1

n
)]∥∥xn−x∗∥∥+ψn

≤ [1+(kn−1
)
N
]∥∥xn−x∗∥∥+ψn

= (1+ϕn
)∥∥xn−x∗∥∥+ψn,

(2.7)
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for alln∈N, whereϕn := (kn−1)N andψn :=N(cn(r)+Ncn(r−1)+···+Ncn(1)). Since∑∞
n=1(kn−1) <∞ and

∑∞
n=1 cn(j) <∞ for each j = 1,2, . . . ,r , we have

∑∞
n=1ϕn <∞ and∑∞

n=1ψn <∞. Thus, limn→∞‖xn−x∗‖ exists by Lemma 1.1. This completes the proof

of Lemma 2.3.

Lemma 2.4. Under the hypotheses of Lemma 2.3, if E is a uniformly convex Banach

space, then there exists a continuous, strictly increasing and convex function g : R+ →
R+ such that g(0)= 0, and

∞∑
n=1

[ r∑
j=1

( r∏
l=j
αn(l)

)(
1−αn(j)

)
g
(∥∥xn−Tnj Un(j−1)xn

∥∥)]<∞, (2.8)

where αn(j) := bn(j)+cn(j) for all n∈N and each j = 1,2, . . . ,r .

Proof. Let x∗ ∈ ∩rj=1F(Tj). Lemma 2.3 and the hypotheses of Lemma 2.4 imply

that {xn−x∗}∞n=1, {un(j)}∞n=1, and {kn}∞n=1 are bounded. Then, there exists a constant

d> 0 such that

∪rj=1

{
Tnj Un(j−1)xn−x∗

}∞
n=1∪

{
xn−x∗

}∞
n=1 ⊆ Bd. (2.9)

By Theorem 1.3, there exists a continuous, strictly increasing and convex function

g :R+ →R+ such that g(0)= 0, and

∥∥λx+(1−λ)y∥∥2 ≤ λ‖x‖2+(1−λ)‖y‖2−λ(1−λ)g(‖x−y‖) (2.10)

for all x,y ∈ Bd and λ ∈ [0,1]. By inequality (2.10) we obtain the following estimate:

for some constant M , we have

∥∥Un(j)xn−x∗∥∥2 =
∥∥(1−αn(j))(xn−x∗)+αn(j)(Tnj Un(j−1)xn−x∗

)
−cn(j)

(
Tnj Un(j−1)xn−un(j)

)∥∥2

≤
(∥∥(1−αn(j))(xn−x∗)+αn(j)(Tnj Un(j−1)xn−x∗

)∥∥
+cn(j)

∥∥(Tnj Un(j−1)xn−un(j)
)∥∥)2

≤
∥∥(1−αn(j))(xn−x∗)+αn(j)(Tnj Un(j−1)xn−x∗

)∥∥2+cn(j)M

≤ (1−αn(j))∥∥xn−x∗∥∥2+αn(j)
∥∥Tnj Un(j−1)xn−x∗

∥∥2

−αn(j)
(
1−αn(j)

)
g
(∥∥xn−Tnj Un(j−1)xn

∥∥)+cn(j)M
≤ (1−αn(j))∥∥xn−x∗∥∥2+αn(j)k2

n
∥∥Un(j−1)xn−x∗

∥∥2

−αn(j)
(
1−αn(j)

)
g
(∥∥xn−Tnj Un(j−1)xn

∥∥)+cn(j)M,

(2.11)

∥∥xn+1−x∗
∥∥2 =

∥∥(1−αn(r))(xn−x∗)+αn(r)(Tnr Un(r−1)xn−x∗
)

−cn(r)
(
Tnr Un(r−1)xn−un(r)

)∥∥2

≤ (1−αn(r))∥∥xn−x∗∥∥2+αn(r)k2
n
∥∥Un(r−1)xn−x∗

∥∥2

−αn(r)
(
1−αn(r)

)
g
(∥∥xn−Tnr Un(r−1)xn

∥∥)+cn(r)M.
(2.12)
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By a repeated application of inequality (2.11) in (2.12), we obtain

∥∥xn+1−x∗
∥∥2 ≤

∥∥xn−x∗∥∥2

+αn(r)
(
k2
n−1

)(
1+αn(r−1)k2

n+···
+αn(r−1)αn(r−2) ···αn(1)k2(r−1)

n
)∥∥xn−x∗∥∥2

−
r∑
j=1

( r∏
l=j
αn(l)

)(
1−αn(j)

)
g
(∥∥xn−Tnj Un(j−1)xn

∥∥)

+(cn(r)+k2
ncn(r−1)+···+k2(r−1)

n cn(1)
)
M.

