IJMMS 27:11 (2001) 653-662
PIL. S0161171201007244
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

CONVERGENCE THEOREMS OF THE SEQUENCE OF ITERATES
FOR A FINITE FAMILY ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS

JUI-CHI HUANG

(Received 30 March 2001)

ABSTRACT. Let E be a uniformly convex Banach space, C a nonempty closed convex subset
of E. In this paper, we introduce an iteration scheme with errors in the sense of Xu (1998)
generated by {Tj C— C};:l as follows: Un(j) = an(j)Iern(j)T;lUn(j,l) T Cn(j)Un(j), j=
1,2,...,v,x1 €C, Xn4+1 = An(ryXn+ bn("/) T}’lUn(y,l)Xn +CnmUn@r), N = 1, where Un(()) =
I, I the identity map; and {u(j)} are bounded sequences in C; and {ay )}, {bn(j)}, and
{cn()} are suitable sequences in [0, 1]. We first consider the behaviour of iteration scheme
above for a finite family of asymptotically nonexpansive mappings. Then we generalize
theorems of Schu and Rhoades.

2000 Mathematics Subject Classification. 47H10.

1. Introduction. Let C be a nonempty convex subset of a Banach space E. A map-
ping T : C — C is called asymptotically nonexpansive with sequence {ky},_, if kyn =1
and lim,, .. k;, = 1 such that

IT"x =T"y[| < knllx - ¥l (1.1)
for all x,y € C and all n € N. T is called uniformly L-Lipschitzian if

IT"x=T"y|| < Lllx -yl (1.2)
for all x,y € C and all n € N. It is clear that every asymptotically nonexpansive map-

ping is also uniformly L-Lipschitzian for some L > 0. In [7], Schu introduced the mod-
ified Ishikawa iteration method as

Xni1 = O T (BT "Xy + (1= Bp)xn) + (1 —0tn)xn, m=12,..., (1.3)

where {«x,} and {8, } are suitable sequences in [0, 1] and the modified Mann iteration
method as

Xni1 =0T xpn+ (1—0p)xn, n=12,..., (1.4)
where {x,} is a suitable sequence in [0,1].

Using the iteration method (1.4), Schu [9, Lemma 1.5] and Rhoades [6, Theorem 1]
obtained the following result: let C be a bounded closed convex subset of a uniformly
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convex Banach space E, T : C — C an asymptotically nonexpansive mapping with
sequence {kyn} such that 3,,_;(k, —1) < o, and {x,} a sequence in [0,1] satisfying
the condition € < &, <1—¢€ for alln € N and some € > 0. Suppose that x, € C and that
{xn} is given by (1.4). Then lim,, .« || x, — Txynll = 0.

Note that >, _; (k, —1) < o if and only if >;,_; (k§, — 1) < oo for some s > 1 (see [5,
Remark 3]).

Let C be a nonempty convex subset of a Banach space E. Let T : C — C be a given
mapping for each j =1,2,...,7. We now introduce an iteration scheme with errors in
the sense of Xu [11] generated by Ty, T>,...,T; as follows: let Uy ) = I, where I is the
identity map,

Un1) = anyI + b T{' Un(o) + Cn(1)Un(),

Un2) = an@I +bne) T Un) + Cn2)Un(2),

(1.5)

Uniry = anoI + bn(V)T:LUn(V—l) + Cnr)Un(r),

x1 €C, Xn+l = An(r)Xn +bn(1f)TZlUn(7’—l)xn +CnnUne), N=1.

Here, {un(j}n-;1 is a bounded sequence in C for each j = 1,2,...,7, and {an)}n-1,
{bn(j)tn-1, and {cn(j)}n-1 are sequences in [0, 1] satisfying the conditions

An(j) +bni) +Cn =1 (1.6)

for all n € N and each j = 1,2,...,7. This scheme contains the modified Mann and
Ishikawa iteration methods with errors in the sense of Xu [11] (cf. [5]): for » = 1, our
scheme reduces to Mann-Xu type iteration and for » = 2, T} = T>» to Ishikawa-Xu type
iteration.

