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ABSTRACT. The purpose of this paper is to investigate several types of separation axioms
in intuitionistic topological spaces, developed by Coker (2000). After giving some char-
acterizations of T7 and T, separation axioms in intuitionistic topological spaces, we give
interrelations between several types of separation axioms and some counterexamples.
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1. Introduction. After the introduction of the concept of a fuzzy set by Zadeh [15],
Atanassov [1, 2] has introduced the concept of intuitionistic fuzzy set. Later Coker
et al. [4, 5, 8] have defined intuitionistic fuzzy topological spaces, intuitionistic sets,
and intuitionistic topological spaces in [6, 9, 12].

2. Preliminaries. First we present the fundamental definitions (see Coker [4]).

DEFINITION 2.1 (see [4]). Let X be a nonempty fixed set. An intuitionistic fuzzy
set (IS for short) A is an object having the form A = (X,A;,A>), where A; and A; are
subsets of X satisfying A} N A, = &@. The set A, is called the set of members of A,
while A, is called the set of nonmembers of A.

DEFINITION 2.2 (see [4]). Let X be a nonempty set and let the IS’s A and B be in the
form A = (X,A1,A7), B=(X,B1,B2), respectively. Furthermore, let {A; :i € J} be an
arbitrary family of IS’s in X, where A; = (X,Ai” ,A§2>). Then

(@) AcBifandonlyif A; € B; and Ay 2 By;

(b) A=Bifand onlyif A< B and B c A;

(€©) A=(X,Az,A1);

d uA; = (x,uAY nAP
() NA; = (X,nA", uAl
() [JA=(X,A,A]);
(8 (VA =(X,A5,Az);
h) 9=(X,0,X); X=(X,X,90).

Let X be a nonempty set, p € X a fixed element in X, and let A = (X,A;,A>) be an
IS. The IS p defined by p = (X, {p}, {p}°) is called an intuitionistic point (IP for short)
in X. The iS p = (9, {p~}c> is called a vanishing intuitionistic point (VIP for short) in
X. The IS p is said to be contained in A(p € A for short) if and only if p € Ay, and

similarly, ]; is said to be contained in A(rj € A for short) if and only if p ¢ A,. For a
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given IS A in X, we may write
A=(U{EJ:EJeA})U(u{EJ:]geA}), (2.1)

(cf. [9]) and whenever A is not a proper IS (i.e., if A is not of the form A = (X,A1,A»),
where A; U A, + X), then A = U{p : P € A} follows. In general, any IS A in X can
be written in the form A = AU{X,NwhNere A=uf{p:pe€ A}l and A = U{If 1P e A}.
Furthermore it is easy to show tﬂat, if A= (X,AI,NAZ)N, then A = ()N(,Al,Ag) aNnd A=
(X,2,Az) (cf. [4, 7). )

DEFINITION 2.3 (see [4]). Let X and Y be two nonempty sets and f: X — Y a
function, B = (Y,B1,B2) anISin Y and A = (X,A;,A?) an IS in X. Then the preimage
of B under f, denoted by f~1(B), is the IS in X defined by f~1(B) = (X, f1(B1),
f1(B»)), and the image of A under f, denoted by f(A), is the IS in Y defined by
f(A) =(Y, f(A1), f-(A2)) where f_(Az) = (f(AS))".

You may find the fundamental properties of preimages and images in [4].

DEFINITION 2.4 (see [6]). An intuitionistic topology (IT for short) on a nonempty
set X is a family T of IS’s in X containing &, X and closed under finite infima and
arbitrary suprema. In this case the pair (X, T) is called an intuitionistic topological
space (ITS for short) and any IS in T is known as an intuitionistic open set (IOS for
short) in X. The complement A of an I0S A in an ITS (X, T) is called an intuitionistic
closed set (ICS for short) in X.

Let (X,T) be an ITS on X. Then, we can also construct several other ITS’s on X in
the following way: 70,1 = {[ 1G: G € T} and 7o = {( )G : G € T}. Furthermore,

T1:{G1:G:<X,G1,G2>€T}, T22{652G2<X,G1,G2>€T} (2.2)

are topological spaces in X (cf. [6]).