(2.13)

Since
∑∞
n=1(kn−1) <∞, hence limn→∞kn = 1, we may assume that kn ≤ L for all n∈N

and some constant L. Let N =max1≤j≤r{L2j} ≥ 1. Then

∥∥xn+1−x∗
∥∥2 ≤

∥∥xn−x∗∥∥2+(kn−1
)
(N+1)rNd2+MN

r∑
j=1

cn(j)

−
r∑
j=1

( r∏
l=j
αn(l)

)(
1−αn(j)

)
g
(∥∥xn−Tnj Un(j−1)xn

∥∥) (2.14)

for all n∈N. Transposing and summing from 1 to m we have

m∑
n=1

[ r∑
j=1

( r∏
l=j
αn(l)

)(
1−αn(j)

)
g
(∥∥xn−Tnj Un(j−1)xn

∥∥)]

≤
∥∥x1−x∗

∥∥2+(N+1)rNd2
m∑
n=1

(
kn−1

)+MN m∑
n=1

r∑
j=1

cn(j).

(2.15)

Since
∑∞
n=1(kn−1) <∞ and

∑∞
n=1 cn(j) <∞ for each j = 1,2, . . . ,r , it follows that

∞∑
n=1

[ r∑
j=1

( r∏
l=j
αn(l)

)(
1−αn(j)

)
g
(∥∥xn−Tnj Un(j−1)xn

∥∥)]<∞. (2.16)

This completes the proof of Lemma 2.4.

We now give the proof of Theorem 2.1.

Proof of Theorem 2.1. By Lemma 2.4 and condition (iii), we have

(1−b)
∞∑
n=1

r∑
j=1

ar−j+1g
(∥∥xn−Tnj Un(j−1)xn

∥∥)<∞. (2.17)

Thus,
r∑
j=1

g
(∥∥xn−Tnj Un(j−1)xn

∥∥) �→ 0 as n �→∞. (2.18)

Since g is a continuous and strictly increasing function with g(0) = 0, we have

limn→∞‖xn− Tnj Un(j−1)xn‖ = 0 for each j = 1,2, . . . ,r . Since {xn −x∗} and {un(j)}
are bounded. So we have

sup
n∈N

{∥∥xn−un(j)∥∥ : j = 1,2, . . . ,r
}≤D (2.19)
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for some constant D > 0. Let en(j) = ‖xn−Tnj Un(j−1)xn‖ and L be as in the proof of

Lemma 2.4. Then, by Lemma 2.2, we have

∥∥xn−T1xn
∥∥≤ en(1)+(L2+L)en−1(r)+Len−1(1)+

(
L2+L)cn−1(r)D �→ 0 as n �→∞,∥∥xn−Tjxn∥∥≤ en(j)+(L2+L)en−1(r)+L2en(j−1)+L2en−1(j−1)+Len−1(j)

+(L2+L)cn−1(r)D+L2cn(j−1)D+L2cn−1(j−1)D �→ 0 as n �→∞
(2.20)

for each j = 2,3, . . . ,r . This completes the proof of Theorem 2.1.

Theorem 2.5. Under the hypotheses of Theorem 2.1, if E is a uniformly convex

Banach space satisfying Opial’s condition, then {xn} converges weakly to a common

fixed point of T1,T2, . . . ,Tr .

Proof. Let ωw({xn}) be the set of all weak subsequential limits of a bounded

sequence {xn} in C . By Lemma 1.4 and Theorem 2.1, ωw({xn}) is contained in

∩rj=1F(Tj).
The remainder of the proof is similar to that of [9, Theorem 2.1], so the details are

omitted.

Remark 2.6. Theorem 2.5 generalizes [9, Theorem 2.1].

Theorem 2.7. Under the hypotheses of Theorem 2.1. Suppose that Tm1 is compact

for somem∈N. Then {xn} converges strongly to a common fixed point of T1,T2, . . . ,Tr .

Proof. As in the proof of [9, Theorem 2.2] by using Theorem 2.1 and Lemma 2.3,

{xn} has a convergent subsequence {xni} such that limi→∞xni = p. Thus, by

Theorem 2.1, we obtain that Tjp = p for each j = 1,2, . . . ,r . Hence, p ∈ ∩rj=1F(Tj)
and it follows from Lemma 2.3 that limn→∞‖xn−p‖ exists. Therefore, we conclude

that limn→∞‖xn−p‖ = 0, completing the proof of Theorem 2.7.

Remark 2.8. Theorem 2.7 generalizes [9, Theorem 2.2] and [6, Theorems 2 and 3].

Lemma 2.9. Let K be a compact convex subset of a normed space E. Suppose that

α,β,γ ∈ [0,1] such that α+β+γ = 1. Then

d
(
αx+βy+γz,K)≤αd(x,K)+βd(y,K)+γd(z,K) (2.21)

for all x,y,z ∈ E where d(x,K) := inf{‖x−p‖ : p ∈K}.

Proof. Let x,y,z ∈ E. Since K is compact, we have d(x,p1)= d(x,K), d(y,p2)=
d(y,K), and d(z,p3) = d(z,K) for some p1, p2, p3 ∈ K. Since K is convex so that

αp1+βp2+γp3 ∈K. Therefore,

d
(
αx+βy+γz,K)≤ ∥∥(αx+βy+γz)−(αp1+βp2+γp3

)∥∥
≤α

∥∥x−p1

∥∥+β∥∥y−p2

∥∥+γ∥∥z−p3

∥∥
=αd(x,K)+βd(y,K)+γd(z,K).

(2.22)

This completes the proof of Lemma 2.9.
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Theorem 2.10. Under the hypotheses of Theorem 2.1. Suppose that there exists a

nonempty compact convex subset K of E and some α ∈ (0,1) such that d(Tjx,K) ≤
αd(x,K) for all x ∈ C and each j = 1,2, . . . ,r . Then {xn} converges strongly to a

common fixed point of T1,T2, . . . ,Tr .

Proof. Forn∈N and x ∈ C we have d(Tnj x,K)≤αnd(x,K) for each j = 1,2, . . . ,r .

Since {un(j)}∞n=1 is bounded for each j = 1,2, . . . ,r andK is compact. Thus, there exists

a constant D > 0 such that

sup
n∈N

{
d
(
un(j),K

)
: j = 1,2, . . . ,r

}≤D. (2.23)

Then, by Lemma 2.9, we have

d
(
xn+1,K

)= d(an(r)xn+bn(r)Tnr Un(r−1)xn+cn(r)un(r),K
)

≤ an(r)d
(
xn,K

)+bn(r)d(Tnr Un(r−1)xn,K
)+cn(r)d(un(r),K)

≤ an(r)d
(
xn,K

)+bn(r)αnd(Un(r−1)xn,K
)+cn(r)D

≤ (1−bn(r))d(xn,K)+bn(r)αnd(an(r−1)xn+bn(r−1)Tnr−1Un(r−2)xn

+cn(r−1)un(r−1),K
)+cn(r)D

≤ [1−bn(r)+(1−bn(r−1)
)
bn(r)αn

]
d
(
xn,K

)
+bn(r)bn(r−1)α2nd

(
Un(r−2)xn,K

)+(cn(r−1)+cn(r)
)
D

...

≤
[
1−bn(r)

(
1−αn)(1+bn(r−1)αn+···+bn(r−1)bn(r−2) ···bn(1)α(r−1)n)]

d
(
xn,K

)+(cn(1)+cn(2)+···+cn(r))D
≤ [1−a(1−αn)(1+aαn+···+ar−1α(r−1)n)]d(xn,K)+D

r∑
j=1

cn(j).

(2.24)

Let δn = a(1−αn)(1+aαn+···+ar−1α(r−1)n). Since limn→∞δn = a and 0 < a < 1,

then there exists a real numberN0 ≥ 1 such that δn < 1 for all n≥N0. Since
∑∞
n=1δn =

∞ and
∑∞
n=1

∑r
j=1 cn(j) <∞, then by Lemma 1.2, we have limn→∞d(xn,K)= 0. Since K

is compact, this is easily seen to imply that {xn} has a convergent subsequence {xni}
such that limi→∞xni = p. The rest of the proof is identical to the related part of the

proof of Theorem 2.7.

Remark 2.11. Theorem 2.10 generalizes [9, Theorem 2.4].
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