In 1972, Goebel and Kirk [1] proved that if C is a bounded closed convex sub-
set of a uniformly convex Banach space E, then every asymptotically nonexpansive
selfmapping T of C has a fixed point. After the existence theorem of Goebel and
Kirk [1], several authors including Schu [7, 9], Rhoades [6], Huang [3] and Osilike and
Aniagbosor [5] have studied methods for the iterative approximation of fixed points
of asymptotically nonexpansive mappings. In this paper, we first extend the result
above of [9, Lemma 1.5] and [6, Theorem 1] to the iteration scheme (1.5) and without
the restrictions that C is bounded. Then, using this result, we generalize [9, Theorems
2.1, 2.2, and 2.4] and [6, Theorems 2 and 3].

In the sequel, we will need the following results.

LEMMA 1.1 (see [5, Lemma 1]). Let {an}n_1, {bnln-1, and {0, },_1 be sequences of
nonnegative real numbers satisfying the inequality

an+1 < (1+6y)an+by,, n=1. 1.7)

If> 5 _10n <o and >, _, by < oo, thenlimy,_.. a, exists. In particular, if {a,}5_, has a
subsequence which converges strongly to zero, then lim,,_.., a, = 0.
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LEMMA 1.2 (see [8, Lemma 2]). Let {Bn},-; and {wy};;-, be sequences of nonnega-
tive numbers such that for some real numbers No > 1,

Brni1 = (1=64)Bn+wn (1.8)

foralln = Ny, where 6, € [0,11.If > 1 6p =0 and 3., Wy < o0, thenlimy, .« By = 0.

THEOREM 1.3 (see [10, Theorem 2]). Let E be a uniformly convex Banach space and
v > 0. Then there exists a continuous, strictly increasing and convex function g : R* —
R* such that g(0) =0 and

IAx + (1 =)y|]> < Allx 2+ A=A Iy 12 =20 -2 g(lIx -y (1.9)

forallx,y € B, :={x €E:|x|| <} and A € [0,1].
A Banach space E is said to satisfy Opial’s condition [4] if x,, — x weakly and x # y
imply

liyrlrlinf||xnfx|| <linm_inf||xnfy||. (1.10)

LEMMA 1.4 (see [2, Lemma 4]). Let E be a uniformly convex Banach space satisfying
Opial’s condition and C a nonempty closed convex subset of E. Let T : C — C be an
asymptotically nonexpansive mapping. Then (I — T) is demiclosed at zero, that is, for
each sequence {x,} in C, the conditions x,, — x weakly and (I — T)x, — 0 strongly
imply (I-T)x =0.

2. Main results. For abbreviation, we denote the set of fixed points of a mapping
T by F(T), and now prove the following results.

THEOREM 2.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and T; : C — C an asymptotically nonexpansive mapping with
sequence {knj)}n-, for each j =1,2,...,v such that >, _, (ky, —1) < oo, where ky, :=
maxi<j<r{kn(j)} = 1 and N'_ F(T;) # @. Let {un(j)}n-1 be a bounded sequence in C
for each j = 1,2,...,v and let {an(j)}n-1, {bn()n=1, and {cn}n-1 be sequences in
[0,1] satisfying the conditions:

(i) angy +bun) +cngy =1 forallmeN and each j = 1,2,...,7;
(i) YpoiCny) <o foreachj=1,2,...,v;
(i) 0<a=<any <b<1forallneN,eachj=1,2,...,v, and some constants a,
b, where Kn(j) = bn(j) +Cn(j)-
Suppose that {x,} is given by (1.5). Thenlimy,—.« | xn — Tjxnll = 0 foreach j = 1,2,...,r.

In order to prove Theorem 2.1, we first prove the following lemmas.