DEFINITION 2.5. Let A and B be two IS’s on X and Y, respectively. Then the product
intuitionistic set (PIS for short) of A and B on X xY is defined by UXV = ((X,Y),A; X
By, (AS X B5)¢), where A = (X,A;,A;) and B = (Y, By,B>).

If (X,7) and (Y,®) are ITS’s, then the product topology T Xx® on X x Y is the IT
generated by thebase B = {AXB: A € 7,B € ®}. This is so, because, if AXB,CxD € %,
then (AXB)N(CxD) = (ANnC)X(BnD).Let AeT,Be® and A = (X,A1,A>),
B = (Y,By,B,). Then we have ;' (A) = ((x,¥),A1 XY,Ay xY) = AxY, m;'(B) =
((X,Y),XxBy,X xBy) = XxB, and

i (A) Ny ' (B) = (AxY) N (X xB)

((X,Y), (A1 XY) N (XXB1),(A2XY) U (X XB))
((X,Y),A1 XB1,(A2xY) U (X xB2))

((X,Y),A; XBy, (AS x BS)“) = AxB.

(2.3)
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The definition of “neighborhoods” of IP’s and VIP’s can be found in Coskun and
Coker [9] and “continuous function” between ITS’s can be found in Coker [6].

LEMMA 2.6. The projectionstr; : X XY —= X, : X XY - Y, m(x,y) =X, Ma(Xx,y) =
2y are continuous.

PROOF. LetA € 1,thenty!'(A)={(x,y),m (A1), 717 (A2)). Thus we have 11, (A)
={(x,¥),A1 XY, Ay xY) = AXY, that is, m is continuous.

In other words, the product topology T Xx® on X X Y is indeed the initial topology
on X x Y with respect to the projections mm; : X XY — X and m : X XY — Y. Here
the subbase {nl‘l (A),7T2‘1 (B): A €T, Be ®} generates this product topology and the
base @ is given by

B={m A nm;'(B):AcT,Bed} ={AXB: AT, Bed}. (2.4)
O

DEFINITION 2.7. Given the nonempty set X, we define the diagonal A as the fol-
lowing IS in X X X:

Ax = ((x1,x2),{(x1,x2) 1 x1 = x2}, {(x1,%x2) : x1 # x2}). (2.5)

Notice that, if X and Y are two nonempty sets and (p,q) € X XY a fixed element
in X xY, then (p,q)-~ is contained in U X V((p,q)~ € U xV for short) if and only if
(p,q) € Uy xVp, and (p,q)~ is contained in U XV ((p,q)~ € U XV for short) if and
only if (p,q) & (U5 xV5)¢, or equivalently (p,q) € US X V5.

DEFINITION 2.8. Let X, Y be two nonempty sets and f : X — Y a function. The
graph of f, denoted by GR(f), is defined as the following IS in X X Y:

GR(f) = ((x,2),{(x, f(x)) :x € X}, {(x, f (x)) :x € X}). (2.6)

3. Separation axioms in intuitionistic topological spaces. In this section, we
present T; and T, separation axioms in ITS’s. The separation axioms T; and T, pre-
sented here have certain similarities to those in Bayhan and Coker [3].

DEFINITION 3.1. Let (X, T) be an ITS, (X, T) is said to be
(@ T1(i) & Vx,y € X (x # y) U,V € 7 such that x € U, y ¢ U, and ye vV,
x ¢V (cf. [3, 14]);
(b) Ti(ii) & Vx,¥ € X (x # ¥) U,V € 7 such that x € U, y ¢ U, and yev,
x ¢ x eV (ct. [3, 14]);
() Th(iii)eVx,yeX (x=+y)3IU,VeT suchthat)NceUQJ:/ andg:evgfc (cf. [3));
d) Th(iv)eVx,yeX(x+y) EIU,VETsuchthat):ceUgjz and;:eV QD;C (cf. [3]);
() h(v) © Vx,y € X (x +y) 3U,V € T such that y ¢ UNand 9592 V (cf. [3]);
) Th(vi) o Vx,ye X (x+y)3U,V €T such that): ¢U and;ﬁc ¢V (cf. [3]);
(g) Th(vii) & Vx € X, x is T-closed,; )
(h) Th (viii) © Vx € X, x is T-closed.
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THEOREM 3.2. Let (X, T) be an ITS, then the following implications are valid:

