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ABSTRACT. Every matrix over a Dedekind domain is equivalent to a direct sum of matrices
A = (a; ), where a; ;j = 0 whenever j > i+1.
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1. Introduction. Two m X n matrices A and B over a ring R are called equivalent
if B = PAQ for invertible matrices P and Q over R. From now on, assume that R
denotes a Dedekind domain with quotient field K. If I = (a, b) is a non principal ideal
in R, then, in contrast with the situation for Principal Ideal Domains, the 1 x 2 matrix
[a,b] is not equivalent over R to a matrix whose off diagonal entries are 0. Using the
separated divisor theorem in the form given by Levy in [2], other facts about matrices
over Dedekind domains in [2], and elementary properties of ideals in Dedekind domain
[1], we show that any m X n matrix over a Dedekind domain is equivalent to a direct
sum of matrices A = (a;;) with a;; = 0 when j > i+ 1. If the direct summand A
has rank 7, then the number of rows, respectively columns, of A is either » or r + 1.
The corresponding result for similarity of matrices over principal ideal rings is that
every n X n matrix over a principal ideal ring is similar to an upper triangular matrix
[3, p. 42].

2. Diagonalization of matrices. If A is an m X n matrix, then A can be viewed as
an R-module homomorphism A : R™ — R™ by left multiplication. If M4 denotes the
submodule of R generated by the columns of A, then M, is the image of Ain R™ and
the isomorphism class of the cokernel S4 = R"/M, of A determines the equivalence
class of A.

SEPARATED DIVISOR THEOREM [2]. There is a chain of integral R-ideals L, = L, <
- c L, and a fractional R-ideal H such that

o1 @HeR™ !, m<r
Sa= r R ~ (2.1)
Si-11; m=r,

where H=[];_Liifr=nand H=Rifr =0orr =m.
The isomorphism class of Sa, the ideals {L;}]_, (as sets), and the isomorphism class

of H both determine and are determined by the equivalence class of A.
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We also need the following elementary facts about ideals in Dedekind domains.

LEMMA 1 [1, p. 150, 154]. Let1,] be integral ideals in R. Then

(1) There is an « in the quotient field K of R such that «I is integral and «I + J = R;

(2) There is an R-module isomorphismy :1J&R — 1 & J, given by y (u,v) = (x1v —u,
xu—x»v), where « is as in (1) and x1 € I, x» € J are chosen with otx1 —x» = 1.

NOTE. The R-linear homomorphism y is given by the matrix ( ‘D} ,’}Z ), where o € K.

THEOREM 2.2. Every m X n matrix A over a Dedekind domain is equivalent to a
direct sum of matrices (a;;) with a;; = 0 whenever j > i+1.

PROOF. An m X n matrix A is called indecomposable if A is not equivalent to a
matrix of the form (%1 302) for any matrices By, B». That is, A is not equivalent to a
direct sum of matrices By, By. If A = 0, the result is clear. Assume that A # 0. It is
sufficient to verify the result for indecomposable matrices. In this case, if + is the
rank of A over the quotient field K of R, then [2, Lem. 2.1] asserts that m =7v or r +1
and n = or v + 1. There are then four possible cases to check.

CASE 1. Assume that m =¥ and n = v. Then Sy = ®]_,R/L;, with L,,...,L, integral
R-ideals with L; € L, < --- € L, and [[}_; L; = R. Thus, [[;_; L; = {(a) is a principal
ideal generated by a € R. Let ¢o : R" — HLILI' ® R"! be given by ¢ (r1,...,7) =
(ar,7r2,...,vy) and let ¢p;: Ly ®---@Lj 1 @[[[_;LieReR" V! - Lie---eL;je
[Tijs1Li®R"7"! be givenby ¢p; =I; 1@y;el, j 1, where y; : [[[_;Li®R — Lj &
HLJH L; is the map given in Lemma 1 and Ij_,I,—j_; are the identity maps of indi-
catedrank.Let¢p:R" - L1 ®---®L, C R" be givenby ¢p=¢,_1¢,_2 - - - p1¢o. Then the
matrix [¢] of ¢, with respect to the standard bases for R", is: [¢p]=[¢P,-1]- - - [] [Po].