LEMMA 2.2. Let C be a nonempty convex subset of a Banach space E. LetT; : C — C be
a uniformly L-Lipschitzian mapping for each j = 1,2,...,v, and let {x,} be as in (1.5).
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Setenj) = llxn— T}‘Un(j,l)xnll for alln, j € N. Then for alln > 2,

|lxn—T1xn|| < eny+(L*+L)en-10) +Len-1)+ (L2 +L) Cn1(m|[Un-107 —Xn-1ll,

l[xn = Tjxn|l < enjy + (L +L)en-1(r) + L2en(j-1) + L?en-1(j-1) + Len-1(j)

+(L2+L) 1 llun-10) = Xn-1ll + L2 cni-n l[tn-1) = Xnl| e
+ L en-1(-nllxn-1 = Un-1G-1 |,
for each j =2,3,...,r.
PROOF. Observe that for j = 2,3,...,7 we have
Un(i-1)%n = Un-1(j-1)Xn-1]
= l@nii-1Xn +bn(i-1) T} Un(j-2)Xn + Cn(i-n Un(i-1)
—(an-1G-DXn1+bn G TF7 Uno1-2)Xn 1
+en-1G-1Un-1G-1) |
= [|(xn = xn-1) + bn(j-1) (T}, Un(j-2)Xn — Xn) (2.2)
+cn(j-1) (Un(-1) = Xn) +bu-1-1) (Xn-1— T}L:f Un-1(j-2)Xn-1)
+en-1G-1) (Xn-1 = Un-1(-1) |
< [[xn =xn-1][ +en-1) +en-1G-1) + engi-n) [[Un(j-1) = Xal|
+n-1(-0]Xn-1 = Un-1G-1 |,
llxn—%n-1ll = l|lan-1nXn-1+bn-10n T Un-10r—1)Xn-1+Cn-10n Un—10r) —Xn—1]
<bpal|IT WUn1o-nXn-1 = Xnall+ cnoiom [un-10) —xnall - (2.3)
<en-1(n + Cn1n|[Un-10n — Xn-1l-
Therefore,
lIxn = Tjxull < |IXn = Tj'Ungj—v) Xnl| + | T} Unj-1)%n = Tjxan||
< en(j) + LI T} Ungj1)Xn = Xa|
< eng) + LT UninXn = T} Un--nXn-a| o
+L|| TP Un-1-1)%n-1 = Xn-1 ][+ L||xXn-1 = xn]|
< en(j) + L||Un(j-1)%n = Un-1(j-1)Xn-1]]
+Len_1(j) + L||xn-1—xn]]-
Using (2.3) in (2.4) for j = 1 we have
[Ixn = Tuxnll < enay + (L2 + L) [|xn = Xn-1]| + Len-101)
<enn)+(L*+L)en 10 +Len-10) (2.5)

+(L? +L)cn-10m[[Un-10r) = Xn-1ll.
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Using (2.2) and (2.3) in (2.4) for j = 2,3,...,7 we have

|0 = Tjxnll < engjy + (L2 + L) [0 = Xn-1|[+ L2en(jo1) + L?en-1(j-1) + Len-1(j)
+ L2 en(j-n |[un(i-1) = %n| |+ L*cno1(-n) [|Xn-1 = Un-1G-1 |
<en()+ (L*+L)en 1) +L%en(j-1) +Len 1(j-1) +Len-1(j) (2.6)
+ (L2 + L) en-10n | [n-10r) = Xn-a]| + L2 g [ngi-1) — Xl
+ L2 cno1-nllXn-1 = un-15-n Il
This completes the proof of Lemma 2.2. O

LEMMA 2.3. Let C be a nonempty convex subset of a Banach space E. Let {T1,T>,...,
Ty}, {un(p}, and {xn} be as in Theorem 2.1 and let {an(j)}, {bnj}, and {cn(} sat-
isfy conditions (i) and (ii) of Theorem 2.1. Then lim,,_ ||x,, — x*|| exists for all x*
ﬂ;le(Tj).

