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ON A CLASS OF UNIVALENT FUNCTIONS
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Abstract. We consider the class of univalent functions defined by the conditions f(z)/z ≠
0 and |(z/f(z))′′| ≤α,|z|< 1, where f(z)= z+··· is analytic in |z|< 1 and 0<α≤ 2.
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1. Introduction. Let A denote the class of functions of the form

f(z)= z+
∞∑
n=2
anzn (1.1)

which are analytic in the unit disk E = {z : |z|< 1}. A function f(z)∈A is said to be
star-like in |z|< r(r ≤ 1) if and only if it satisfies

Re
zf ′(z)
f(z)

> 0,
(|z|< r). (1.2)

In [2], Nunokawa, Obradovic, and Owa proved the following theorem:

Theorem A. Let f(z)∈A with f(z)≠ 0 for 0< |z|< 1 and let∣∣∣∣∣
(
z
f(z)

)′′∣∣∣∣∣≤ 1, (z ∈ E). (1.3)

Then f(z) is univalent in E.

For 0 < α ≤ 2, let S(α) denote the class of functions f(z) ∈ A which satisfy the
conditions

f(z)≠ 0 for 0< |z|< 1 (1.4)

and ∣∣∣∣∣
(
z
f(z)

)′′∣∣∣∣∣≤α, (z ∈ E). (1.5)

In this paper, we give an extension of Theorem A and obtain some results for the class
S(α).
By virtue of a result due to Ozaki and Nunokawa [4], Obradovic et al. [3] considered

a class of univalent functions.

2. A criterion for univalence

Theorem 1. Let f(z)∈Awith f(z)≠ 0 for 0< |z|< 1 and let g(z)∈A be bounded

http://ijmms.hindawi.com
http://www.hindawi.com


606 D. YANG AND J. LIU

in E and satisfy

m= inf
{∣∣∣∣g(z1)−g(z2)z1−z2

∣∣∣∣ : z1,z2 ∈ E
}
> 0. (2.1)

If ∣∣∣∣∣
(
z
f(z)

− z
g(z)

)′′∣∣∣∣∣≤K, (z ∈ E), (2.2)

where

K = 2m
M2

and M = sup{∣∣g(z)∣∣ : z ∈ E}, (2.3)

then f(z) is univalent in E.

Proof. If we put

h(z)=
(
z
f(z)

− z
g(z)

)′′
, (2.4)

then the function h(z) is analytic in E and, by integration from 0 to z, we get(
z
f(z)

− z
g(z)

)′
= b2−a2+

∫ z
0
h(u)du (2.5)

and

z
f(z)

− z
g(z)

= (b2−a2)z+
∫ z
0
dv

∫ v
0
h(u)du, (2.6)

where f(z)= z+a2z2+··· and g(z)= z+b2z2+··· .
Thus, we have

f(z)= g(z)
1+(b2−a2)g(z)+g(z)(ψ(z)/z) , (2.7)

where

ψ(z)=
∫ z
0
dv

∫ v
0
h(u)du. (2.8)

Since (
ψ(z)
z

)′
= 1
z2

∫ z
0
uψ′′(u)du= 1

z2

∫ z
0
uh(u)du, (2.9)

from (2.2) and (2.4), we get
∣∣∣∣
(
ψ(z)
z

)′∣∣∣∣≤
∫ 1
0
t|h(zt)|dt ≤ K

2
, (2.10)

and so ∣∣∣∣∣ψ(z2)z2
−ψ(z1)

z1

∣∣∣∣∣=
∣∣∣∣
∫ z2
z1

(
ψ(z)
z

)′
dz
∣∣∣∣≤ K2 |z2−z1| (2.11)

for z1,z2 ∈ E and z1 ≠ z2.
If z1 ≠ z2 then g(z1)≠ g(z2) and it follows, from (2.7) and (2.11), that
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∣∣f (z1)−f (z2)∣∣

=

∣∣∣∣g(z1)−g(z2)+g(z1)g(z2)
(
ψ(z2)
z2

−ψ(z1)
z1

)∣∣∣∣∣∣∣∣1+(b2−a2)g(z1)+g(z1)ψ(z1)z1

∣∣∣∣
∣∣∣∣1+(b2−a2)g(z2)+g(z2)ψ(z2)z2

∣∣∣∣

>
|g(z1)−g(z2)|−M2K

|z1−z2|
2∣∣∣∣1+(b2−a2)g(z1)+g(z1)ψ(z1)z1

∣∣∣∣
∣∣∣∣1+(b2−a2)g(z2)+g(z2)ψ(z2)z2

∣∣∣∣
≥ 0.

(2.12)

Hence, f(z) is univalent in E.

Corollary 1. Let f(z)∈A with f(z)≠ 0 for 0< |z|< 1. If∣∣∣∣∣
(
z
f(z)

)′′∣∣∣∣∣≤ 2, (z ∈ E), (2.13)

then f(z) is univalent in E. The bound 2 in (2.13) is best possible.

Proof. Setting g(z)= z in Theorem 1, we conclude that f(z) is univalent in E for
f(z) satisfying condition (2.13).
To show that the result is sharp, we consider

f(z)= z
(1+z)2+ε , (ε > 0). (2.14)

Note that ∣∣∣∣∣
(
z
f(z)

)′′∣∣∣∣∣= (2+ε)(1+ε)|1+z|ε, (z ∈ E) (2.15)

and f ′(1/(1+ ε)) = 0. Hence, f(z) is not univalent in E and the proof is complete.

