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ABSTRACT. In 1900, Pringsheim gave a definition of the convergence of double sequences.
In this paper, that notion is extended by presenting definitions for the limit inferior and
limit superior of double sequences. Also the core of a double sequence is defined. By using
these definitions and the notion of regularity for 4-dimensional matrices, extensions, and
variations of the Knopp Core theorem are proved.

Keywords and phrases. Core of a sequence, double sequence, regular matrix, P-convergent.

1991 Mathematics Subject Classification. Primary 40B05; Secondary 40C05.

1. Introduction. The notion of convergence for double sequences was presented by
Pringsheim. Also, in [2, 3, 4, 5, 10] the 4-dimensional matrix transformation (Ax)mun =
S kiz0.0@mnkiXk1 Was studied extensively by Robison and Hamilton. In their work
and throughout this paper, the 4-dimensional matrices and double sequences have
complex-valued entries unless specified otherwise. In this paper, we extend the notion
of convergence by defining new double sequence spaces and consider the behavior of
4-dimensional matrix transformations on our new spaces. We also present definitions
for limit inferior/limit superior of a double sequence, regularity of a 4-dimensional
matrix, and the core of a double sequence. Using these definitions and the notion of
regularity for a 4-dimensional matrix, we present multidimensional analogues to the
Knopp Core theorem. We also present extensions and variations of this theorem.

2. Definitions and preliminary results

DEFINITION 2.1 [Pringsheim, 1900]. A double sequence [x] has Pringsheim limit L
(denoted by P-lim[x ] = L) provided that given € > 0 there exists N € N such that |xy,;—
L| < e whenever k,l > N. We shall describe such an [x] more briefly as “P-convergent.”

A double sequence [x] is bounded if and only if there exists a positive number
M such that |xy;| < M for all k and I (which shall be denoted by [|x|] < M). Note
that a convergent double sequence need not be bounded. In 1900, Pringsheim gave
the following definition: a double sequence [x] is called definite divergent if for every
(arbitrarily large) G > 0 there exist two natural numbers n; and n, such that |x, x| > G
for n > ny,k = n,. This definition is clearly equivalent to P-lim [|x|] = oo.

DEFINITION 2.2. The sequence [y] is a subsequence of the double sequence [x]
provided that there exist two increasing double index sequences {n}} and {k;} such
that n} =k} =n°, =k% =0 and
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n} & k! are both chosen such that max{n’;'5,ki; !} < ni &ki,
nb & kb are both chosen such that max{ni,ki} < n} & k%,
n} & ki are both chosen such that max{n},ki} < n} & ki,

nb,_, & kb, ; are both chosen such that max{nb_,,, kb, )} <nb_; &kb;_|,
with

YLi = Xt ki
Y2, = X ki s
3,0 = X gl
(2.1)
Yii = Xyi i,
(A0 4
P
Yiir1 nipki?
=X .
Yi2i-1 (CTITC P

fori=1,2,3,....

EXAMPLE 2.1. The double sequences whose n, k-terms are Y, =1 and z,x = -1
for each n and k are both subsequences of the double sequence whose n, kth term
is xpr = (-1"* k Indeed, every double sequence of 1’s and —1’s is a subsequence of
this [x].

A two dimensional matrix transformation is said to be regular if it maps every
convergent sequence into a convergent sequence with the same limit. In 1926, Robison
presented a 4-dimensional analogue of regularity for double sequences in which he
added an additional assumption of boundedness: a 4-dimensional matrix A is said to
be RHregular if it maps every bounded P-convergent sequence into a P-convergent
sequence with the same P-limit.

The following is a 4-dimensional analogue of the well-known Silverman-Toeplitz
theorem [6].

THEOREM 2.1 (Hamilton [2], Robison [10]). The 4-dimensional matrix A is RH-reg-
ular if and only if

(RHy) P-limy, n amnk,i = 0 for each k and L;

(RH2) P-limyy, Zzoljoo Ammikl = 1;

(RH3) P-limy, n Yoo |@mmiil = 0 for each ;

(RHy) P-limy, n 312 l@mnkil = O for each k;

(RH5) X120, |@mmk1l is P-convergent; and

(RHe) there exist positive numbers A and B such that Xy 1»p |amnk,1| < A.

DEFINITION 2.3. A number B is called a Pringsheim limit point of the double se-
quence [x] provided that there exists a subsequence [y ] of [x] that has Pringsheim
limit 8: P-lim[y] = B.
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REMARK 2.1. The definition of a Pringsheim limit point is equivalent to the follow-
ing statement: § is a Pringsheim limit point of [x] if and only if there exist two increas-
ing index sequences {n;} and {k;} such that lim; xy, , = B. A double sequence [x] is
divergent in the Pringsheim sense (P-divergent) provided that [x] is not P-convergent.
This is equivalent to the following: a double sequence [x] is P-divergent if and only if
either [x] contains two subsequences with distinct finite limit points or [x] contains
an unbounded subsequence. Also note that, if [x] contains an unbounded subse-
quence then [x] also contains a definite divergent subsequence.

In [7] Knopp introduced the concept of the core a complex number sequence. We
follow that idea in defining the core of a double sequence.

DEFINITION 2.4. Let P-C,, {x} be the least closed convex set that includes all points
xk, for k,I > n; then the Pringsheim core of the double sequence [x] is the set
P-C{x} = Np=1 [P-Cr{x}].

THEOREM 2.2 [Knopp, 1930]. If A is a nonnegative regular matrix then the core of
[Ax] is contained in core of [x], provided that [Ax] exists.

3. Main results. In a manner similar to the classical definitions of the limit supe-
rior and the limit inferior of a sequence, we present definitions for the limit superior
and the limit inferior of a double sequence. Using these definitions one can charac-
terize the Pringsheim core of a real-valued double sequence as the closed interval
[P-liminf x,P-limsup x].

DEFINITION 3.1. Let [x] = {xy,;} be a double sequence of real numbers and for
each n, let &y, = sup, {xx, : k,l = n}. The Pringsheim limit superior of [x] is defined
as follows:

(1) if & = +o0 for each n, then P-limsup[x] := +oo;

(2) if x < oo for some n, then P-limsup[x] :=inf, {x,}.

Similarly, let B, = inf, {xk; : k,l = n} then the Pringsheim limit inferior of [x] is
defined as follows:

(1) if B, = —oo for each n, then P-liminf[x] := —oo;

(2) if By, > —oo for some n, then P-liminf[x] := sup, {Bx}-

ExAMPLE 3.1. The following is an example of an [x] which is neither bounded

above nor bounded below; however, the Pringsheim limit superior and inferior are
both finite numbers

k, ifl=0,
- -1, if k=0, 3.1)
’ (-Dk, ifl=k>0,
0, otherwise;

thus P-liminf[x] = —1 and P-limsup[x] = 1.

The proof of the following proposition is the same as the proof for single dimen-
sional sequences and is therefore left to the reader.

PROPOSITION 3.1. If[x] is a real-valued double sequence then
(1) P-liminf[x] < P-limsup[x];
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(2) P-lim[x] =L if and only if P-limsup[x] = P-liminf[x] = L;
(3) P-limsup[—x] = —(P-liminf[x]);

(4) P-limsup([x]+[y]) < (P-limsup[x]) + (P-limsup[y]);
(5) P-liminf([x]+[y]) = (P-liminf[x]) + (P-liminf[y]);

(6) if [v] is a subsequence of the double sequence [x] then

P-liminf[x] < P-liminf[y] < P-limsup[y] < P-limsup[x]. 3.2)

THEOREM 3.1. If A is a nonnegative RH-regular summability matrix, then P-C{Ax}
c P-C{x} for any bounded sequence [x] for which [Ax] exists.

PROOF. Note that if P-C{x} is the complex plane then the result is trivial. We shall
establish our theorem by considering separately the cases where [x] is bounded or
unbounded. In both cases the result will be established by proving the following:
if there exists a g such that for w ¢ P-C;{x}, then there exists a p such that w ¢
P-Cp{Ax}. When [x] is bounded, P-C{x} is not the complex plane, thus there exists
an w ¢ P-C{x}. This implies that there exists a q for which w ¢ P-C,,{x}. Since w
is finite, we may assume that w = 0 by the linearity of A. Since we are also given
that P-C;{x} is a convex set, we can rotate P-C,; {x} so that the distance from zero to
P-C4{x} is the minimum of {|y|:y € P-C;{x}} and is on the positive real axis; say
that this minimum is 3d. Since P-C;{x} is convex, all points of P-C,;{x} have a real
part which is at least 3d. Let M = max{|xk,|}. By the regularity conditions (RH;)-(RHy4)
and the assumption am; n k1 = 0, there exists an N such that for m,n > N the following
holds:

S a <4 S a <4
y m,n,k,l SM’ m,n,k,l 3M’
el k,lel
(3.3)
Z Ammnk,l < %! Z Amn,k,l > 3
klels klely
where
IL={(k]):0<k<ko&0<l<ly},
I ={(k1):ko<k<oo&0=<l<ly},
3.4
I3={(k1):0<k<ko&ly<l< o}, (3.4)
Iy ={(k,l) 1 ko <k <o &ly<l< oo}
Therefore for m,n > N
‘R{ > am,n,k,lxk,l]’ = 9’\{ > am,n,k,lxk,l]’ + ‘R‘I > am,n,k,lxk,l}
k,1=0,0 k,lel k,lel
+R { > am,n,k,lxk,l} +R ‘| > am,n,k,lxk,l}
k,lel3 k,lely (35)

>-M z Ammnki—M Z Ammn,k,l
klel kel

-M Z Ammnik,l+3d Z Ammnkl > —Mﬁ + 3d§ =d.

k,lels k,lely 3M
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Therefore, R{Ax} > d which implies that there exists a p for which w = 0 is also
outside of P-C, {Ax}. Now suppose that [x] is unbounded; the w may be the point at
infinity or not. If w is not the point at infinity then choose N such that for m,n > N
the following holds:
a 2
Z Ammnikl < 577 Z Am,nkl > (3.6)

y e
k,lely 3M k,lelpulz3Uly 3

In a manner similar to the first part we obtain R{Ax} > d. In the case when w is the
point at infinity, P-C4{x} is bounded for all g, which implies that x;; is bounded for
k,l > q. We may assume that [|x|] < B for some positive number B without loss of
generality. Thus for m and n large we obtain the following:

00,00 00,00 0,00
D AmnkiXki| S D Amnkl Xkl B D Ammki < . (3.7)
k,1=0,0 k,1=0,0 k,1=0,0

Hence, there exists a p such that the point at infinity is outside of P-C,{Ax}. This
completes the proof of our theorem. O

The following lemma is a multidimensional analogue of a lemma of Agnew in [1].

We use this lemma to prove Theorem 3.2, below.

LEMMA 3.1. If {“m,n,k,l}z'lc:o,o is a real or complex-valued 4-dimensional matrix such
that (RH,), (RH3), (RH4), and P-limsup,, ,, Z,‘z’l‘:o’o |amniil = M hold, then for any
bounded double sequence [x] we obtain the following:

P-limsup[|y|] < M (P-limsup[|x|]), (3.8)
where 00,00

Vmn = D Amo il Xkl- (3.9)
k,1=0,0

In addition, there exists a real-valued double sequence [x] such that if ammk, is real
with 0 < P-limsupl[|x|] < co then

P-limsup[|y|] = M (P-limsup[|x|]). (3.10)
PROOF. Let [x] be bounded and define
B:=P-limsup[|x|] < . (3.11)

Given € > 0 we can choose an N such that |xy,;| < (B+¢€)/3 for each k, and/or [ > N.
Thus,

N,N
Vmnl = D N@mmktl X0+ D l@mnl Xk,
k,1=0,0 0<I<N,
N<k<oo
0,00
+ > lamupl Xl + > [ A,k 11Xk 1]
N<l<ow, k,I=N+1,N+1
<k<N
0=k (3.12)
NN B+e
< D lamnril Xl + D |am,n,k,l|<T)
k,1=0,0 0<I<N,
N<k<oo
B+e & B+e
+ Z |am,n,k,l|(T>+ z |am,n,k,l|(T>y
N<l<oo, k,I=N+1,N+1

0<k<N
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which yields
P-limsup([|y|] < M(B+€). (3.13)
Therefore the following holds:

P-limsup[|y|] < M (P-limsup[|x|]). (3.14)

Since 00,00
P-limsup > |dmnkil =M, (3.15)

MR ,1=0,0

we may assume that M > 0 without loss of generality. Using the RH-regularity condi-
tions we choose my, nog, ly, and ko, so large that

00,00

1 1
Z ‘amo,ng,k,” > M_ Zy Z ‘amo,ng,k,” < Zs
k,1=0,0 0<l<lp,
ko<k<o
1 00,00 1 (3.16)
z ‘amo,no,k,” =< Za Z ‘a'mo,n(),k,” =< Z
lp<l<co, k,l=lo,ko

0<k<kq
Let [mp-1],[ng-11,[kp-1], and [l;—1] be four chosen strictly increasing index se-
quences withp,g=1---i—1,j—1with kg = lp > 0. Using the RH-regularity conditions
we now choose m; > m;_; and n; > nj_; such that

1 1
Z |ami,nj,k,l ’ < ﬁ, z |ami,nj,k,l ’ < ﬁy
O<k<k;_1, 0=l=lj 4,
0<l<oo ki <k<oo (3.17)
00,00 1
Z |am,-,nj,k,l| >M—2i+j'
k,1=0,0

In addition, we also choose k; > k;—; and [; > l;_; such that

1
> lammuil <575 and > Nammral < 555 (3.18)
ki1 <k<kj, lj1<l<oo,
ljslsoo kij<k<co
Let us define [x] as follows:
dmr,n ikl i
#, if ki—l <k<ki, ljf1 <l<lj, and ami,nj’k'lio;
Xgi=1 | @minkl] (3.19)
0, otherwise .
Consider the following:
00,00
‘ymi,nj ’ = Z Amin kI Xkl | = — Z |ami,nj,k,l |
k,1=0,0 O<k<k;_1,
O<l<w
- Z | Amin;k,l | - Z | Amin;kl |
Oslglj,l, ki_1<k<ki,
ki1 <k=o lj<lsoo
- Z | Aminjk,l \ + Z Am;njk1SEN (ami,nj,k,l) (3.20)

I 1<l<oo, Lj 1 <I<lj,
ki<k<o ki_1<k<k;
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2i+j 2i+j 2i+j 2i+j 2i+]
1
=M=-95.
This implies that
P-limsup[|y|] = M = M (P-limsup[|x|]). (3.21)

Thus, if A is real-valued then so is [x] with 0 < limsup[x] < oo

P-limsup(|y|] = M (P-limsup|[|x|]). (3.22)
O

THEOREM 3.2. If A is a 4-dimensional matrix, then the following are equivalent
(1) For all real-valued double sequences [ x]

P-limsup[Ax] <P-limsup[x]; (3.23)

(2) A is an RH-regular summability matrix with

00,00

P-im > lamunkil =1. (3.24)
mmn
k,1=0,0

PROOF. To show that (1) implies (2), let [x] be a bounded P-convergent double
sequence, thus

P-liminf[x] = P-limsup[x] = P-lim[x], (3.25)
and also
P-limsup [A(-x)] < — (P-liminf[x]). (3.26)
These imply that P-liminf[x] < P-liminf[ Ax]; thus
P-liminf[x] < P-liminf[Ax] < P-limsup[Ax] < P-limsup[x]. (3.27)

Hence [Ax] is P-convergent and P-lim[Ax] = P-lim[x]. Therefore A is an RH-regular
summability matrix.

By Lemma 3.1 and its proof, there exists a bounded double sequence [x] such that
limsup[|x|] =1 and P-limsup[y] = A, where A is defined by (RHg). This implies that

1 <Pliminf > |amnpil <Plimsup > [ammril <1, (3.28)
m,n m,n
k,1=0,0 ! k,1,=0,0
whence
P-lim > |amnkil = 1. (3.29)
mmn
k,1=0,0

To prove that (2) implies (1) we show that if [x] is a bounded P-convergent sequence
and A is an RH-regular matrix with

00,00

P-lim > |amukil =1, (3.30)
mmn
k,1=0,0
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then
P-limsup[Ax] < P-limsup[x]. (3.31)

For p,q > 1 we obtain the following:

OO‘OO
Z Am,n,k,l Xk,
k,1=0,0
00,00 00,00
S | @kl Xkl | — Aok, Xkt Y | A n, kel Xk 1| + A k 1 Xk L
k,1=0,0 2 k,1=0,0 2
00,00 00,00
< D lamnrdllXiil+ D (Iamnktl = Amnk) [ X1
k,1=0,0 k,1=0,0
p.a
<lxl > lamnktl +1x1 D lammnkil
k,1=0,0 p<k<oco,
O<l<q
00,00
+ x|l Z |@mnkil+ sup [x]| Z [Amn kil +11x]] Z (lammnkil = Amnil)-
0<k<p, kil>p.a  ki>pa k,1=0,0
g<l<co
(3.32)
Using (RH;)-(RH4) and
00,00
P-lim > |amukil =1, (3.33)
mmn
k,1=0,0
we take Pringsheim limits and get the desired result. O
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