

CHARACTERIZATION ON SOME ABSOLUTE SUMMABILITY FACTORS OF INFINITE SERIES

W. T. SULAIMAN

(Received 12 June 1998)

ABSTRACT. A general theorem concerning some absolute summability factors of infinite series is proved. This theorem characterizes as well as generalizes our previous result [4]. Other results are also deduced.

Keywords and phrases. Summability, series, sequences.

1991 Mathematics Subject Classification. 40D15, 40F15, 40F05.

1. Introduction. Let $\sum a_n$ be an infinite series with partial sum s_n . Let σ_n^δ and η_n^δ denote the n th Cesàro mean of order δ ($\delta > -1$) of the sequences $\{s_n\}$ and $\{na_n\}$, respectively. The series $\sum a_n$ is said to be summable $|C, \delta|_k$, $k \geq 1$, if

$$\sum_{n=1}^{\infty} n^{k-1} |\sigma_n^\delta - \sigma_{n-1}^\delta|^k < \infty, \quad (1.1)$$

or, equivalently,

$$\sum_{n=1}^{\infty} n^{-1} |\eta_n^\delta|^k < \infty. \quad (1.2)$$

Let $\{p_n\}$ be a sequence of positive real constants such that

$$P_n = \sum_{v=0}^n p_v \rightarrow \infty \quad \text{as } n \rightarrow \infty. \quad (1.3)$$

The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k$, $k \geq 1$, if (Bor [1])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |T_n - T_{n-1}|^k < \infty, \quad (1.4)$$

where

$$T_n = P_n^{-1} \sum_{v=0}^n p_v s_v. \quad (1.5)$$

For $p_n = 1$, $|\bar{N}, p_n|_k$ summability is equivalent to $|C, 1|_k$ summability. In general, the two summabilities are not comparable. Let $\{\varphi_n\}$ be any sequence of positive real constants. The series $\sum a_n$ is said to be summable $|\bar{N}, p_n, \varphi_n|_k$, $k \geq 1$, if (Sulaiman [4])

$$\sum_{n=1}^{\infty} \varphi_n^{k-1} |T_n - T_{n-1}|^k < \infty. \quad (1.6)$$

Clearly,

$$\left| \bar{N}, p_n, \frac{p_n}{p_n} \right|_k = |\bar{N}, p_n|_k, \quad |\bar{N}, 1, n|_k = |C, 1|_k. \quad (1.7)$$

THEOREM 1.1 (Sulaiman [4]). *Let $\{p_n\}$, $\{q_n\}$, and $\{\varphi_n\}$ be sequences of real positive constants. Let t_n denote the (\bar{N}, p_n) -mean of the series $\sum a_n$. If*

$$\begin{aligned} \sum_{n=1}^{\infty} \left(\frac{p_n}{p_n} \right)^k \left(\frac{q_n}{Q_n} \right)^k \varphi_n^{k-1} |\epsilon_n|^k |\Delta t_{n-1}|^k &< \infty, \\ \sum_{n=1}^{\infty} \varphi_n^{k-1} |\epsilon_n|^k |\Delta t_{n-1}|^k &< \infty, \\ \sum_{n=1}^{\infty} \left(\frac{p_n}{p_n} \right)^k \varphi_n^{k-1} |\Delta \epsilon_n|^k |\Delta t_{n-1}|^k &< \infty, \end{aligned} \quad (1.8)$$

then the series $\sum a_n \epsilon_n$ is summable $|\bar{N}, q_n, \varphi_n|_k$, $k \geq 1$, where $\Delta f_n = f_n - f_{n+1}$ for any sequence $\{f_n\}$ and

$$Q_n = \sum_{v=0}^n q_v \rightarrow \infty \quad \text{as } n \rightarrow \infty \quad (q_{-1} = Q_{-1} = 0). \quad (1.9)$$

2. Lemmas

LEMMA 2.1 (Bor [1]). *Let $k > 1$ and $A = (a_{nv})$ be an infinite matrix. In order that $A \in (\ell^k; \ell^k)$, it is necessary that*

$$a_{nv} = O(1) \quad (\text{all } n, v). \quad (2.1)$$

LEMMA 2.2. *Suppose that $\epsilon_n = O(f_n g_n)$, $f_n, g_n \geq 0$, $\{\epsilon_n / f_n g_n\}$ monotonic, $\Delta g_n = O(1)$, and $\Delta f_n = O(f_n / g_{n+1})$. Then $\Delta \epsilon_n = O(f_n)$.*

