

ON A CLASS OF UNIVALENT FUNCTIONS

DINGGONG YANG and JINLIN LIU

(Received 15 September 1997)

ABSTRACT. We consider the class of univalent functions defined by the conditions $f(z)/z \neq 0$ and $|(z/f(z))''| \leq \alpha$, $|z| < 1$, where $f(z) = z + \dots$ is analytic in $|z| < 1$ and $0 < \alpha \leq 2$.

Keywords and phrases. Univalent functions, subordination.

1991 Mathematics Subject Classification. 30C45.

1. Introduction. Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (1.1)$$

which are analytic in the unit disk $E = \{z : |z| < 1\}$. A function $f(z) \in A$ is said to be star-like in $|z| < r$ ($r \leq 1$) if and only if it satisfies

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > 0, \quad (|z| < r). \quad (1.2)$$

In [2], Nunokawa, Obradovic, and Owa proved the following theorem:

THEOREM A. *Let $f(z) \in A$ with $f(z) \neq 0$ for $0 < |z| < 1$ and let*

$$\left| \left(\frac{z}{f(z)} \right)'' \right| \leq 1, \quad (z \in E). \quad (1.3)$$

Then $f(z)$ is univalent in E .

For $0 < \alpha \leq 2$, let $S(\alpha)$ denote the class of functions $f(z) \in A$ which satisfy the conditions

$$f(z) \neq 0 \quad \text{for } 0 < |z| < 1 \quad (1.4)$$

and

$$\left| \left(\frac{z}{f(z)} \right)'' \right| \leq \alpha, \quad (z \in E). \quad (1.5)$$

In this paper, we give an extension of Theorem A and obtain some results for the class $S(\alpha)$.

By virtue of a result due to Ozaki and Nunokawa [4], Obradovic et al. [3] considered a class of univalent functions.

2. A criterion for univalence

THEOREM 1. *Let $f(z) \in A$ with $f(z) \neq 0$ for $0 < |z| < 1$ and let $g(z) \in A$ be bounded*

in E and satisfy

$$m = \inf \left\{ \left| \frac{g(z_1) - g(z_2)}{z_1 - z_2} \right| : z_1, z_2 \in E \right\} > 0. \quad (2.1)$$

If

$$\left| \left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)'' \right| \leq K, \quad (z \in E), \quad (2.2)$$

where

$$K = \frac{2m}{M^2} \quad \text{and} \quad M = \sup \{ |g(z)| : z \in E \}, \quad (2.3)$$

then $f(z)$ is univalent in E .

PROOF. If we put

$$h(z) = \left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)'', \quad (2.4)$$

then the function $h(z)$ is analytic in E and, by integration from 0 to z , we get

$$\left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)' = b_2 - a_2 + \int_0^z h(u) du \quad (2.5)$$

and

$$\frac{z}{f(z)} - \frac{z}{g(z)} = (b_2 - a_2)z + \int_0^z dv \int_0^v h(u) du, \quad (2.6)$$

where $f(z) = z + a_2 z^2 + \dots$ and $g(z) = z + b_2 z^2 + \dots$

Thus, we have

$$f(z) = \frac{g(z)}{1 + (b_2 - a_2)g(z) + g(z)(\psi(z)/z)}, \quad (2.7)$$

where

$$\psi(z) = \int_0^z dv \int_0^v h(u) du. \quad (2.8)$$

Since

$$\left(\frac{\psi(z)}{z} \right)' = \frac{1}{z^2} \int_0^z u \psi''(u) du = \frac{1}{z^2} \int_0^z u h(u) du, \quad (2.9)$$

from (2.2) and (2.4), we get

$$\left| \left(\frac{\psi(z)}{z} \right)' \right| \leq \int_0^1 t |h(zt)| dt \leq \frac{K}{2}, \quad (2.10)$$

and so

$$\left| \frac{\psi(z_2)}{z_2} - \frac{\psi(z_1)}{z_1} \right| = \left| \int_{z_1}^{z_2} \left(\frac{\psi(z)}{z} \right)' dz \right| \leq \frac{K}{2} |z_2 - z_1| \quad (2.11)$$

for $z_1, z_2 \in E$ and $z_1 \neq z_2$.

