
Internat. J. Math. & Math. Sci.
Vol. 22, No. 4 (1999) 709–712

S 0161-1712〈99〉22709-3
© Electronic Publishing House

SUBSEQUENCES AND CATEGORY

ROBERT R. KALLMAN

(Received 21 July 1998)

Abstract. If a sequence of functions diverges almost everywhere, then the set of subse-
quences which diverge almost everywhere is a residual set of subsequences.
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1. Introduction. In [1], Bilyeu, Lewis, and Kallman proved a general theorem about
rearrangements of a series of Banach space valued functions. This theorem settled a
question on rearrangements of Fourier series posed by Kac and Zygmund. Kallman
[3] proved an analog of this theorem for subseries of a series of Banach space valued
functions. The purpose of this paper is to complete the cycle of these ideas by prov-
ing an analogous theorem (Theorem 1.1) for subsequences of a sequence of Banach
space valued functions. Theorem 1.1 does not seem to follow directly from results of
[1] or [3]. Other than [1, 3], the only precedent for Theorem 1.1 seems to be a paper
[7] on subsequences of a sequence of complex numbers.

Let S be the set of all sequences s = (s1,s2, . . .), where 1 ≤ s1 < s2 < ··· is a strictly
increasing sequence of positive integers. S is a closed subset of the countable product
of the positive integers, and so S is a complete separable metric space. Given any
sequence of objects a1,a2, . . . , one can identify the set of its subsequences both as a
set and as a topological space with S. In this context, it is natural to identify a collection
of subsequences with a subset of S and ask if it is first category, second category, or
residual ([5] or [6]). Define an equivalence relation ∼ on S as follows: if s,t ∈ S, then
s ∼ t if and only if sn = tn for all sufficiently large n. Intuitively this states that s ∼ t if
and only if s and t agree from some point on. It is simple to check that any nonempty
subset of S which is saturated with respect to ∼ is dense.

The main result of this paper is the following theorem, which is proved in Section 2.

Theorem 1.1. Let (X,µ) be a regular locally compact σ -finite measure space, Z a
separable Banach space, and fn :X � Z a sequence of Borel measurable functions. Sup-
pose that the sequence fn(x) diverges for µ-a.e., x ∈ X. Then [s ∈ S | fsn(x) diverges
for µ-a.e. x ∈X] is a residual set in S.

Just as in [1, 3], this measure-category result has a category-category analog which
is discussed in Section 3.

2. Proof of Theorem 1.1. The following special case of Theorem 1.1 will be proved
first.
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Lemma 2.1. Let K be a compact Hausdorff space, Z a Banach space, and fn :K� Z
a sequence of continuous functions, and δ > 0. Suppose that for every x ∈ K and
positive integer N , there exists a pair of integers n=n(x,N) andm=m(x,N) so that
N ≤ n ≤m and ‖fm(x)−fn(x)‖ > δ. Then [s ∈ S | fsn(x) diverges for every x ∈ K]
is a residual set in S.

Proof. If m,n is a pair of integers such that 1≤n≤m and s ∈ S, let gs,m,n : K�
[0,+∞) be defined by gs,m,n(x)= ‖fsm(x)−fsn(x)‖. gs,m,n is continuous. Consider

A=
⋂
N≥1

⋃
N≤n1≤m1,...,N≤np≤mp

[
s ∈ S | ∪1≤i≤p g−1

s,mi,ni

(
(δ,+∞))=K]. (2.1)

Fix 1 ≤ n ≤m and s ∈ S. Then V = [t ∈ S | tm = sm and tn = sn] is an open neigh-
borhood of s in S. Hence, if t ∈ V , then gt,m,n = gs,m,n. This in turn implies that A is
a Gδ subset of S. Furthermore, A is saturated with respect to the equivalence relation
∼ and therefore is a dense Gδ if it is nonempty.
A is nonempty since t = (1,2,3, . . .) is in A. To see this, fix N ≥ 1. For N ≤ n ≤m,

let U(m,n) = g−1
t,m,n((δ,+∞)). Note that the collection {U(m,n)}N≤n≤m is an open

covering ofK by hypothesis and so has a finite subcover, sayU(m1,n1), . . . ,U(mp,np).
One easily concludes from this that t ∈A.

Finally, note that the Cauchy criterion for convergence implies that if s ∈ A, then
fsn(x) diverges for every x ∈K. Hence, A⊆ [s ∈ S | fsn(x) diverges for every x ∈K].
This proves Lemma 2.1.

Proof of Theorem 1.1. We may assume that µ is a probability measure since µ
is σ -finite. If q ≥ 1, let

Dq =
⋂
N≥1

⋃
N≤n≤m

[
x ∈X ∣∣∥∥fm(x)−fn(x)∥∥> 1

q

]
. (2.2)

Each Dq is a Borel subset of X, Dq ⊆Dq+1, and the Cauchy criterion for convergence
implies that ∪q≥1Dq = [x ∈ X | fn(x) diverges]. µ(∪q≥1Dq)= 1 by assumption. Use a
vector-valued version of Lusin’s Theorem [2] to choose, for each q, a compact subset
Kq of Dq so that each fn |Kq is continuous and µ(Dq−Kq) < 1/q. Rq = [s ∈ S | fsn(x)
diverges for every x ∈Kq] is a residual subset of S by Lemma 2.1. Hence, R =∩q≥1Rq
is a residual set in S and is contained in [s ∈ S | fsn(x) diverges for µ-a.e., x ∈ X]
since µ(∪q≥1Kq)= 1. This proves Theorem 1.1.

3. Sequences of functions with the Baire property. Theorem 1.1 may be regarded
as a measure-category result. The purpose of this section is to prove a category-
category analog of Theorem 1.1 (cf. [1, Thm. 1.2] and [3, Thm. 3.1]).

LetX be a Polish space.A subset ofX is said to have the Baire property if there exists
an open setU inX so thatA�U is first category. The collection of all subsets ofX with
the Baire property is a σ -algebra which includes the analytic sets in X. Let Z be any
other Polish space. A function f :X � Z is said to have the Baire property if U open in
Z implies that f−1(U) has the Baire property in X. Any Borel function f : X � Z is a
function with the Baire property. See [4, 5] or [6] for a thorough discussion of this circle
of ideas. The following theorem is then a category-category analog of Theorem 1.1.
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Theorem 3.1. Let X be a Polish space, Z a separable Banach space, and fn :X � Z
a sequence of functions with the Baire property. Suppose that [x ∈X | fn(x) diverges]
is a residual subset of X. Then [s ∈ S | fsn(x) diverges on a residual subset of X] is a
residual subset of S.

The following proposition, of independent interest, is needed to prove Theorem 3.1.

Proposition 3.2. Let Z be a Banach space and let {zn}n≥1 be a sequence in Z . Let
A= [s ∈ S | zsn converges]. Then either A= S or A is of first category in S.

Proof. For k≥ 1 define

Bk =
⋂
N≥1

⋃
N≤n≤m

[
s ∈ S ∣∣∥∥zsm−zsn∥∥> 1

k

]
. (3.1)

Note that Bk ⊆ Bk+1. Each set in square brackets is open in S. Hence, this formula
shows that Bk is a Gδ. Bk is dense if it is nonempty since it is saturated with respect to
the equivalence relation ∼. Therefore, Bk is a residual set in S if it is nonempty since
any dense Gδ is residual.

The Cauchy criterion for convergence implies that Ac = ∪k≥1Bk. Hence, either A =
S or Ac is residual in S; or either A = S or A is of first category in S. This proves
Proposition 3.2.

Proof of Theorem 3.1. Check that the mapping (x,s) � fsn(x), X×S � Z , is a
function with the Baire property for every n≥ 1. Hence,

B = [(x,s) | fsn(x) diverges
]= ⋃

k≥1

⋂
N≥1

⋃
N≤n≤m

[
(x,s)

∣∣∥∥fsm(x)−fsn(x)∥∥> 1
k

]
(3.2)

is a subset of X×S with the Baire property. For each x ∈ X, let Bcx be the projection
of Bc ∩ ((x)×S) onto S. The hypotheses of Theorem 3.1 plus Proposition 3.2 imply
that each Bcx is a first category subset of S, except for a first category set of x’s. But
then Bc is itself a first category subset of X×S [6, Thm. 15.4] and so Bcs , the projection
of Bc ∩ (X × (s)) onto X, is a first category subset of X, except for a first category
set of s’s (Theorem of Kuratowski-Ulam, [6, Thm. 15.1]). Hence, Bs , the projection of
B∩(X×(s)) onto X, is a residual subset of X for all except a first category set of s’s. 
This proves Theorem 3.1.
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