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Abstract. Every matrix over a Dedekind domain is equivalent to a direct sum of matrices
A= (ai,j), where ai,j = 0 whenever j > i+1.
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1. Introduction. Two m×n matrices A and B over a ring R are called equivalent
if B = PAQ for invertible matrices P and Q over R. From now on, assume that R
denotes a Dedekind domain with quotient field K. If I = 〈a,b〉 is a non principal ideal
in R, then, in contrast with the situation for Principal Ideal Domains, the 1×2 matrix[
a,b

]
is not equivalent over R to a matrix whose off diagonal entries are 0. Using the

separated divisor theorem in the form given by Levy in [2], other facts about matrices
over Dedekind domains in [2], and elementary properties of ideals in Dedekind domain
[1], we show that anym×n matrix over a Dedekind domain is equivalent to a direct
sum of matrices A = (ai,j) with ai,j = 0 when j > i+ 1. If the direct summand A
has rank r , then the number of rows, respectively columns, of A is either r or r +1.
The corresponding result for similarity of matrices over principal ideal rings is that
every n×n matrix over a principal ideal ring is similar to an upper triangular matrix
[3, p. 42].

2. Diagonalization of matrices. If A is an m×n matrix, then A can be viewed as
an R-module homomorphism A : Rn → Rm by left multiplication. If MA denotes the
submodule of Rm generated by the columns of A, thenMA is the image of A in Rm and
the isomorphism class of the cokernel SA = Rm/MA of A determines the equivalence
class of A.

Separated divisor theorem [2]. There is a chain of integral R-ideals L1 ⊆ L2 ⊆
··· ⊆ Lr and a fractional R-ideal H such that

SA =


⊕ri=1 RLi ⊕H⊕Rm−r−1, m < r

⊕ri=1 RLi , m= r ,
(2.1)

where H =∏r
i=1Li if r =n and H � R if r = 0 or r =m.

The isomorphism class of SA, the ideals {Li}ri=1 (as sets), and the isomorphism class
of H both determine and are determined by the equivalence class of A.
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We also need the following elementary facts about ideals in Dedekind domains.

Lemma 1 [1, p. 150, 154]. Let I,J be integral ideals in R. Then
(1) There is an α in the quotient field K of R such that αI is integral and αI+J = R;
(2) There is an R-module isomorphism γ : IJ⊕R→ I⊕J, given by γ(u,v)= (x1v−u,

αu−x2v), where α is as in (1) and x1 ∈ I, x2 ∈ J are chosen with αx1−x2 = 1.
Note. The R-linear homomorphism γ is given by the matrix

(−1 x1
α −x2

)
, whereα∈K.

Theorem 2.2. Every m×n matrix A over a Dedekind domain is equivalent to a
direct sum of matrices (aij) with aij = 0 whenever j > i+1.

Proof. An m×n matrix A is called indecomposable if A is not equivalent to a
matrix of the form

(
B1 0
0 B2

)
for any matrices B1, B2. That is, A is not equivalent to a

direct sum of matrices B1, B2. If A = 0, the result is clear. Assume that A ≠ 0. It is
sufficient to verify the result for indecomposable matrices. In this case, if r is the
rank of A over the quotient field K of R, then [2, Lem. 2.1] asserts thatm= r or r +1
and n= r or r +1. There are then four possible cases to check.

Case 1. Assume thatm= r and n= r . Then SA =⊕ri=1R/Li, with L1, . . . ,Lr integral
R-ideals with L1 ⊆ L2 ⊆ ··· ⊆ Lr and

∏r
i=1Li � R. Thus,

∏r
i=1Li = 〈a〉 is a principal

ideal generated by a ∈ R. Let φ0 : Rr →
∏r
i=1Li ⊕Rr−1 be given by φ0(r1, . . . ,rr ) =

(ar1,r2, . . . ,rr ) and let φj : L1 ⊕ ··· ⊕ Lj−1 ⊕
∏r
i=j Li ⊕ R ⊕ Rr−j−1 → L1 ⊕ ··· ⊕ Lj ⊕∏r

i=j+1Li⊕Rr−j−1 be given by φj = Ij−1⊕γj ⊕ Ir−j−1, where γj :
∏r
i=j Li⊕R → Lj ⊕∏r

i=j+1Li is the map given in Lemma 1 and Ij−1, Ir−j−1 are the identity maps of indi-
cated rank. Letφ : Rr → L1⊕···⊕Lr ⊂ Rr be given byφ=φr−1φr−2 ···φ1φ0. Then the
matrix [φ] ofφ, with respect to the standard bases for Rr , is: [φ]=[φr−1]···[φ] [φ0].
While [φi] may have entries which are not in R, [φ] has all its entries in R since

each Lj is integral. If we write

[
φj
]=




Ij 0 0 0

0 −1 xji 0

0 αj −xj2 0

0 0 0 Ir−j−1



, (2.2)

then a direct calculation shows that

[φ]=




−a x11 0 0 0 0 0 0 0

−aα1 −x12 x21 0 0 0 0 0 0

−aα1α2 α2x12 x22 x31 0 0 0 0 0

−aα1α2α3 α2α3x22 x32 x41 0 0 0 0 0
...

...
...

−a∏r−1
i=1 αi ··· αr−2xr−22 xr−12




. (2.3)

Since [φ] has the same number of rows and columns and the same cokernel as A, [φ]
is equivalent to A.
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Remark. Assume that Li = 〈ai〉 is principal for each i,i = 1, . . . ,r and ai ∈ R. The
isomorphism γj :

∏r
i=j Li⊕R⊕→ Lj⊕

∏r
i=j+1Li can be given as γj(u,v)= (αju,βjv),

where αj = 1/
∏
i=j+1ai and βj =

∏r
i=j+1ai. In this case, [φ] = diag{a1, . . . ,ar} with

ai | ai+1 for 1≤ i≤ r . This is the only case which occurs if R is a PID.
Case 2. Assume that m = r and n = r +1. Then SA = ⊕ri=1R/Li with Li,1 ≤ i ≤ r

integral ideals and L1 ⊆ L2 ⊆ ··· ⊆ Lr . Let Lr+1 be integral ideal with
∏r+1
i=1 L = 〈a〉

principal, then ⊕r+1i=1 Li � Rn and there is a chain of R-homomorphisms

Rn
φ
�������������������������������������������→ L1⊕···⊕Lr ⊕Lr+1 π

�������������������������������������������→ L1⊕···⊕Lr ⊆ Rr , (2.4)

where π is the projection on L1⊕···⊕Lr along Lr+1. The matrix of π ◦φ is anm×n
matrix obtained by deleting the last row of [φ] and, thus, has the same form as in
Case 1. Since the cokernel of πφ is the same as A and [πφ] has the same number of
rows and columns as A,[πφ] is equivalent to A.

Case 3. Assume that m = r + 1 and n = r . Then SA = ⊕ri=1R/Li ⊕ H, where
Li, 1 ≤ i ≤ r are integral ideals and H � ∏r

i=1Li. Choose a ∈ R with LrH−1a in-
tegral. Note that LrH−1a is a submodule of H−1a. From Case 1, we construct an
R-isomorphism φr : Rr → L1 ⊕ ··· ⊕ Lr−1 ⊕ LrH−1a ⊂ Rr+1 whose matrix has the
same form as that of [φ] in Case 1. By Lemma 1, there is a chain of isomorphisms
ψ : H−1a⊕H → H−1Ha⊕R → R⊕R carrying LrH−1a onto a submodule N of R⊕R.
By [1, Cor. 18.24], (H−1a⊕H)/LrH−1a� R/Lr ⊕H. Let Φ = (Ir−1⊕ψ)◦φr : Rn → Rm.
The matrix of Φ ism×n and the first r =n rows are the same as [φr ]. The last row
does not contribute any entries above the main diagonal. So, for each j > i+1, the
i,jth entry of [Φ] is 0. Since the cokernel of [Φ] is SA and [Φ] has the same number
of rows and columns as A,[Φ] and A are equivalent.

Case 4. Let SA=⊕ri=1R/Li⊕H, where L1, . . . ,Lr are integral ideals with L1 ⊆ ··· ⊆
Lr and by replacing H (if necessary) by an isomorphic copy, H is an integral ideal.
By [1, Thm. 18.20], there is an integral ideal Ho with HoH principal and Ho+H = R.
There is an a ∈ R such that J = (∏r

i=1Li ·Ho)−1a ⊆ H. As in Case 1, there is an
isomorphismφr+1 : Rr+1→ L1⊕···⊕Lr−1⊕LrHo⊕J. View Li ≤ R for 1≤ i≤ r ,LrHo ≤
Ho. As in Case 3, there is an isomorphismψ :Ho⊕H → R⊕R withψ(LrHo)=N ≤ R⊕R
and R⊕R/N � R/Lr ⊕H. Let Φ = (Ir−1⊕ψ)◦φr+1. Then Φ : Rr+1 → Rr+1 and all the
rows, except possibly the last two of [Φ], are the same as that of [φ] in Case 1. So,
for each j > i+1, the i,jth entry of [Φ] is 0. Since the cokernel of Φ is SA, [Φ] and A
are equivalent.

Remark. While we could have given explicit formula for the entries in the matri-
ces constructed in Cases 2, 3, and 4 as in Case 1, these entries are not canonically
determined by A as a result of the many choices made in their construction. In par-
ticular, the choices of α and x1,x2 in Lemma 1 are not canonically determined by the
ideals I,J.
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