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ON THE VERTICAL BUNDLE OF A PSEUDO-FINSLER MANIFOLD
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Abstract. We define the Liouville distribution on the tangent bundle of a pseudo-Finsler
manifold and prove that it is integrable. Also, we find geometric properties of both leaves
of Liouville distribution and the vertical distribution.
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1. Introduction. As it is well known, the vertical vector bundle VTM of a manifold
M is an integrable distribution on the tangent bundle TM of M . The present paper
is concerned with the study of the geometry of leaves of VTM in the case when the
base manifold M carries a pseudo-Finsler structure. In our study, the pseudo-Finsler
metric is, in fact, considered as a semi-Riemannian metric on VTM . This enables us
to define the Liouville distribution which will be the important tool in studying the
leaves of VTM .
The main results are stated in Theorems 3.2 and 3.3.

2. Preliminaries. Let M be a smooth (C4 is enough) m-dimensional manifold and
TM be the tangent bundle of M . Denote by Θ the zero section of TM and set TM ′ =
TM \Θ(M). The coordinates of a point of TM are denoted by (xi,yi), where (xi) and
(yi) are the coordinates of a point x ∈M and the components of a vector y in TxM ,
respectively. Consider a continuous function L(x,y) defined on TM and suppose that
the following conditions are satisfied.
(L1) L is smooth on TM ′.
(L2) L is positive homogeneous of degree two with respect to y , i.e., we have

L
(
x,ky

)= k2L
(
x,y

) ∀k > 0. (2.1)

(L3) The metric tensor

gij
(
x,y

)= 1
2

∂2L
∂yi∂yj (2.2)

has q negative eigenvalues andm-q positive eigenvalues for all (x,y)∈ TM ′.
Then we say that Fm = (M,L) is a pseudo-Finsler manifold of index q. If, in particular,

q = 0, Fm becomes a Finsler manifold (cf. Rund [9, p. 5]).
Denote by VTM ′ the vertical vector bundle over TM ′, that is, VTM ′ = kerdπ , where

π : TM ′ →M is the canonical projection and dπ is its differential mapping. Then any
section of VTM ′ is a Finsler vector field. Also, any section of the dual vector bundle
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V∗TM ′ is a Finsler 1-form. In this way, the entire Finsler tensor calculus can be devel-
oped via the vertical vector bundle (cf. Bejancu [6]).
Denote by F(TM ′) the algebra of smooth functions on TM ′ and by Γ(VTM ′) the

F(TM ′)-module of smooth sections of VTM ′. We keep the same notation for any other
vector bundle. We also use the Einstein convention, that is repeated indices with one
upper index and one lower index denote summation over their range.
Let U ′ be a coordinate neighborhood of TM ′ and X ∈ Γ(VTM ′

|U′). As VTM ′ is an
integrable distribution on TM ′, it follows that {∂/∂yi} is a basis of Γ(VTM ′

|U′), and
thus X =Xi(x,y)(∂/∂yi). An important Finsler vector field is defined by

V =yi ∂
∂yi , (2.3)

and it is called the Liouville vector field.
Next, we denote by T 02 (VTM ′) the vector bundle over TM ′ of all bilinear mappings

on VTM ′. Then, from (2.2), {gij} define a global section of T 02 (VTM ′) given on U ′ by

g(X,Y)
(
x,y

)= gij
(
x,y

)
Xi(x,y

)
Xj(x,y

) ∀X,Y ∈ Γ(VTM ′ ). (2.4)

As g is symmetric, condition (L3) enables us to claim that g is a semi-Riemannian
metric of index q on VTM ′ (cf. O’Neill [8]). Throughout the paper, we suppose that V
is space-like with respect to g, i.e., we have

g(V,V) > 0. (2.5)

By using the homogeneity of L, we deduce that

L(x,y)= gij
(
x,y

)
yiyj. (2.6)

Thus, taking account of (2.4) and (2.5) in (2.6), we obtain L > 0 on TM ′. The funda-
mental function of Fm (cf. Matsumoto [7, P. 101]) is defined by F = L1/2, and thus it
is positive homogeneous of degree one with respect to y . Hence, we have (cf. Bao-
Chern [1])

yi ∂F
∂yi = F (2.7)

and

yi ∂2F
∂yi∂yj = 0. (2.8)

Moreover, since L= F2, from (2.6), we get

gij = F
∂2F

∂yi∂yj +
∂F
∂yi

∂F
∂yj . (2.9)

By contracting (2.9) by yj and taking account of (2.7) and (2.8), we obtain

gijyj = F
∂F
∂yi . (2.10)

Similarly, since L is positive homogeneous of degree two with respect to y , we have

yi ∂L
∂yi = 2L, (2.11)
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which implies that

yi ∂2L
∂yi∂yj =

∂L
∂yj . (2.12)

Finally, differentiating (2.12) with respect to yk, we obtain

yi ∂3L
∂yi∂yj∂yk = 0, (2.13)

which yields

∂gij

∂yk yi = 0, ∂gij

∂yk yj = 0, ∂gij

∂yk yk = 0. (2.14)

Next, we define ξ = (1/F)V and by using (2.3), (2.4), and (2.6), we get

g
(
ξ,ξ

)= 1. (2.15)

By means of g and ξ, we define the Finsler 1-form η by

η(X)= g
(
X,ξ

) ∀X ∈ Γ(VTM ′ ). (2.16)

Denote by {ξ} the line vector bundle over TM ′ spanned by ξ and define the Liouville
distribution as the complementary orthogonal distribution STM ′ to {ξ} in VTM ′ with
respect to g. Hence, STM ′ is defined by η, that is we have

Γ
(

STM ′ )= {X ∈ Γ(VTM ′ ); η(X)= 0}. (2.17)

Thus, any Finsler vector field X can be expressed as follows:

X = PX+η(X)ξ, (2.18)

where P is the projectionmorphism of VTM ′ on STM ′. By direct calculations, we obtain

g(X,PY)= g(PX,PY)= g(X,Y)−η(X)η(Y) ∀X,Y ∈ Γ(VTM ′ ). (2.19)

Denote by {wi} the dual basis in Γ(V∗TM ′ |U′
)
with respect to {∂/∂yi}. Then the local

components of η and P with respect to the basis {wi} and {wi⊗∂/∂yj}, respectively,
are given by

ηi = ∂F
∂yi (2.20)

and

Pj
i = δj

i −
1
F

ηiyj, (2.21)

where δj
i are the components of the Kronecker delta.

The indicatrix of Fm is the hypersurface I of TM ′ given by the equation F(x,y)= 1.
More about pseudo (indefinite)-Finsler manifolds can be found in a series of papers

by Beem [2, 3, 4, 5].

3. Geometry of the vertical vector bundle of Fm via the Liouville distribution.
In this section, we suppose that Fm is a pseudo-Finsler manifold which is never a
semi-Riemannian manifold, that is {gij} does not depend on (xi) alone.
First, we prove the following result.
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Theorem 3.1. Let Fm = (M,L) be a pseudo-Finsler manifold. Then the Liouville dis-
tribution of Fm is integrable.

Proof. Let X,Y ∈ Γ(STM ′). As VTM ′ is an integrable distribution on TM ′, [X,Y]
lies in Γ(VTM ′). Hence, we need only to show that [X,Y] has no component with
respect to ξ. By using (2.4) and (2.16), we deduce that X ∈ Γ(STM ′) if and only if

gij
(
x,y

)
yiXj(x,y

)= 0, (3.1)

whereXj are the components ofX. Differentiate (3.1) with respect toyk and use (2.14)
to obtain

gkj
(
x,y

)
Xj(x,y

)+gij
(
x,y

)
yi ∂Xj

∂yk

(
x,y

)= 0. (3.2)

Then by direct calculations using (2.3), (2.4), and (3.2), we infer that

g
(
[X,Y],ξ

)= 1
F

gijyi

{
∂Y j

∂yk Xk− ∂Xj

∂yk Yk

}
= 0 (3.3)

which completes the proof.

Based on the above results, we may say that the geometry of the leaves of VTM ′

should be derived from the geometry of the leaves of STM ′ and of integral curves
of ξ. In order to get this interplay, we consider a leaf N′ of VTM ′ given locally by
xi = ai, i ∈ {1, . . . ,m}, where the ai’s are constants. Then, from (2.2), gij(a,y) are
the components of a semi-Riemannian metric g of index q on N′. Denote by ∇ the
Levi-Civita connection on N′ with respect to g and consider the Christoffel symbols
Ck

ij of ∇. By using (2.2) and the usual formula for Ck
ij (see O’Neill [8, P. 62]), we obtain

Ck
ij
(
a,y

)= 1
2
gkh(a,y

)∂ghi

∂yj

(
a,y

)
, (3.4)

where {gkh(a,y)} are the entries of the inversematrix of them×mmatrix [gkh(a,y)].
Contracting (3.4) by yj , we deduce that

Ck
ij
(
a,y

)
yj = 0. (3.5)

By straightforward calculations using (3.5), (2.3), (2.19), (2.20), and (2.21), we obtain
the covariant derivatives of ξ, η, and P in the following lemma:

Lemma 3.1. Let Fm = (M,L) be a pseudo-Finsler manifold. Then, on any leaf N′ of
VTM ′, we have

∇Xξ = 1
F

PX, (3.6)

(∇Xη
)
Y = 1

F
g(PX,PY), (3.7)

and

(∇XP)Y =−1
F
{
g(PX,PY)ξ+η(Y)PX

}
(3.8)

for any X,Y ∈ Γ(TN ′).

Now, we state the main results of the paper.
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Theorem 3.2. Let Fm = (M,L) be a pseudo-Finsler manifold and N′, N , and C be
a leaf of VTM ′, a leaf of STM ′ that lies in N′, and an integral curve of ξ, respectively.
Then we have the following assertions. (i) C is a geodesic of N′ with respect to ∇.
(ii) N is totally umbilical immersed in N′.
(iii) N lies in the indicatrix of Fm and has constant mean curvature equal to −1.

Proof. Replace X by ξ in (3.6) and obtain (i). Taking into account that ξ is the unit
normal vector field of N , the second fundamental form B of N as a hypersurface of
N′ is given by

B(X,Y)= g
(∇XY ,ξ

) ∀X,Y ∈ Γ(TN ). (3.9)

On the other hand, by using (3.6) and taking into account that g is parallel with respect
to ∇, we deduce that

g
(∇XY ,ξ

)=−1
F

g(X,Y) ∀X,Y ∈ Γ(TN ). (3.10)

Hence,

B(X,Y)=−1
F

g(X,Y), (3.11)

that is, N is totally umbilical immersed in N′. Now, from (2.10), it follows that

yi

F
= gij ∂F

∂yj (3.12)

which proves that ξ is a unit normal vector field for both N and the component Ia
of the indicatrix I at a ∈ M . Thus, N lies in Ia and F(a,y) = 1 at any point y ∈ N .
Then (3.11) becomes

B(X,Y)=−g(X,Y) (3.13)

which implies that

1
m−1

m−1∑
i=1

εiB
(
Ei,Ei

)=−1, (3.14)

where {Ei} is an orthonormal frame field on N of signature {εi}. Hence, the mean
curvature of N is −1. The proof is complete.

Theorem 3.3. Let Fm = (M,L) be a pseudo-Finsler manifold and N′ be a leaf of the
vertical vector bundle VTM ′. Then the sectional curvature of any nondegenerate plane
section on N′ containing the Liouville vector field is equal to zero.

Proof. Denote by R′ the curvature tensor field of ∇ on N′. Then, by using (3.6)
and (3.8), we obtain

R′
(
X,ξ

)
ξ = 1

F2
(
1−ξ(F)

)
PX (3.15)

for any unit vector field X on N′. But from (2.3) and (2.7), we deduce that ξ(F) = 1.
Hence, the sectional curvature of a plane section {X,ξ} vanishes on N′.

Corrolary 3.1. Let Fm = (M,L) be a pseudo-Finsler manifold. Then there exist no
leaves of VTM ′ which are positively or negatively curved.
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