If $z_1 \neq z_2$ then $g(z_1) \neq g(z_2)$ and it follows, from (2.7) and (2.11), that

$$\begin{aligned}
& |f(z_1) - f(z_2)| \\
&= \frac{\left| g(z_1) - g(z_2) + g(z_1)g(z_2) \left(\frac{\psi(z_2)}{z_2} - \frac{\psi(z_1)}{z_1} \right) \right|}{\left| 1 + (b_2 - a_2)g(z_1) + g(z_1) \frac{\psi(z_1)}{z_1} \right| \left| 1 + (b_2 - a_2)g(z_2) + g(z_2) \frac{\psi(z_2)}{z_2} \right|} \\
&> \frac{|g(z_1) - g(z_2)| - M^2 K \frac{|z_1 - z_2|}{2}}{\left| 1 + (b_2 - a_2)g(z_1) + g(z_1) \frac{\psi(z_1)}{z_1} \right| \left| 1 + (b_2 - a_2)g(z_2) + g(z_2) \frac{\psi(z_2)}{z_2} \right|} \geq 0.
\end{aligned} \tag{2.12}$$

Hence, $f(z)$ is univalent in E . \square

COROLLARY 1. *Let $f(z) \in A$ with $f(z) \neq 0$ for $0 < |z| < 1$. If*

$$\left| \left(\frac{z}{f(z)} \right)'' \right| \leq 2, \quad (z \in E), \tag{2.13}$$

then $f(z)$ is univalent in E . The bound 2 in (2.13) is best possible.

PROOF. Setting $g(z) = z$ in Theorem 1, we conclude that $f(z)$ is univalent in E for $f(z)$ satisfying condition (2.13).

To show that the result is sharp, we consider

$$f(z) = \frac{z}{(1+z)^{2+\epsilon}}, \quad (\epsilon > 0). \tag{2.14}$$

Note that

$$\left| \left(\frac{z}{f(z)} \right)'' \right| = (2+\epsilon)(1+\epsilon)|1+z|^\epsilon, \quad (z \in E) \tag{2.15}$$

and $f'(1/(1+\epsilon)) = 0$. Hence, $f(z)$ is not univalent in E and the proof is complete. \square

From Corollary 1, we easily get

COROLLARY 2. *Let*

$$f(z) = \frac{z}{1 + \sum_{n=1}^{\infty} b_n z^n} \in A \tag{2.16}$$

and

$$\sum_{n=2}^{\infty} n(n-1)|b_n| \leq 2. \tag{2.17}$$

Then $f(z)$ is univalent in E .

3. The class $S(\alpha)$. According to Corollary 1, all the functions in $S(\alpha)$ ($0 < \alpha \leq 2$) are univalent in E . Let the functions $f(z)$ and $g(z)$ be analytic in E . Then $f(z)$ is said to be subordinate to $g(z)$, written $f(z) \prec g(z)$, if there exists a function $w(z)$ analytic in E , with $w(0) = 0$ and $|w(z)| < 1$ ($z \in E$), such that $f(z) = g(w(z))$ for $z \in E$.

For our next results, we need the following.

LEMMA 1 [5]. *Let $f(z)$ and $g(z)$ be analytic in E with $f(0) = g(0)$. If $h(z) = zg'(z)$ is star-like in E and $zf'(z) \prec h(z)$, then*

$$f(z) \prec g(z) = g(0) + \int_0^z \frac{h(t)}{t} dt. \quad (3.1)$$

THEOREM 2. *Let $f(z) = z + a_2 z^2 + \dots \in S(\alpha)$ with $0 < \alpha \leq 2$. Then, for $z \in E$,*

$$\left| \frac{z}{f(z)} - 1 \right| \leq |z| \left(|a_2| + \frac{\alpha}{2} |z| \right); \quad (3.2)$$

$$1 - |z| \left(|a_2| + \frac{\alpha}{2} |z| \right) \leq \operatorname{Re} \frac{z}{f(z)} \leq 1 + |z| \left(|a_2| + \frac{\alpha}{2} |z| \right); \quad (3.3)$$

$$|f(z)| \geq \frac{|z|}{1 + |a_2| |z| + \frac{\alpha}{2} |z|^2}. \quad (3.4)$$

Equalities in (3.2), (3.3), and (3.4) are attained if we take

$$f(z) = \frac{z}{1 \pm az + \frac{\alpha}{2} z^2} \in S(\alpha), \quad (0 \leq a \leq \sqrt{2\alpha}). \quad (3.5)$$

PROOF. In view of (1.5), we have

$$z \left(\frac{z}{f(z)} \right)'' \prec \alpha z. \quad (3.6)$$

Applying the lemma to (3.6), we find that

$$\left(\frac{z}{f(z)} \right)' + a_2 \prec \alpha z. \quad (3.7)$$

By using a result of Hallenbeck and Ruscheweyh [1, Thm. 1], (3.7) gives

$$\frac{1}{z} \int_0^z \left[\left(\frac{t}{f(t)} \right)' + a_2 \right] dt \prec \frac{\alpha}{2} z, \quad (3.8)$$

i.e.,

$$\frac{z}{f(z)} = 1 - a_2 z + \frac{\alpha}{2} z w(z), \quad (3.9)$$

where $w(z)$ is analytic in E and $|w(z)| \leq |z| (z \in E)$ by Schwarz lemma.

