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Abstract. A general theorem concerning some absolute summability factors of infinite
series is proved. This theorem characterizes as well as generalizes our previous result [4].
Other results are also deduced.
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1. Introduction. Let
∑
an be an infinite series with partial sum sn. Let σδ

n and ηδn
denote the nth Cesàro mean of order δ(δ > −1) of the sequences {sn} and {nan},
respectively. The series

∑
an is said to be summable |C,δ|k, k≥ 1, if

∞∑
n=1

nk−1
∣∣∣σδ

n−σδ
n−1

∣∣∣k <∞, (1.1)

or, equivalently,
∞∑
n=1

n−1
∣∣ηn∣∣k <∞. (1.2)

Let {pn} be a sequence of positive real constants such that

Pn =
n∑

v=0
pv �→∞ as n �→∞. (1.3)

The series
∑
an is said to be summable

∣∣N,pn∣∣k, k≥ 1, if (Bor [1])
∞∑
n=1

(
Pn
pn

)k−1∣∣Tn−Tn−1∣∣k <∞, (1.4)

where

Tn = P−1n
n∑

v=0
pvsv. (1.5)

For pn = 1,
∣∣N,pn∣∣k summability is equivalent to ∣∣C,1∣∣k summability. In general,

the two summabilities are not comparable. Let {ϕn} be any sequence of positive real
constants. The series

∑
an is said to be summable

∣∣N,pn,ϕn
∣∣
k, k≥ 1, if (Sulaiman [4])

∞∑
n=1

ϕk−1
n

∣∣Tn−Tn−1∣∣k <∞. (1.6)
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Clearly, ∣∣∣∣N,pn, Pnpn
∣∣∣∣
k
= ∣∣N,pn∣∣k, ∣∣N,1,n∣∣k = ∣∣C,1∣∣k. (1.7)

Theorem 1.1 (Sulaiman [4]). Let {pn}, {qn}, and {ϕn} be sequences of real positive
constants. Let tn denote the (N,pn)-mean of the series

∑
an. If

∞∑
n=1

(
Pn
pn

)k(
qn
Qn

)k
ϕk−1
n

∣∣εn∣∣k∣∣∆tn−1∣∣k <∞,
∞∑
n=1

ϕk−1
n

∣∣εn∣∣k∣∣∆tn−1∣∣k <∞,
∞∑
n=1

(
Pn
pn

)k
ϕk−1
n

∣∣∆εn∣∣k∣∣∆tn−1∣∣k <∞,

(1.8)

then the series
∑
anεn is summable

∣∣N,qn,ϕn
∣∣
k, k≥ 1, where ∆fn = fn−fn+1 for any

sequence {fn} and

Qn =
n∑

v=0
qv �→∞ as n �→∞ (

q−1 =Q−1 = 0
)
. (1.9)

2. Lemmas

Lemma 2.1 (Bor [1]). Let k > 1 and A = (anv) be an infinite matrix. In order that
A∈ (�k;�k), it is necessary that

anv =O(1) (all n,v). (2.1)

Lemma 2.2. Suppose that εn = O(fngn), fn, gn ≥ 0, {εn/fngn} monotonic, ∆gn =
O(1), and ∆fn =O(fn/gn+1). Then ∆εn =O(fn).

Proof. Let kn = (εn/fngn)=O(1). If (kn) is nondecreasing, then
∆εn = knfngn−kn+1fn+1gn+1

≤ knfngn−knfn+1gn+1
= kn∆

(
fngn

)= kn(fn∆gn+gn+1∆fn),∣∣∆εn∣∣=O(fn∣∣∆gn∣∣)+O(gn+1∣∣∆fn∣∣)
=O(fn)+O(fn)=O(fn).

(2.2)

If (kn) is nonincreasing, write ∇fn = fn+1−fn,
∇εn = kn+1fn+1gn+1−knfngn

≤ kn∇
(
fngn

)
= kn

(
fn∇gn+gn+1∇fn

)
,∣∣∆εn∣∣= ∣∣∇εn∣∣=O(fn∣∣∇gn∣∣)+O(gn+1∣∣∇fn∣∣)

=O(fn∣∣∆gn∣∣)+O(gn+1∣∣∆fn∣∣)
=O(fn)+O(fn)=O(fn).

(2.3)
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3. Main Result. We state and prove the following theorem:

Theorem 3.1. Let {pn}, {qn}, {αn}, and {βn} be sequences of positive real numbers
such that {

βnqn
Qn

}
is nonincreasing; (3.1)

pnQn =O
(
Pnqn

)
; (3.2)

 Pnqn
pnQn

(
βn
αn

)1−(1/k)
εn


 is monotonic; (3.3)

∆
(
Qn

qn

)
=O(1); (3.4)

∆


pnPn

(
αn

βn

)1−(1/k)
=O


pnqn+1PnQn+1

(
αn

βn

)1−(1/k)
. (3.5)

Then the necessary and sufficient conditions that
∑
anεn be summable

∣∣N,qn,βn∣∣k,
whenever

∑
an is summable

∣∣N,pn,αn
∣∣
k, k≥ 1, are

εn =O
{
pnQn

Pnqn

(
αn

βn

)1−(1/k)}
, (3.6)

∆εn =

 pn
Pn−1

(
αn

βn

)1−(1/k)
 . (3.7)

Proof. Write

Tn = β1−(1/k)n

(
qn

QnQn−1

) n∑
v=1

Qv−1avεv,

tn =α1−(1/k)n

(
pn

PnPn−1

) n∑
v=1

Pv−1av,

(3.8)

Tn = β1−(1/k)n

(
qn

QnQn−1

) n∑
v=1

Pv−1av
Qv−1
Pv−1

εv

= β1−(1/k)n

(
qn

QnQn−1

)[n−1∑
v=1

v∑
r=1

(
Pr−1ar

)
∆
(
Qv−1
Pv−1 εv

)
+

n∑
r=1

(
Pr−1ar

)(Qn−1
Pn−1

εn
)]

= β1−(1/k)n

(
qn

QnQn−1

)n−1∑
v=1

PvPv−1
pv

α(1/k)−1
v tv

{
−qv
Pv−1

εv+ pvQvεv
Pv−1Pv

+Qv

Pv
∆εv

}

+
(
β1−(1/k)n

qn
QnQn−1

)
PnPn−1
pn

tnα(1/k)−1
n

Qn−1
Pn−1

εn

= β1−(1/k)n
qn

QnQn−1

n−1∑
v=1

{
−qv
pv

Pvα(1/k)−1
v tvεv

+α(1/k)−1
v Qvtvεv+ PvQv

pv
α(1/k)−1
v tv∆εv

}

+ Pnqn
pnQn

α(1/k)−1
n β1−(1/k)n tnεn.

(3.9)

Let us denote the above form of Tn by Tn,1+Tn,2+Tn,3+Tn,4.
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By Minkowski’s inequality, in order to prove the sufficiency, it is sufficient to show
that

∑∞
n=1 |Tn,r |k <∞,r = 1,2,3,4. Applying Hölder’s inequality,

m+1∑
n=2

|Tn,1|k =
m+1∑
n=2

∣∣∣∣β1−(1/k)n
qn

QnQn−1

n−1∑
v=1

−qv
pv

Pvα(1/k)−1
v tvεv

∣∣∣∣
k

≤
m+1∑
n=2

βk−1n

(
qn
Qn

)k
1

Qn−1

n−1∑
v=1

qv

(
Pv
pv

)k
α1−kv

∣∣tv∣∣k∣∣εv∣∣k


n−1∑
v=1

qv
Qn−1



k−1

≤O(1)
m∑
v=1

qv

(
Pv
pv

)k
α1−kv

∣∣tv∣∣k∣∣εv∣∣k
m+1∑
n=v+1

βk−1n

(
qn
Qn

)k
1

Qn−1

=O(1)
m∑
v=1

qv

(
Pv
pv

)k
α1−kv

∣∣tv∣∣k∣∣εv∣∣k
(
βv

qv
Qv

)k−1 m+1∑
n=v+1

qn
QnQn−1

=O(1)
m∑
v=1

(
qvPv
pvQv

)k(
βv
αv

)k−1∣∣tv∣∣k∣∣εv∣∣k,
m+1∑
n=2

∣∣Tn,2∣∣k =
m+1∑
n=2

∣∣∣∣β1−(1/k)n
qn

QnQn−1

n−1∑
v=1

α(1/k)−1
v Qvtvεv

∣∣∣∣
k

=
m+1∑
n=2

βk−1n

(
qn
Qn

)k
1

Qn−1

n−1∑
v=1

α1−kv

(
Qv

qv

)k
qv
∣∣tv∣∣k∣∣εv∣∣k



n−1∑
v=1

qv
Qn−1



k−1

≤O(1)
m∑
v=1

α1−kv

(
Qv

qv

)k
qv
∣∣tv∣∣k∣∣εv∣∣k

m+1∑
n=v+1

βk−1n

(
qn
Qn

)k
1

Qn−1

=O(1)
m∑
v=1

α1−kv

(
Qv

qv

)k
qv
∣∣tv∣∣k∣∣εv∣∣k

(
βv

qv
Qv

)k−1 m+1∑
n=v+1

qn
QnQn−1

=O(1)
m∑
v=1

(
βv
αv

)k−1∣∣tv∣∣k∣∣εv∣∣k

=O(1)
m∑
v=1

(
Pv
pv

)k(
qv
Qv

)k(
βv
αv

)k−1∣∣tv∣∣k∣∣εv∣∣k,
m+1∑
n=2

∣∣Tn,3∣∣k =
m+1∑
n=2

∣∣∣∣β1−(1/k)n
qn

QnQn−1

n−1∑
v=1

Pv−1
pv

Qvα(1/k)−1
v tv∆εv

∣∣∣∣
k

≤
m+1∑
n=2

βk−1n

(
qn
Qn

)k
1

Qn−1

n−1∑
v=1

qv

(
Pv−1
pv

)k
α1−kv

(
Qv

qv

)k

×∣∣tv∣∣k∣∣∆εv∣∣k


n−1∑
v=1

qv
Qn−1



k−1

=O(1)
m∑
v=1

qv

(
Pv−1
pv

)k(
Qv

qv

)k
α1−kv

∣∣tv∣∣k∣∣∆εv∣∣k
m+1∑
n=v+1

βk−1n

(
qn
Qn

)k
1

Qn−1

=O(1)
m∑
v=1

qv
Qv

(
Pv−1
pv

)k(
Qv

qv

)k
α1−kv

∣∣tv∣∣k∣∣∆εv∣∣k
(
βv

qv
Qv

)k−1
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=O(1)
m∑
v=1

(
Pv−1
pv

)k(
βv
αv

)k−1∣∣tv∣∣k∣∣∆εv∣∣k,
m+1∑
n=2

∣∣Tn,4∣∣k =O(1)
m∑
n=1

(
qnPn
pnQn

)k(
βn
αn

)k−1∣∣tn∣∣k∣∣εn∣∣k.
(3.10)

Sufficiency of (3.6) and (3.7) follows.
Necessity of (3.6). Using the result of Bor in [2], the transformation from (tn)

into (Tn) maps �k into �k and, hence by Lemma 2.1 the diagonal elements of this
transformation are bounded and so (3.6) is necessary.

Necessity of (3.7). This follows from Lemma 2.2 and the necessity of (3.6) by
taking

fn =
(
pn
Pn

)(
αn

βn

)1−(1/k)
, gn = Qn

qn
. (3.11)

4. Applications

Corollary 4.1. Suppose that the conditions (3.1) and (3.2) are satisfied. Then the
necessary and sufficient condition that

∑
an be summable |N,qn,βn|k, whenever it is

summable |N,pn,αn|k, k≥ 1, is

Pnqn
pnQn

=O


(
αn

βn

)1−(1/k)
 . (4.1)

Proof. The proof follows from Theorem 3.1 by putting εn = 1 and noticing that
we do not need the conditions (3.3), (3.4), and (3.5) as ∆εn = 0 for εn = 1.

Corollary 4.2. Suppose that (3.2) and (3.4) are satisfied, {(Pnqn/pnQn)(1/k)εn} is
monotonic, and

∆


pnPn

(
Pnqn
pnQn

)1−(1/k)
=O


pnqn+1PnQn+1

(
Pnqn
pnQn

)1−(1/k)
 . (4.2)

Then the necessary and sufficient conditions that
∑
anεn be summable |N,qn|k when-

ever
∑
an is summable |N,pn|k, k≥ 1, are

εn =O
{
pnQn

Pnqn

}1/k
, ∆εn =


 pn
Pn−1

(
Pnqn
pnQn

)1−(1/k)
 . (4.3)

Proof. The proof follows from Theorem 3.1 by putting αn = Pn/pn, βn =Qn/qn.

Corollary 4.3 (Bor and Thorpe [3]). Suppose that pnQn = O(Pnqn) and Pnqn =
O(pnQn). Then, the series

∑
an is summable |N,qn|k if and only if it is summable

|N,pn|k, k≥ 1.

Proof. The proof follows from the sufficient part of Corollary 4.1.
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Remark. It may be noticed that (3.4) can be replaced by

Qn∆qn =O
(
qnqn+1

)
, (4.4)

as ∣∣∣∣∣∆
(
Qn

qn

)∣∣∣∣∣=
∣∣∣∣∣Qn

qn
−Qn+1
qn+1

∣∣∣∣∣=
∣∣∣∣∣qn+1Qn−qn(Qn+qn+1)

qnqn+1

∣∣∣∣∣
=
∣∣∣∣∣Qn∆qn
qnqn+1

+1
∣∣∣∣∣

≤ 1+Qn|∆qn|
qnqn+1

.

(4.5)
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