From Corollary 1, we easily get

Corollary 2. Let

f(z)= z
1+∑∞

n=1bnzn
∈A (2.16)

and
∞∑
n=2
n(n−1)|bn| ≤ 2. (2.17)

Then f(z) is univalent in E.

3. The class S(α). According to Corollary 1, all the functions in S(α)(0 < α ≤ 2)
are univalent in E. Let the functions f(z) and g(z) be analytic in E. Then f(z) is said
to be subordinate to g(z), written f(z)≺ g(z), if there exists a functionw(z) analytic
in E, with w(0)= 0 and |w(z)|< 1(z ∈ E), such that f(z)= g(w(z)) for z ∈ E.
For our next results, we need the following.
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Lemma 1 [5]. Let f(z) and g(z) be analytic in E with f(0)= g(0). If h(z)= zg′(z)
is star-like in E and zf ′(z)≺ h(z), then

f(z)≺ g(z)= g(0)+
∫ z
0

h(t)
t
dt. (3.1)

Theorem 2. Let f(z)= z+a2z2+··· ∈ S(α) with 0<α≤ 2. Then, for z ∈ E,∣∣∣∣∣ z
f(z)

−1
∣∣∣∣∣≤ |z|

(∣∣a2∣∣+ α2 |z|
)
; (3.2)

1−|z|
(∣∣a2∣∣+ α2 |z|

)
≤ Re z

f(z)
≤ 1+|z|

(∣∣a2∣∣+ α2 |z|
)
; (3.3)

∣∣f(z)∣∣≥ |z|
1+|a2||z|+ α2 |z|

2
. (3.4)

Equalities in (3.2), (3.3), and (3.4) are attained if we take

f(z)= z

1±az+ α
2
z2
∈ S(α),

(
0≤ a≤

√
2α

)
. (3.5)

Proof. In view of (1.5), we have

z
(
z
f(z)

)′′
≺αz. (3.6)

Applying the lemma to (3.6), we find that
(
z
f(z)

)′
+a2 ≺αz. (3.7)

By using a result of Hallenbeck and Ruscheweyh [1, Thm. 1], (3.7) gives

1
z

∫ z
0

[(
t
f (t)

)′
+a2

]
dt ≺ α

2
z, (3.8)

i.e.,

z
f(z)

= 1−a2z+ α2 zw(z), (3.9)

where w(z) is analytic in E and |w(z)| ≤ |z|(z ∈ E) by Schwarz lemma.
Now, from (3.9), we can easily derive the inequalities (3.2), (3.3), and (3.4).

Theorem 3. Let f(z)∈ S(α) and have the form

f(z)= z+a3z3+a4z4+··· . (3.10)

(a) If 2/
√
5≤α≤ 2, then f(z) is star-like in |z|< √2/α·1/ 4√5;

(b) If
√
3−1≤α≤ 2, then Ref ′(z) > 0 for |z|<

√
(
√
3−1)/α.

Proof. If we put

p(z)= z
2f ′(z)
f 2(z)

= 1+p2z2+··· , (3.11)
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then, by (1.5), we have

zp′(z)=−z2
(
z
f(z)

)′′
≺αz, (3.12)

and it follows, from the lemma, that

p(z)≺ 1+αz, (3.13)

which implies that ∣∣∣∣∣z
2f ′(z)
f 2(z)

−1
∣∣∣∣∣≤α|z|2, (z ∈ E). (3.14)

(a) Let 2/
√
5≤α≤ 2 and

|z|< r1 =
√
2
α
· 14√5 . (3.15)

Then, by (3.14), we have ∣∣∣∣arg z2f ′(z)f 2(z)

∣∣∣∣< arcsin 2√
5
. (3.16)

Also, from (3.2) in Theorem 2 with a2 = 0, we obtain∣∣∣∣∣ z
f(z)

−1
∣∣∣∣∣< α2 r 21 , (3.17)

and so ∣∣∣∣arg z
f(z)

∣∣∣∣< arcsin 1√
5
. (3.18)

Therefore, it follows, from (3.16) and (3.18), that∣∣∣∣arg zf ′(z)f(z)

∣∣∣∣≤
∣∣∣∣arg z2f ′(z)f 2(z)

∣∣∣∣+
∣∣∣∣arg z

f(z)

∣∣∣∣< arcsin 2√
5
+arcsin 1√

5
= π
2

(3.19)

for |z|< r1. This proves that f(z) is star-like in |z|< r1.
(b) Let

√
3−1≤α≤ 2 and

|z|< r2 =
√√

3−1
α

. (3.20)

Then we have

∣∣argf ′(z)∣∣≤
∣∣∣∣arg z2f ′(z)f 2(z)

∣∣∣∣+2
∣∣∣∣arg z

f(z)

∣∣∣∣< arcsin(αr 22 )+2arcsin
(
α
2
r 22
)

= arcsin
(√
3−1

)
+2arcsin

(√
3−1
2

)
= π
2
.

(3.21)

Thus, Ref ′(z) > 0 for |z|< r2.
Corollary 3. Let f(z)∈ S(α) and have the form (3.10)
(a) if 0<α≤ 2/√5, then f(z) is star-like in E;
(b) if 0<α≤√3−1, then Ref ′(z) > 0 for z ∈ E.
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