Now, from (3.9), we can easily derive the inequalities (3.2), (3.3), and (3.4). \square

THEOREM 3. *Let $f(z) \in S(\alpha)$ and have the form*

$$f(z) = z + a_3 z^3 + a_4 z^4 + \dots \quad (3.10)$$

- (a) *If $2/\sqrt{5} \leq \alpha \leq 2$, then $f(z)$ is star-like in $|z| < \sqrt{2/\alpha} \cdot 1/\sqrt[4]{5}$;*
- (b) *If $\sqrt{3}-1 \leq \alpha \leq 2$, then $\operatorname{Re} f'(z) > 0$ for $|z| < \sqrt{(\sqrt{3}-1)/\alpha}$.*

PROOF. If we put

$$p(z) = \frac{z^2 f'(z)}{f^2(z)} = 1 + p_2 z^2 + \dots, \quad (3.11)$$

then, by (1.5), we have

$$zp'(z) = -z^2 \left(\frac{z}{f(z)} \right)'' \prec \alpha z, \quad (3.12)$$

and it follows, from the lemma, that

$$p(z) \prec 1 + \alpha z, \quad (3.13)$$

which implies that

$$\left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| \leq \alpha |z|^2, \quad (z \in E). \quad (3.14)$$

(a) Let $2/\sqrt{5} \leq \alpha \leq 2$ and

$$|z| < r_1 = \sqrt{\frac{2}{\alpha}} \cdot \frac{1}{\sqrt[4]{5}}. \quad (3.15)$$

Then, by (3.14), we have

$$\left| \arg \frac{z^2 f'(z)}{f^2(z)} \right| < \arcsin \frac{2}{\sqrt{5}}. \quad (3.16)$$

Also, from (3.2) in Theorem 2 with $a_2 = 0$, we obtain

$$\left| \frac{z}{f(z)} - 1 \right| < \frac{\alpha}{2} r_1^2, \quad (3.17)$$

and so

$$\left| \arg \frac{z}{f(z)} \right| < \arcsin \frac{1}{\sqrt{5}}. \quad (3.18)$$

Therefore, it follows, from (3.16) and (3.18), that

$$\left| \arg \frac{zf'(z)}{f(z)} \right| \leq \left| \arg \frac{z^2 f'(z)}{f^2(z)} \right| + \left| \arg \frac{z}{f(z)} \right| < \arcsin \frac{2}{\sqrt{5}} + \arcsin \frac{1}{\sqrt{5}} = \frac{\pi}{2} \quad (3.19)$$

for $|z| < r_1$. This proves that $f(z)$ is star-like in $|z| < r_1$.

(b) Let $\sqrt{3} - 1 \leq \alpha \leq 2$ and

$$|z| < r_2 = \sqrt{\frac{\sqrt{3} - 1}{\alpha}}. \quad (3.20)$$

Then we have

$$\begin{aligned} |\arg f'(z)| &\leq \left| \arg \frac{z^2 f'(z)}{f^2(z)} \right| + 2 \left| \arg \frac{z}{f(z)} \right| < \arcsin(\alpha r_2^2) + 2 \arcsin\left(\frac{\alpha}{2} r_2^2\right) \\ &= \arcsin(\sqrt{3} - 1) + 2 \arcsin\left(\frac{\sqrt{3} - 1}{2}\right) = \frac{\pi}{2}. \end{aligned} \quad (3.21)$$

Thus, $\operatorname{Re} f'(z) > 0$ for $|z| < r_2$. □

COROLLARY 3. *Let $f(z) \in S(\alpha)$ and have the form (3.10)*

(a) *if $0 < \alpha \leq 2/\sqrt{5}$, then $f(z)$ is star-like in E ;*

(b) *if $0 < \alpha \leq \sqrt{3} - 1$, then $\operatorname{Re} f'(z) > 0$ for $z \in E$.*

REFERENCES

- [1] D. J. Hallenbeck and S. Ruscheweyh, *Subordination by convex functions*, Proc. Amer. Math. Soc. **52** (1975), 191–195. MR 51 10603. Zbl 311.30010.
- [2] M. Nunokawa, M. Obradovic, and S. Owa, *One criterion for univalency*, Proc. Amer. Math. Soc. **106** (1989), no. 4, 1035–1037. MR 91h:30020. Zbl 672.30022.
- [3] M. Obradovic, N. N. Pascu, and I. Radomir, *A class of univalent functions*, Math. Japon. **44** (1996), no. 3, 565–568. MR 97i:30016. Zbl 868.30013.
- [4] S. Ozaki and M. Nunokawa, *The Schwarzian derivative and univalent functions*, Proc. Amer. Math. Soc. **33** (1972), 392–394. MR 45 8821. Zbl 233.30011.
- [5] T. J. Suffridge, *Some remarks on convex maps of the unit disk*, Duke Math. J. **37** (1970), 775–777. MR 42#4722. Zbl 206.36202.

YANG: DEPARTMENT OF MATHEMATICS, SUZHOU UNIVERSITY, SUZHOU 215006, CHINA

LIU: WATER CONSERVANCY COLLEGE, YANGZHOU UNIVERSITY, YANGZHOU 225009, CHINA

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk