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REGULARITY OF CONSERVATIVE INDUCTIVE LIMITS
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ABSTRACT. A sequentially complete inductive limit of Fréchet spaces is regular, see [3].
With a minor modification, this property can be extended to inductive limits of arbitrary
locally convex spaces under an additional assumption of conservativeness.
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Throughout the paper E; C E» C - - - is a sequence of Hausdorff locally convex spaces
with continuous identity maps id : E,, — E+1, n € N. Their respective topologies are
denoted by T;,. The topology of their inductive limit ind E,, is denoted by T = ind 1.

We will use a result from [1, Cor. IV. 6.5]. It reads:

If F as well as all spaces E,, are Fréchet and T : F — ind E,, is a linear map with a
closed graph, then there is n € N such that T is a continuous map of F into E,,.

According to [2, Sec. 5.2], the space ind E,, is called x-regular, resp. regular, if every
set bounded in ind E,, is contained, resp. bounded, in some constituent space E,,. We
will need a slightly modified notion of regularity.

DEFINITION 1. An inductive limit ind E,, is quasi x-regular, resp. quasi regular, if
every set bounded in ind E,, is a subset of a T-closure of a set contained, resp. bounded,
in some constituent space E,.

DEFINITION 2. An inductive limit ind E,, is called conservative if for every linear
subspace F C ind E,,, we have

ind (FNE,, Tn) = (F,ind T,). (1)

LEMMA. Let a locally convex (Hausdorff) space E be sequentially complete, and B be
a balanced, bounded, closed, and convex set in E. Then the linear span F of B, equipped
with the topology generated by the Minkowski functional of B, is a Banach space and
the identity map id : F — E is continuous.

PROOF. Clearly F is a normed space and id : F — E is continuous.

To prove the completeness of F, take a Cauchy sequence {x,} in F. Sinceid: F — E is
continuous, {x,} is Cauchy in E. Hence it converges to some x € E. The set J{x,;n €
N1}, which is bounded in F, is contained in some «B. Since the set B is closed in E,
we have x € xB CF.

For any O-nbhd AB, A > 0, in F, there exists k € N such that m,n > kimply x,, —x;, €
AB. If we let m — o, we get x,, —x € AB for n > k, i.e., x, — x in F. O
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PROPOSITION 1. Any sequentially complete ind E,, is quasi «-regular.

PROOF. Let a set A be bounded in ind E,. Denote by B its balanced, convex, T-
closed hull, and by F the linear span of B with the same topology y as in the Lemma.
We know that F is a Banach space.

For any n € N, denote by G,, the completion of the normed space (FNE,,y). Then
G, C F and F equals strict inductive limit ind G,,. Since B is bounded in F, it is bounded
in ind G,,. Hence, by [1, Cor. IV. 6.5], B is bounded in some G,,.

Finally, A ¢ B and B is a y-closure of aset V = J{E,;,NAB; 0 < A < 1} in FNE,. Hence
A is also a subset of the T-closure of V in ind E,,. O

PROPOSITION 2. Letind E,, be sequentially complete and conservative. Then every
set A C E1, which is bounded in ind E,, is also bounded in some constituent space E,,.

PROOF. Take such A and assume that it is not bounded in any E,. Then for any
n € N, there exists a balanced convex 0-nbhd U, in E,, which does not absorb A. For
any m,n € N, choose a,;», € A such that aun ¢ mUy. Denote by B the T-closure of
the convex balanced hull of U{am »; m,n € N} and by F the linear span of B. For any
m,n € N, there exists fi,n € (ind E,)’, (the dual of ind E,), such that fi»(amn) = 0.
Put Viun = {x € F; | fmn(x)| < 1} and denote by F, the linear space F equipped
with the topology generated by {Uy; m = n} U{Viun; m,n € N}. Then each F, is a
metrizable Hausdorff locally convex space and its completion G, is a Fréchet space.

Finally, let H be the space F equipped with the topology generated by the Minkowski
functional of B. The set B is bounded in ind E,,, hence, by the Lemma, H is Banach
space and the identity map id : H — ind E,, is continuous.

Since ind E,, is conservative and F c ind E;;, we have

ind (F,T,) = (F,ind T,). (2)
For any n € N, the identity maps (F,Ty,) — F,, — G, are continuous. Hence
id :ind (F,T,,) — ind G, 3)

is continuous, too. Then, the continuity of id : H — ind E,, implies the continuity of
id: H — (F,ind T,). By (2) and (3), we finally get the continuity of id : H — ind G,,.

By [1, Cor. IV. 6.5], there exists n € N such that id : H — G,, is continuous. Since the
set B is bounded in H and contained in Fj, it is bounded in G, and also bounded
in F,. But then B, as well as its subset A, are absorbed by the 0-nbhd V,, in F,, a
contradiction. O

By combining Propositions 1 and 2, we get
THEOREM. Any sequentially complete conservative ind E,, is quasi regular.

COROLLARY. If moreover each space E, in the above Theorem is closed in ind E,,,
then ind E,, is regular.
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