While [¢;] may have entries which are not in R, [¢] has all its entries in R since
each L; is integral. If we write

I, 0 0 0
w-|0 X0 (2.2)
J 0 O(j *X% 0 ’ ’

0 0 0 Iy

then a direct calculation shows that

-a xi 0 0 0 00 0 0
—aoy -x} x¥ 0 0 0 0 0 0
—ac; X coxs x5 x3 0 0 0 0 0
[p]= —ac; 003 oe3x: x5 xi 0 0 0 0 0 (2.3)
—all - e e oy _axy 2 Xyt

Since [¢] has the same number of rows and columns and the same cokernel as A, [¢]
is equivalent to A.
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REMARK. Assume that L; = (a;) is principal for each i,i = 1,...,7 and a; € R. The
isomorphism y; : H;,-LieaR@ - Ljeal_[f:jﬂ L; can be given as y;(u,v) = (xju,B;v),
where «j = 1/[[;_j,1a; and B = ]_[Lj+1ai. In this case, [¢] = diag{ai,...,a,} with
a;|ai.1 for 1 <i<v. This is the only case which occurs if R is a PID.

CASE 2. Assume that m =¥ and n = v + 1. Then S4 = @/_|R/L; with L;,1 <i <7
integral ideals and L; < L, < --- < L,. Let L,,; be integral ideal with H{:IIL = (a)
principal, then @{:fLi =~ R™ and there is a chain of R-homomorphisms

rR"* 1 e...0l,0l, L& - oL <R, (2.4)

where 1T is the projectionon L1 & - - - ® L, along L, ;. The matrix of mo¢ isan mxn
matrix obtained by deleting the last row of [¢] and, thus, has the same form as in
Case 1. Since the cokernel of 11¢ is the same as A and [11¢] has the same number of
rows and columns as A, [1T¢] is equivalent to A.

CASE 3. Assume that m = v + 1 and n = v. Then Sy = ®]_,R/L; ® H, where
L;, 1 < i < 7 are integral ideals and H = HLILI'. Choose a € R with L,H 1a in-
tegral. Note that L,H 'a is a submodule of H 'a. From Case 1, we construct an
R-isomorphism ¢, : R" - Li®---&L, 1 ®L,H 'a c R"*! whose matrix has the
same form as that of [¢p] in Case 1. By Lemma 1, there is a chain of isomorphisms
w:H'laeH -~ H 'Ha®R — R®R carrying L,H 'a onto a submodule N of R ®R.
By [1, Cor. 18.24], (H'a®H)/L,H 'a=R/L,®H.Let ® = (I,_1 ® ¢) o b, : R" — R™,
The matrix of ® is m X n and the first ¥ = n rows are the same as [¢, ]. The last row
does not contribute any entries above the main diagonal. So, for each j > i + 1, the
i, jth entry of [®] is 0. Since the cokernel of [®] is S4 and [®] has the same number
of rows and columns as A,[®] and A are equivalent.

CASE 4. Let S4=o!_R/L; ® H, where L,,...,L, are integral ideals with L; < --- ¢
L, and by replacing H (if necessary) by an isomorphic copy, H is an integral ideal.
By [1, Thm. 18.20], there is an integral ideal H, with H,H principal and H, + H = R.
There is an a € R such that J = ([[{_;L; - H,)"'a < H. As in Case 1, there is an
isomorphism ¢,,; :R"™*! - L1 ®---®L,_10L,H,®J.ViewL; <Rforl <i<v,L,H, <
H,.Asin Case 3, there is an isomorphism ¢ : H,®H — R@R with ¢ (L,H,) = N <R®R
and R&R/N=R/L,®oH.Let ® = (I,_1 ® ) o Py41. Then & : R — R"+1 and all the
rows, except possibly the last two of [®], are the same as that of [¢] in Case 1. So,
for each j > i+ 1, the i, jth entry of [®] is 0. Since the cokernel of ® is S4, [®] and A
are equivalent. O

REMARK. While we could have given explicit formula for the entries in the matri-
ces constructed in Cases 2, 3, and 4 as in Case 1, these entries are not canonically
determined by A as a result of the many choices made in their construction. In par-
ticular, the choices of & and x1,x; in Lemma 1 are not canonically determined by the
ideals I, J.
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