PROOF. Let $k_n = (\epsilon_n / f_n g_n) = O(1)$. If (k_n) is nondecreasing, then

$$\begin{aligned} \Delta \epsilon_n &= k_n f_n g_n - k_{n+1} f_{n+1} g_{n+1} \\ &\leq k_n f_n g_n - k_n f_{n+1} g_{n+1} \\ &= k_n \Delta(f_n g_n) = k_n (f_n \Delta g_n + g_{n+1} \Delta f_n), \\ |\Delta \epsilon_n| &= O(f_n |\Delta g_n|) + O(g_{n+1} |\Delta f_n|) \\ &= O(f_n) + O(f_n) = O(f_n). \end{aligned} \quad (2.2)$$

If (k_n) is nonincreasing, write $\nabla f_n = f_{n+1} - f_n$,

$$\begin{aligned} \nabla \epsilon_n &= k_{n+1} f_{n+1} g_{n+1} - k_n f_n g_n \\ &\leq k_n \nabla(f_n g_n) \\ &= k_n (f_n \nabla g_n + g_{n+1} \nabla f_n), \\ |\Delta \epsilon_n| &= |\nabla \epsilon_n| = O(f_n |\nabla g_n|) + O(g_{n+1} |\nabla f_n|) \\ &= O(f_n |\Delta g_n|) + O(g_{n+1} |\Delta f_n|) \\ &= O(f_n) + O(f_n) = O(f_n). \end{aligned} \quad (2.3)$$

□

3. Main Result. We state and prove the following theorem:

THEOREM 3.1. *Let $\{p_n\}$, $\{q_n\}$, $\{\alpha_n\}$, and $\{\beta_n\}$ be sequences of positive real numbers such that*

$$\left\{ \frac{\beta_n q_n}{Q_n} \right\} \text{ is nonincreasing; } \quad (3.1)$$

$$p_n Q_n = O(P_n q_n); \quad (3.2)$$

$$\left\{ \frac{P_n q_n}{p_n Q_n} \left(\frac{\beta_n}{\alpha_n} \right)^{1-(1/k)} \epsilon_n \right\} \text{ is monotonic; } \quad (3.3)$$

$$\Delta \left(\frac{Q_n}{q_n} \right) = O(1); \quad (3.4)$$

$$\Delta \left\{ \frac{p_n}{P_n} \left(\frac{\alpha_n}{\beta_n} \right)^{1-(1/k)} \right\} = O \left\{ \frac{p_n q_{n+1}}{P_n Q_{n+1}} \left(\frac{\alpha_n}{\beta_n} \right)^{1-(1/k)} \right\}. \quad (3.5)$$

Then the necessary and sufficient conditions that $\sum a_n \epsilon_n$ be summable $|\overline{N}, q_n, \beta_n|_k$, whenever $\sum a_n$ is summable $|\overline{N}, p_n, \alpha_n|_k$, $k \geq 1$, are

$$\epsilon_n = O \left\{ \frac{p_n Q_n}{P_n q_n} \left(\frac{\alpha_n}{\beta_n} \right)^{1-(1/k)} \right\}, \quad (3.6)$$

$$\Delta \epsilon_n = \left\{ \frac{p_n}{P_{n-1}} \left(\frac{\alpha_n}{\beta_n} \right)^{1-(1/k)} \right\}. \quad (3.7)$$

PROOF. Write

$$T_n = \beta_n^{1-(1/k)} \left(\frac{q_n}{Q_n Q_{n-1}} \right) \sum_{v=1}^n Q_{v-1} a_v \epsilon_v, \quad (3.8)$$

$$t_n = \alpha_n^{1-(1/k)} \left(\frac{p_n}{P_n P_{n-1}} \right) \sum_{v=1}^n P_{v-1} a_v,$$

$$\begin{aligned} T_n &= \beta_n^{1-(1/k)} \left(\frac{q_n}{Q_n Q_{n-1}} \right) \sum_{v=1}^n P_{v-1} a_v \frac{Q_{v-1}}{P_{v-1}} \epsilon_v \\ &= \beta_n^{1-(1/k)} \left(\frac{q_n}{Q_n Q_{n-1}} \right) \left[\sum_{v=1}^{n-1} \sum_{r=1}^v (P_{r-1} a_r) \Delta \left(\frac{Q_{v-1}}{P_{v-1} \epsilon_v} \right) + \sum_{r=1}^n (P_{r-1} a_r) \left(\frac{Q_{n-1}}{P_{n-1}} \epsilon_n \right) \right] \\ &= \beta_n^{1-(1/k)} \left(\frac{q_n}{Q_n Q_{n-1}} \right) \sum_{v=1}^{n-1} \frac{P_v P_{v-1}}{p_v} \alpha_v^{(1/k)-1} t_v \left\{ \frac{-q_v}{P_{v-1}} \epsilon_v + \frac{p_v Q_v \epsilon_v}{P_{v-1} P_v} + \frac{Q_v}{P_v} \Delta \epsilon_v \right\} \\ &\quad + \left(\beta_n^{1-(1/k)} \frac{q_n}{Q_n Q_{n-1}} \right) \frac{P_n P_{n-1}}{p_n} t_n \alpha_n^{(1/k)-1} \frac{Q_{n-1}}{P_{n-1}} \epsilon_n \\ &= \beta_n^{1-(1/k)} \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} \left\{ \frac{-q_v}{p_v} P_v \alpha_v^{(1/k)-1} t_v \epsilon_v \right. \\ &\quad \left. + \alpha_v^{(1/k)-1} Q_v t_v \epsilon_v + \frac{P_v Q_v}{p_v} \alpha_v^{(1/k)-1} t_v \Delta \epsilon_v \right\} \\ &\quad + \frac{P_n q_n}{p_n Q_n} \alpha_n^{(1/k)-1} \beta_n^{1-(1/k)} t_n \epsilon_n. \end{aligned} \quad (3.9)$$

Let us denote the above form of T_n by $T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}$.

By Minkowski's inequality, in order to prove the sufficiency, it is sufficient to show that $\sum_{n=1}^{\infty} |T_{n,r}|^k < \infty$, $r = 1, 2, 3, 4$. Applying Hölder's inequality,