PROOF. Let x* € m;le(Tj). Since {un(jyin-1 and {ky};-; are bounded, there
exists a constant N > 0 such that sup,entllung) —x*Il 1 j = 1,2,...,¥} < N and
Sup,eni{l+kn+---+k57'} < N. Then, we have

Ixns1 = x*|| = [|ane) Xn + buo T Unir—1) X + Cnry Unry = X |
< an|[xn = X[+ bnon [T Unor—1) X0 = X[ + Cnin [[uner — x|
< ane||xn = X[+ bng kn||Unor—1) X0 = X || + Nena)
= ane)||xn = X* ||+ bniy kn
X[lane-1) (Xn =Xx*) + buer-1) (T Unir—2)Xn = X™)
+Cnir—1) (Uner—1) =X *) ||+ Nenar
< [1=buey + (1 =bne—1)) buir kn]||x0n —x*||

+ bn(r)bn(rfl)km’Un(er)xn —x*||+Ncu) +N%Cur-1)

<[1-bne) + (1= buir—1) P kn
+o o+ (1=bn) bun b1y - - - buy Ky '+ buiy b1y - - 'bn(l)kﬂ
lxn —x*||+ N(cney + Neng—-1) + - - - + Neay)
= [1+bn(7)(kn—1) +bnrybna-1)kn(kn—1)
et B bago1) by (k7Y (kn = 1) [[[30 = x* (| + @n
<[1+(kn=1)A+ky+---+k2D)]||xn —x*|| + @n
[1+ (kn = 1)N][[xn —x*||+ @

IA

= (1+(pn)~|xn_x*||+(//ns
2.7)
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forall n € N, where @, := (k,—1)N and @, := N(Cn) + NCcna-1)+ - - - + Ncn(1)). Since
S (kn—1) < o0 and >.;;_; cn(jy < o foreach j =1,2,...,7,wehave >.;_; ¢ < o and
o1 Wy < o0, Thus, lim, .« ||x, —x*|| exists by Lemma 1.1. This completes the proof
of Lemma 2.3. O

LEMMA 2.4. Under the hypotheses of Lemma 2.3, if E is a uniformly convex Banach
space, then there exists a continuous, strictly increasing and convex function g : Rt —
R* such that g(0) =0, and

¥

i [Z (H“"(D)(1_0(n(j))g(||xn_T}1Un(j1)Xn||):| < 0, (2.8)
n=1Lj=1

=]
where Xy (j) := bu(j) +cnj) forallm e N and each j = 1,2,...,7.

PROOF. Let x* € m;:IF (T;). Lemma 2.3 and the hypotheses of Lemma 2.4 imply
that {x, —x*}7_1, {un I n-1, and {ky,};-; are bounded. Then, there exists a constant
d > 0 such that

U;:I {TJnUn(J‘_l)X" —x* };o:l U {Xn —X*}::l c B,. (2.9)

By Theorem 1.3, there exists a continuous, strictly increasing and convex function
g:R* — R* such that g(0) =0, and

Ax + (1= p|* < Allx >+ (1= DIy 12 = A0 -2 g(lx -yl (2.10)

for all x,y € B; and A € [0,1]. By inequality (2.10) we obtain the following estimate:
for some constant M, we have

U xn = 2*|* = 11(1 = o)) (Ocn = X*) + 0ty (TFUn(-1) Xn — x*)
2
—Cn() (T} Un(j-1)Xn = Un() ||
< (1101 = ctnjy) (xn = X*) + &y (THUngio1y 0 — X*) |
2
+ni) [[(T]Un-1)Xn = ()
P oy (T[T - —2®) I v (2.11)
< |[(1 = anijy) (x6n = x*) + &u(j) (T} Un(j-1)Xn =X ) ||" + cn(y M
< (1= otni) 130 = X[ + 0tn () | T U1y Xm —x*||°
= on(j) (1= o) g (||xn = T} Unj-1y Xnl]) + cn(n M
2 2
< (1= atn(j)||xn = x*[I” + otnijy k7 | Ungj-1y %0 = x*|
= 0n(j) (1= () g (||xn = T} Unj-1) Xnl|) + en(n M,
lxn+1 _X*HZ = [(1 = &tniry) (xn = X*) + &) (T Unr—1y X0 — X*)
—Cn(r) (TyUn(V—l)xn_un(T))Hz
) ) (2.12)
< (1= ) |10 = x*[|” + 0w K [|Unir -1y X0 — x|

— Cn(r) (L= o) g (||Xn = T Unr—1y Xl |) + Cnon M.
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By a repeated application of inequality (2.11) in (2.12), we obtain
[l e1 = x*|[* < [lpen — x|
+ Xn@r) (k% - l) (1 + (Xn(yfl)ki + e

_ 2
+ Xpr-1)&n@r-2) " * (Xn(l)k121(r 1))Hxn _X*H (2.13)

¥

.
Z(Htxn(l)) 1= otn(j)) g (|Ixn = T} Ungj-1)Xnl])

J
+( k; ki Venay) M
+(Cner) T KyCnr—-1) +- - - +Ky Cn(1) .

Since >'_; (ky—1) < o0, hence limy,_.. k,, = 1, we may assume that k,, < L foralln € N
and some constant L. Let N = max; <<, {L?/} > 1. Then

.
Ixne1 —x*|° < [|xn = x*||° + (kn— 1) (N + 1)rNd? + MN > nih)
=1 (2.14)

v r
-> (1—[ (Xn(l)) (1= otnjy) g ([|xn = T} Un(j-1)Xnl|)
J=1 \i=j

for all n € N. Transposing and summing from 1 to m we have

ﬁ [i (ﬁja"”)> (1= 0ctn(j)g(||xn - T}LUnunan)}

" . (2.15)
<1 —x*[P+ N+ DrNd? > (kn—1)+MN > > cup.
n=1 n=1 j=1

Since >.;_; (kn—1) <o and Y.,,_; cn(j) < oo for each j =1,2,...,7, it follows that
00 v v
z |:Z (H(Xn(l)) 1 &Xn(j ||Xn T Un(J l)an :| < 00, (2.16)
n=1Lj=1 \l=j
This completes the proof of Lemma 2.4. O
We now give the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. By Lemma 2.4 and condition (iii), we have

(1- b)z Zar g (|lxn = T Un(j-1yXnl]) < oo (2.17)
n=1 j=1
Thus,
v
Zg(||xn—rfUn(j,1)xn||) —0 asn— o. (2.18)
j=1

Since g is a continuous and strictly increasing function with g(0) = 0, we have
limy~ o llX0n — T}lUn(J’_l)Xn” =0 for each j =1,2,...,7. Since {x, —x*} and {uy()}
are bounded. So we have

sup{||xn—unpll:j=12,...,7} <D (2.19)
neN
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for some constant D > 0. Let ey (j) = llxn — T}‘Un(j,l)xnll and L be as in the proof of
Lemma 2.4. Then, by Lemma 2.2, we have

[l — Tixn|| < eny + (L2 +L)en 1) + Len_101) + (L2 + L)y 1nD — 0 asn — oo,
l|xn = Tjxn|| < enijy + (L* +L)en-10r) + L?en(j-1) + L?en-1(j-1) + Len-1(j)

+(L*+L)cn-10mD +L%cn(j-1yD +L*cp-1(j-1)D — 0 as n — oo
(2.20)

for each j = 2,3,...,7. This completes the proof of Theorem 2.1. O

THEOREM 2.5. Under the hypotheses of Theorem 2.1, if E is a uniformly convex
Banach space satisfying Opial’s condition, then {x,} converges weakly to a common
fixed point of T1, T>,..., Ty.

PROOF. Let wy ({x,}) be the set of all weak subsequential limits of a bounded
sequence {x,} in C. By Lemma 1.4 and Theorem 2.1, w, ({xy}) is contained in

N"_,F(T;).

Jj=1 J

The remainder of the proof is similar to that of [9, Theorem 2.1], so the details are
omitted. O

REMARK 2.6. Theorem 2.5 generalizes [9, Theorem 2.1].

THEOREM 2.7. Under the hypotheses of Theorem 2.1. Suppose that T{" is compact
for some m € N. Then {x,,} converges strongly to a common fixed point of Ty, T», ..., T;.

PROOF. As in the proof of [9, Theorem 2.2] by using Theorem 2.1 and Lemma 2.3,
{xn} has a convergent subsequence {xy;} such that lim;..x,, = p. Thus, by
Theorem 2.1, we obtain that T;p = p for each j = 1,2,...,7. Hence, p € m;le(Tj)
and it follows from Lemma 2.3 that lim,,_« [|x,, — p|| exists. Therefore, we conclude
that limy, .« ||x, —pll = 0, completing the proof of Theorem 2.7. O

REMARK 2.8. Theorem 2.7 generalizes [9, Theorem 2.2] and [6, Theorems 2 and 3].

LEMMA 2.9. Let K be a compact convex subset of a normed space E. Suppose that
o, B,y €10,1] such that x+B+y = 1. Then

d(ax+By+yz,K) < od(x,K) +Bd(y,K) +yd(z,K) (2.21)

forall x,y,z € E where d(x,K) :=inf{||x —pll : p €K}.

PROOF. Let x,y,z € E. Since K is compact, we have d(x,p1) = d(x,K), d(y,p2) =
d(y,K), and d(z,p3) = d(z,K) for some p1, p2, p3 € K. Since K is convex so that
ap1 + Bp2 +yp3 € K. Therefore,

d(ax+By+yz,K) <|[(ax+ By +yz) — (ap1+Bp2+yp3)l|
< allx—pil|+Blly —p2l| + yllz—psl| (2.22)
= od(x,K)+Bd(y,K)+yd(z,K).

This completes the proof of Lemma 2.9. O
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THEOREM 2.10. Under the hypotheses of Theorem 2.1. Suppose that there exists a
nonempty compact convex subset K of E and some « € (0,1) such that d(T;x,K) <
xd(x,K) for all x € C and each j = 1,2,...,v. Then {x,} converges strongly to a
common fixed point of Ty, To,..., T, .

PROOF. Formn € Nand x € C we have d(Tj”x,K) < o"d(x,K) foreachj=1,2,...,7.
Since {un(j)}n-1 is bounded for each j = 1,2,...,7 and K is compact. Thus, there exists
a constant D > 0 such that

sup {d(un(),K):j=1,2,...,¥} < D. (2.23)
neN

Then, by Lemma 2.9, we have

d(xn+1,K) = d(ana)Xn+bne) T Unr-1)Xn + Cniry Unir), K)
< anwyd(xXn,K) + bneyd(THUnr-1)Xn, K) + Cnind (Uno), K)
< anind(xn,K) + by " d(Un-1)Xn,K) + o D
< (1=bnp)d(xn,K) +bpy & d(aner-1)Xn +bner-1) T/ 1 Unir—2) X
+Cnir-nyUn@-1),K) + cn@yD
< [1=bnor)+ (1 =bpe-1)) buon & ]d(xn,K)

+ bn(r)bn(r—l)(ind(Un(r—Z)xn;K) + (Cn(r—l) +Cn(1’))D

<[1=Puer (1= a) (L4 Bug 1y & + -+ + b1y Pur2) -+ - Bay @0 |

d(xn,K) + (cna) +cn@) + - +Cnir)) D

,
<[1-a(l-am)(1+ac+---+a" 1« V") ]d(xn,K) +D > cn(j)-
j=1
(2.24)

Let S, =a(l—o™)(1+ac™+---+a" tax™Dn) Since lim,,.06p =aand 0 < a < 1,
then there exists a real number Ny > 1 such that §,, < 1 for all n > Ny. Since >.,,_; 6, =
co and X5 X cu(j) < o, then by Lemma 1.2, we have lim, ., d(xn,K) = 0. Since K
is compact, this is easily seen to imply that {x,} has a convergent subsequence {x,}
such that lim; .. x,; = p. The rest of the proof is identical to the related part of the
proof of Theorem 2.7. O

REMARK 2.11. Theorem 2.10 generalizes [9, Theorem 2.4].
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