T (v) Ty (vi)
| |
T (i) =—— T71 (i) + T1 (ii) —— T, (ii) (3.1)
| |
T, (vii) <—— Ty (iii) T (iv)
PROOF. The proof is obvious. O

COUNTEREXAMPLE 3.3. Let X = {a,b,c} and define the IT T = {<,X,A,B,C,D,
E,F,G}, where A = (X,{a,c},@), B = (X,{b},0), C = (X,{a},D), D = (X,{c}, D),
E=(X,{a,b},0),F=(X,{b,c},D),G=(X,0,0). Then (X, T) is T; (i), but not T (ii).

COUNTEREXAMPLE 3.4. Let X = {a,b} and define the IT T = {<J, X,A,B} on X,
where A = (X,d,{a}), B = (X,d,{b}). Then it is clear that (X,T) is T;(v), but not
T, (7).

COUNTEREXAMPLE 3.5. Let X = {a,b,c} and define theIT T = {@, {f,A,B,C,D,E,F}
on X,where A = (X, 0, {a,b}),B=(X,{c},{a,b}),C=(X,0,{b,c}),D =(X,{c},{b}),
E=(X,{a,c},{b}), F=(X,0,{b}). Then (X, T) is T;(vi), but not T (ii).

COUNTEREXAMPLE 3.6. Let X = {a,b,c} and define the IS’'s A = (X, {a},{c}), B =
(X,{b},{a}),C=(X,{a},{b,c}),D =(X,2,{b}), E = (X,{a,b},0), F = (X,0,{a,c}),
G=(X,0,{b,c}), H=(X,{a},J), K =(X,{a},{b}). Let T denote the IT on X gener-
ated by the subbase S = {A,B,C,D,E,F,G,H,K}. Then (X, 1) is clearly T; (iv ), but not
T, (iii).

COUNTEREXAMPLE 3.7. Let X = {a,b,c,d} and consider the family T = {&,X, A, B,
C,D,E,F,G},where A=(X,{a},d),B=(X,{b},{0}),C=(X,{c}, D), D=(X,{a,b}, D),
E=(X,{b,c},D), F=(X,{a,b,c},O), G=(X,0,D). Then the ITS (X,T) is T;(v), but
not T; (vi).

COUNTEREXAMPLE 3.8. Let X = {a,b,c} and consider the family T = {@,{(,A,B,C,
D,E,F,G,H,K},where A = (X, {a},{c}),B=(X,{b},0),C=(X,{c},0),D=(X,{a,b},
), E=(X,{a,c},9),F=(X,{b,c},2),G=(X,0,{c}),H=(X,0,9),K =(X,{a},D).
Then the ITS (X,T) on X is T; (i), but not T; (iii).

COUNTEREXAMPLE 3.9. Let X = {a,b,c} and consider the family T = {<J,X,A,B,C,
D,E,F,G},where A=(X,{a,c},d),B=(X,{b,c}, 0),C=(X,{b}, D), D=(X,{a,b}, D),
E=(X,{c},0), F=(X,{a},d), G=(X,0,0). Then the ITS (X,T) on X is T; (iv), but
not T; (ii).
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COUNTEREXAMPLE 3.10 (see [6]). Let X = N* and consider the IS’s A;, given below:
Al =(X,{2,3,4,...},9),
Ay = (X,{3,4,5,...},{1}),
A3 =(X,{4,5,6,...},{1,2}),
Ay=(X,{n+1,n+2,n+3,...},{1,2,3,...,n—-1}) (n=2).

(3.2)

Then T = {@,{(} Uf{A,:n=1,2,3,...} isan IT on X. Clearly (X, T) is T; (vi), but not
T, (i1).

PROPOSITION 3.11. Let (X, T) be an ITS. Then
(a) (X, 1) is T1 (i) if and only if (X,T1) is T;.

(b) (X,T) is T; (ii) if and only if (X, T2) is T;.

(o) (X,7) is T1 (i) if and only if (X, To,) is T1 (7).
(d) (X,7) is T (i1) if and only if (X, To,2) is T1 (ii).

DEFINITION 3.12. Let (X, T) be an ITS. (X, T) is said to be
(@ T(i) ® Vx,yeX (x=y)U,VeTsuchthatxeU,yeV,andUnV = @

(cf. [3, 13]);

(b) Tp(ii) & Vx,¥ € X (x#y) 3U,VeTsuchthatx €U, y €V, and Unv=090
(cf. [3, 13]);

(0 T(iii) & Vx,y € X (x#y) U,V e tsuchthatxe U,y €V, and U < V (cf.
[3, 10D);

(d Tx(iv) & Vx,y € X (x#y)3U,VeTsuchthatx e U,y € V,and U € V (cf.
[3, 10D);

(&) (v) ® Vx,yeX (x=+y)3U,VeTsuchthatxeUcy,yeVcX and
UnV =9 (cf. [3, 11]}

() Ta(vi) © Vx,y €X (x+y) 3U,VeTsuchthatxeUcy, y €V cX, and

UnV =9 (cf. [3, 11]);
(g) Tr(vii) © Ay is an ICS in the product ITS (X X X, Txxx)-

THEOREM 3.13. Let (X, T) be an ITS. Then the following implications are valid:

T (v) —— T2 (vi)

L

Ty (vii) <— To(i) —— T»(ii) (3.3)

L

T, (iii) —— T»(iv)

PROOF. We prove only the case T»(i) = T»(vii). We must see that Ay is an I0S
in (XxX,Txxx). Let (x,y). € Ax. This means that (x,y) € {(x,¥) : x = ¥}, that is,
x = . Since (X, T) is T (i), there exist U,V € T suchthatx e U,y € V,and UnV = @
Now in this case we have (x,y). € UxV < Ay. Indeed, from x eNUl and y € V] we get
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(x,y) € Uy x Vi, that is, (x,y). € UxV. We also know that UxV € Ay & U; xV; €
{(x,¥):x =y} and (U5 xV5)¢ 2 {(x,y):x =y}.If (y1,y2) € Uy xVy, then y; € Uy,
Yo €V1 =y = 2 = (y1,y2) € {(x,y) : x # ¥} follows. Thus the first inclusion is
true. For the second, (y1,y2) € US X Vs = y; € US and y, € V5§ = vy + y», that is,
we have US x V5 < {(x,y) : x # }. Thus we see that (y;,)2) € {(x,y) :x = ¥}. The
second inclusion is true, too. Now since

Ax= U (o)., (3.4)
(71,02)~EAx

it follows from the fact that Ay is not a proper IS, that Ay is an IOS in (X x X), that
is, (X,T) is To (vii). O

COUNTEREXAMPLE 3.14. Let X = {a,b} and consider the family T = {<, X, A,B} on
X, where A = (X,J,{b}), B=(X,d,{a}). Then the ITS (X,T) on X is T»(ii), but not
T (i).

COUNTEREXAMPLE 3.15. Let X = {a,b,c} and define the IS’s A = (X,J, {b,c}),
B = (X,{b},{a}), C = (X,{a},{c}),and D = (X,3,{a,b}). Let T denote the IT on X
generated by the subbase S = {A,B,C,D}. Then (X, 1) is T>(iv), but not T, (iii)

COUNTEREXAMPLE 3.16. Let X = {a,b,c} and consider the family T = {&, X, A, B, C,
D,E,F,G,H,K,L,M} on X,where A=(X,d,{b}),B=(X,0,{a,c}),C=(X,{a},{b,c}),
D=(X,90,{a}), E=(X,J,{a,b}), F = (X,0,{c}), G = (X,{a},{c}), H = (X, {a}, D),
K = (X,{a},{b}), L =(X,0,{b,c}), and M = (X,, D). Then the ITS (X,T) on X is
T>(vi), but not T>(v).

COUNTEREXAMPLE 3.17. Let X = {a,b,c,d} and define the IS’s A = (X, {a}, {b}),
B=(X,{b},{a,d}),C=(X,{b},{c}),D =(X,{c},{a,b}), E=(X,{a},{d}), F=(X,{d},
{a}), G = (X,{b},{d}), H = (X,{d},{b}), K = (X,{c},{d}), L = (X,{d},{c}), M =
(X,{a},{c}),and N = (X, {c},{a}). Let T denote the IT on X generated by the subbase
S={A,B,C,D,E,F,G,H,K,L,M,N}. Then (X, T) is T» (iii), but not T>» (7).

COUNTEREXAMPLE 3.18. Let X = {a,b} and consider the family T = {@,{f,A,B} on
X, where A = (X, {b}, ), B=(X,J,{b}). Then the ITS (X,T) on X is T»(iv), but not
T> (ii).

COUNTEREXAMPLE 3.19. We consider the IT on X as in Counterexample 3.15. (X, T)
is T> (iv), but not T (i).

COUNTEREXAMPLE 3.20. We consider the ITS on X as in Counterexample 3.14.
(X,T) is T»(ii), but not To(v).

PROPOSITION 3.21. Let (X,T) be an ITS. Then
(@) (X,T)is T>(i) = (X,T1) is T>».
(b) (X,T) is T>(ii) = (X, T2) is To.

PROPOSITION 3.22. Let (X,T) be an ITS. Then
(@ (X,7)is T2 (i) = (X, To,1) is T2 (i).
(b) (X,T) is Tz(ii) = (X,T()‘z) is Tz(ii).
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THEOREM 3.23. Let (X, T) be an ITS. Then the following implications are valid:
(@) T2 (i) = T (iii).

(b) T> (i) = Ty (ii).

(c) T» (iii) = Ty (iii).

(d) T>(iv) = Ty (iv).

(e) To(v) = T, (iii).

(f) o (vi) = T (vi).

PROOF. The proof is obvious. O

PROPOSITION 3.24. Let (X, T) be T,(i). Then every intuitionistic point x is the inter-
section of all the intuitionistic closed neighborhoods of x.

PROOF. Let (X,T) be T>(i) and x € X. We denote the intersection of IC neighbor-
hoods of x by the IS C = (X, (1,(2). We assume the contrary and suppose that there

exists a distinct IP y in C, that is, y € C;.

CASE 1. {x} g C;, then there exists v € C; such that x = y. Since (X, T) is T»(i),
there exist I0S’s U and V such that x € U, ye V,and UNnV = @ which implies
that U < V. Hence we have x € U < V. Thus V is a closed neighborhood of x. From
our assumption, we get y € V. But it is a contradiction, since V; NV, = &. Thus our
assumption is false. Thisteans that C consists only of the IP x.

CASE 2. {x} - CS and {x} = (1, then there exists € C5 such that y # x. Since
(X, 7) is T»(i), there exist 10S’s U,V € T such that x € U, ye Viand UNnV = @ and

the same result as in the previous assumption holds in this case, too. O

PROPOSITION 3.25. Let (X,T) be anITS, (Y,®) aT>(i) ITSand f : (X,T) — (Y,®) a
continuous function. Then the graph of f isan ICSin X XY.

PROOF. We must show that GR(f) is an IOS in X X Y. Let (x,y)~. € GR(f). Then
(x,y) € {(x,f(x)): x € X}° which implies that y + f(x). Since (Y,®) is T»(i), there
exist U,V e ®suchthat y €U, f(X) eV,and UnV = @ From the assumption that

f is continuous, we see that f~1(V) = (X, f~1(V1), f~1(V>)) is an open neighborhood
of x. Also f~1 (V) x U is an open neighborhood of (x, ). It can be shown easily that

F1(V)x U < GR(f). Since GR(f) is not a proper IS in X x Y, our assumption holds,
that is, GR(f) isanI0OSin X x Y. O

PROPOSITION 3.26. Let (X,T) be an ITS, (Y,®) a T>(i) ITS and f : (X,T) — (Y,®)
a continuous function. Then the IS C = {(x1,x2),{(x1,x2) : f(x1) = f(x2)}, {(x1,%x2) :
fx1) = f(x2)}) inXxY isanICSin X xY.

PROOF. A similar argument as in the proof of Proposition 3.25 can be followed.
O

PROPOSITION 3.27. Let (X,T) and (Y,®) be two ITS’s. Then
(@) If (X,T) and (Y,®) are T; (i), then sois (X XY,T x®).
(b) If (X, T) and (Y,®) are T; (ii), then sois (X XY, T x®).
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PROOF. (a)Let (X,T)and (Y,®)be T1(i).Let (x1,¥1),(x2,¥2) € XXY and (x1,y1) #
(x2,y2). Now suppose that x; # x». Since (X, T) is T (i) then there exist U,V € T such
that x| € U, X2 ¢ U, and Xz € v, X ¢ V. Then we have I10S's U x Y = ((X,Y),U; x
Y,(Us x@°)¢) and V xY = ((X,Y),V; XY, (V5 x @°)¢) in T x  having the properties
(x1,71)~- € UXY, (x2,¥2) . ¢ UxY, and (x2,¥2)~ € VXY, (x1,71)~ ¢ VxY. We can
prove the case y; # ¥, similarly. Thus we conclude that (X XY, T xX®) is T; (7).

(b) Similar to the previous one. O

PROPOSITION 3.28. Let (X,T) and (v,®) be two ITS’s. Then
(@) If (X,T) and (Y,®) are T»(i), then sois (X XY,T xX®).
(b) If (X, T) and (Y,®) are T»(ii), then sois (X XY,T x®).
() If (X,T) and (Y,®) are T»(iii), then sois (X XY, T X ®).
(d) If (X,T) and (Y,®) are T»(vii), then sois (X XY, T xX®).

PROOF. (a)Let (X,T), (Y,®) be T»(i). Let (x1,¥1), (xX2,2) € XXY, and (x1,y1) #
(x2,y2) and suppose that x; # x». Since (X, 1) is T» (i) then there exist U,V € T such
that X1 € U, x2 € V,and UNnV = @ Then we can form the I0S’s U x 3: =((X,Y),U; x

Y, (U x@°)¢)and VXY = ((X,Y), V1 XY, (V5§ X)) in T xP which contains (x1,1)~
and (x3,2) -, respectively. Now we must see that (UxY)n(VxY) = @ Indeed,

(UxY)n(VxY)=((X,Y),(UixY)n (Vi xY),(U§ x @)U (V5 x D))
={(X,Y), (U nV))x(YNY),[(US xY)n (V§xY)])

. (3.5)
= {(X,Y),0xY,[(U§)n (V§) x (Y nY)])

=((X,Y),2,XxY) = @.

Thus (X XY, T x®) is T»(i).

(b) Similar to previous one.

(c) Assume that (X,T) and (Y,®) are T»(iii). Let (x1,»1), (x2,)2) € X XY and
(x1,¥1) # (x2,¥2).Suppose that x; # x». Since (X, T) is T>(iii), then there exist U,V &
T such that X1 € U, X2 € V, and U < V. Then we have I0S’s U x ij = ((X,Y),U; x
Y,(Us x@°)¢) and VXY = ((X,Y),V; XY, (V5 x@°)¢) in T x P containing (x,y1)-~
and (x2,y2)~, respectively. Now, it is easy to see that U X ¥ c VTX holds, which is
identical to U; xY < (V5 xY)¢ and V; XY < (U5 x Y)¢. A similar argument holds if
1 # 2. Thus we conclude that (X XY, T xX®) is T» (iii).

(d) We are to show that Axyy is an ICS, that is, Axxy is an IOS. Since Axxy is not a
proper IS in X x Y, it is sufficient to show that for every ((p1,41), (p2,42))~ € Axxy,
there exists an I0S S in (X X Y) x (X x Y) such that ((p1,41), (p2,42))~ € S S Axxy.
Since ((p1,41),(p2,42))~ € Axxy, we get ((p1,q1) # (p2,42))~, that is, p1 # p2 or
q1 * q2. Here come three possible cases:

(1) p1 # p2, 41 = q2;

(2) p1=p2, 41 # q2;

(3) p1 # p2, 41 # q2.

Here we show only case (3). Other cases can be proved similarly. Let p; + p»,
q1 #* q». Since (p1,p2)-~ € Ay, (q1,492)~ € Ay and Ay, Ay are 10S’s, 3U;,U; € T and V4,
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V> € ® such that (p1,p2)- € Uy xUs € Ay and (q1,q2)~ € Vi X V> € Ay. We prove that
((p1,q1), (P2,q2))~ € (U X V1) X (U X V) € Axxy. This can be shown in two steps.

STEP 1. The expression ((p1,41), (p2,q2))~ € (U X V1) X (U X V») is equivalent to
((p1,a1), (P2,d2)) € (U x V1)V x (U x Vo)V & ((p1,a1), (p2,d2)) € (U x V") x
(U?fl) ><V2(1>). This means that (p1,q1) € U{l) ><V1(1) and (p2,q2) € U?fl) ><V2(1> which are
true, since p; € Ul(l), p2 € Uz(l), q1 € Vl(l), qQ € Vé”.

STEP 2. We show the inclusion (U; X Vi) X (U> X Va) € Axxy. For this purpose
we must first show that (U; x Vi)V x (Up x Vo) < {((u1,v1), (U2,v2)) @ (u1,v1) #
(u2,v2)} or equivalently, (U{" x V{") x (US"” x Vi) € {((u1,v1), (u2,v2)) : (u1,v1) #
(u2,v2)}. This is true since U; x U, € Ay and V; x Vo Ay, we have Ul(” X UZ(D c
{(u,u2) :u; #+ U} and Vl(l) ><V2(1) c {(v1,v2) : v1 # V2}, respectively. Thus the first
inclusion is true. The second inclusion can be proved similarly. Hence Ay is an IOS,
that is, Axxy is an ICS, which means that (X,Y,T x®) is T> (vii). O

REMARK 3.29. Let (X, T) and (Y,®) be T> (iv). Then (XX Y, T x®) may not be T» (iv).
Here come the reverse implications.

PROPOSITION 3.30. Let (X,T) and (Y,®) be two ITS’s. Then
(@) If (XXY, Tx®)is T»(i), then so are (X,T) and (Y,®).
(b)If (XXY,Tx®)is T»(ii), then so are (X,T) and (Y,®).
@ If (XXY,Tx®)is T»(iii), then so are (X,T) and (Y,®).

PROOF. The proofs of (a) and (b) are easy. (c) Let (X XY, T x ®) be T»(iii), and
X1 #+ X2 (x1,Xx2 € X). We take a fixed v € Y. Then, since (x1,y) # (x2,y) and X XY is
T» (iii), there exist U x Z and V X T where U,V € T and Z,T € ® such that (x;,y)- €
UXZ, (x2,y7). € VXxT,and Ux Z < VxT. Thus we get (x1,y) € Uy X Z1, (x2,¥) €
VixTy,and Uy X Z; < (V5 X T5)¢, Vi X Ty < (US X Z5)€; in other words x; € Uy, y € 73,
xp €V, yeT,and (U XZ))n (V5 xXTs5) = D,(Vy xT1) N (US X Z§) = &. From the
last intersection we get (Uf X V5) X (Z1nTs) = @ and (Vi nUS) x (T1 nZ5) = @,
respectively. v € Z; and y € T implies that Z; N T5 # & and U; V5 = @ from which
U, c V, follows. Similarly v € T) n Z§ and Vi n U5 = @ meaning that V; < U,. Thus
X1 eU, x2 eV,and UcV, thatis, (X,T) is T» (iii). Similarly (Y,®) is T»(iii), too.
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