$$\begin{aligned}
\sum_{n=2}^{m+1} |T_{n,1}|^k &= \sum_{n=2}^{m+1} \left| \beta_n^{1-(1/k)} \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} \frac{-q_v}{p_v} P_v \alpha_v^{(1/k)-1} t_v \epsilon_v \right|^k \\
&\leq \sum_{n=2}^{m+1} \beta_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_v \left(\frac{p_v}{p_v} \right)^k \alpha_v^{1-k} |t_v|^k |\epsilon_v|^k \left\{ \sum_{v=1}^{n-1} \frac{q_v}{Q_{n-1}} \right\}^{k-1} \\
&\leq O(1) \sum_{v=1}^m q_v \left(\frac{p_v}{p_v} \right)^k \alpha_v^{1-k} |t_v|^k |\epsilon_v|^k \sum_{n=v+1}^{m+1} \beta_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k \frac{1}{Q_{n-1}} \\
&= O(1) \sum_{v=1}^m q_v \left(\frac{p_v}{p_v} \right)^k \alpha_v^{1-k} |t_v|^k |\epsilon_v|^k \left(\beta_v \frac{q_v}{Q_v} \right)^{k-1} \sum_{n=v+1}^{m+1} \frac{q_n}{Q_n Q_{n-1}} \\
&= O(1) \sum_{v=1}^m \left(\frac{q_v P_v}{p_v Q_v} \right)^k \left(\frac{\beta_v}{\alpha_v} \right)^{k-1} |t_v|^k |\epsilon_v|^k, \\
\sum_{n=2}^{m+1} |T_{n,2}|^k &= \sum_{n=2}^{m+1} \left| \beta_n^{1-(1/k)} \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} \alpha_v^{(1/k)-1} Q_v t_v \epsilon_v \right|^k \\
&= \sum_{n=2}^{m+1} \beta_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} \alpha_v^{1-k} \left(\frac{Q_v}{q_v} \right)^k q_v |t_v|^k |\epsilon_v|^k \left\{ \sum_{v=1}^{n-1} \frac{q_v}{Q_{n-1}} \right\}^{k-1} \\
&\leq O(1) \sum_{v=1}^m \alpha_v^{1-k} \left(\frac{Q_v}{q_v} \right)^k q_v |t_v|^k |\epsilon_v|^k \sum_{n=v+1}^{m+1} \beta_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k \frac{1}{Q_{n-1}} \\
&= O(1) \sum_{v=1}^m \alpha_v^{1-k} \left(\frac{Q_v}{q_v} \right)^k q_v |t_v|^k |\epsilon_v|^k \left(\beta_v \frac{q_v}{Q_v} \right)^{k-1} \sum_{n=v+1}^{m+1} \frac{q_n}{Q_n Q_{n-1}} \\
&= O(1) \sum_{v=1}^m \left(\frac{\beta_v}{\alpha_v} \right)^{k-1} |t_v|^k |\epsilon_v|^k \\
&= O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v} \right)^k \left(\frac{q_v}{Q_v} \right)^k \left(\frac{\beta_v}{\alpha_v} \right)^{k-1} |t_v|^k |\epsilon_v|^k, \\
\sum_{n=2}^{m+1} |T_{n,3}|^k &= \sum_{n=2}^{m+1} \left| \beta_n^{1-(1/k)} \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} \frac{P_{v-1}}{p_v} Q_v \alpha_v^{(1/k)-1} t_v \Delta \epsilon_v \right|^k \\
&\leq \sum_{n=2}^{m+1} \beta_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_v \left(\frac{P_{v-1}}{p_v} \right)^k \alpha_v^{1-k} \left(\frac{Q_v}{q_v} \right)^k \\
&\quad \times |t_v|^k |\Delta \epsilon_v|^k \left\{ \sum_{v=1}^{n-1} \frac{q_v}{Q_{n-1}} \right\}^{k-1} \\
&= O(1) \sum_{v=1}^m q_v \left(\frac{P_{v-1}}{p_v} \right)^k \left(\frac{Q_v}{q_v} \right)^k \alpha_v^{1-k} |t_v|^k |\Delta \epsilon_v|^k \sum_{n=v+1}^{m+1} \beta_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k \frac{1}{Q_{n-1}} \\
&= O(1) \sum_{v=1}^m \frac{q_v}{Q_v} \left(\frac{P_{v-1}}{p_v} \right)^k \left(\frac{Q_v}{q_v} \right)^k \alpha_v^{1-k} |t_v|^k |\Delta \epsilon_v|^k \left(\beta_v \frac{q_v}{Q_v} \right)^{k-1}
\end{aligned}$$

$$\begin{aligned}
&= O(1) \sum_{v=1}^m \left(\frac{P_{v-1}}{p_v} \right)^k \left(\frac{\beta_v}{\alpha_v} \right)^{k-1} |t_v|^k |\Delta \epsilon_v|^k, \\
\sum_{n=2}^{m+1} |T_{n,4}|^k &= O(1) \sum_{n=1}^m \left(\frac{q_n P_n}{p_n Q_n} \right)^k \left(\frac{\beta_n}{\alpha_n} \right)^{k-1} |t_n|^k |\epsilon_n|^k.
\end{aligned} \tag{3.10}$$

Sufficiency of (3.6) and (3.7) follows.

NECESSITY OF (3.6). Using the result of Bor in [2], the transformation from (t_n) into (T_n) maps ℓ^k into ℓ^k and, hence by Lemma 2.1 the diagonal elements of this transformation are bounded and so (3.6) is necessary.

NECESSITY OF (3.7). This follows from Lemma 2.2 and the necessity of (3.6) by taking

$$f_n = \left(\frac{p_n}{P_n} \right) \left(\frac{\alpha_n}{\beta_n} \right)^{1-(1/k)}, \quad g_n = \frac{Q_n}{q_n}. \tag{3.11}$$

□

4. Applications

COROLLARY 4.1. *Suppose that the conditions (3.1) and (3.2) are satisfied. Then the necessary and sufficient condition that $\sum a_n$ be summable $|\bar{N}, q_n, \beta_n|_k$, whenever it is summable $|\bar{N}, p_n, \alpha_n|_k$, $k \geq 1$, is*

$$\frac{P_n q_n}{p_n Q_n} = O \left\{ \left(\frac{\alpha_n}{\beta_n} \right)^{1-(1/k)} \right\}. \tag{4.1}$$

PROOF. The proof follows from Theorem 3.1 by putting $\epsilon_n = 1$ and noticing that we do not need the conditions (3.3), (3.4), and (3.5) as $\Delta \epsilon_n = 0$ for $\epsilon_n = 1$. □

COROLLARY 4.2. *Suppose that (3.2) and (3.4) are satisfied, $\{(P_n q_n / p_n Q_n)^{(1/k)} \epsilon_n\}$ is monotonic, and*

$$\Delta \left\{ \frac{p_n}{P_n} \left(\frac{P_n q_n}{p_n Q_n} \right)^{1-(1/k)} \right\} = O \left\{ \frac{p_n q_{n+1}}{P_n Q_{n+1}} \left(\frac{P_n q_n}{p_n Q_n} \right)^{1-(1/k)} \right\}. \tag{4.2}$$

Then the necessary and sufficient conditions that $\sum a_n \epsilon_n$ be summable $|\bar{N}, q_n|_k$ whenever $\sum a_n$ is summable $|\bar{N}, p_n|_k$, $k \geq 1$, are

$$\epsilon_n = O \left\{ \frac{p_n Q_n}{P_n q_n} \right\}^{1/k}, \quad \Delta \epsilon_n = \left\{ \frac{p_n}{P_{n-1}} \left(\frac{P_n q_n}{p_n Q_n} \right)^{1-(1/k)} \right\}. \tag{4.3}$$

PROOF. The proof follows from Theorem 3.1 by putting $\alpha_n = P_n / p_n$, $\beta_n = Q_n / q_n$. □

COROLLARY 4.3 (Bor and Thorpe [3]). *Suppose that $p_n Q_n = O(P_n q_n)$ and $P_n q_n = O(p_n Q_n)$. Then, the series $\sum a_n$ is summable $|\bar{N}, q_n|_k$ if and only if it is summable $|\bar{N}, p_n|_k$, $k \geq 1$.*

PROOF. The proof follows from the sufficient part of Corollary 4.1. □

REMARK. It may be noticed that (3.4) can be replaced by

$$Q_n \Delta q_n = O(q_n q_{n+1}), \quad (4.4)$$

as

$$\begin{aligned} \left| \Delta \left(\frac{Q_n}{q_n} \right) \right| &= \left| \frac{Q_n}{q_n} - \frac{Q_{n+1}}{q_{n+1}} \right| = \left| \frac{q_{n+1}Q_n - q_n(Q_n + q_{n+1})}{q_n q_{n+1}} \right| \\ &= \left| \frac{Q_n \Delta q_n}{q_n q_{n+1}} + 1 \right| \\ &\leq 1 + \frac{Q_n |\Delta q_n|}{q_n q_{n+1}}. \end{aligned} \quad (4.5)$$

REFERENCES

- [1] H. Bor, *On two summability methods*, Math. Proc. Cambridge Philos. Soc. **97** (1985), no. 1, 147–149. MR 86d:40004. Zbl 554.40008.
- [2] ———, *On the relative strength of two absolute summability methods*, Proc. Amer. Math. Soc. **113** (1991), no. 4, 1009–1012. MR 92c:40006. Zbl 743.40007.
- [3] H. Bor and B. Thorpe, *On some absolute summability methods*, Analysis **7** (1987), no. 2, 145–152. MR 88j:40012. Zbl 639.40005.
- [4] W. T. Sulaiman, *On some summability factors of infinite series*, Proc. Amer. Math. Soc. **115** (1992), no. 2, 313–317. MR 92i:40009. Zbl 756.40006.

SULAIMAN: COLLEGE OF EDUCATION, AJMAN UNIVERSITY, P. O. BOX 346, AJMAN, UNITED ARAB EMIRATES

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk