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ABSTRACT. In this paper, a hyperbolic differential inclusion with nonmonotone discontin-
uous and nonlinear term, which the generalized velocity acts as its variable, is studied and
the existence and decay of its weak solution are obtained.
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1. Introduction. In the present paper, we investigate the initial boundary value
problem of the following degenerate multi-valued hyperbolic differential inclusion:

w(t)+Bu)(t)+@(u)(t) > f(t), ae.tel0,T],
u(x,t) =0, ae. (x,t)€> =0Qx[0,T], 1.1)
u(0) = uo, u(0) = uy,

where B is a linear and symmetric operator; @ is a discontinuous, nonmonotone, and
nonlinear set-valued mapping.

Physical motivations for studying equation (1.1) come partly from problems of con-
tinuum mechanics, where nonmonotone, nonlinear, discontinuous, and multi-valued
constitutive laws and boundary constraints lead to the above variational inequalities
(differential inclusions). For example, when elastobody is constrainted by boundary
friction, (1.1) denotes its control equation; if we study viscoelastical body and the
unilateral problem of plate, (1.1) is also their control equation, etc. [10, 8, 5].

When @ is a nonmonotone multi-valued mapping, generally, for such nonmonotone
and discontinuous multi-valued systems, usual monotonicity methods are not valid
[1, 6]. When @ degenerates into a class of single-valued mappings and satisfies ap-
propriate conditions, inequation (1.1) become an equation. Equation (1.1) and some of
its evolution equations with which it is associated have been investigated and applied
intensively [7, 3, 2, 9, 11].

In this paper, we investigate the existence and decay of the weak solutions of the
hyperbolic in equation (1.1), with @ and B satisfying adequate conditions under zero
boundary conditions.

2. Preliminaries. Let Q) be a bounded open set of R" with regular boundary I'. Let
T denote a positive real number, Q = Q x [0, T]. Suppose that b € Lj;.(R). For every
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p >0, set
by(§) = ess infb(&), bp(§)= ess supb(&), 2.1)
and
b(g) = plijggbp(sf), b(g) = F}{I(gyp(E), @ (&) = [b(8),b(8)]. (2.2)
Let J(§) = fog b(t)dt. Then 0¢J (&) < @ (&), where 0¢J (&) denotes the Clarke-subdiff-
erential of J.

REMARK. If b(&.) exists for every € € R, then @ (&) = 0°J(&). Furthermore, if J is
convex, @ (&) is maximal monotone. If b is continuous at &, then @ (&) is single-valued
at & (3)).

Let V = HL(Q), (-,-) denote the dual pair between V = H}(Q) and V' = H1(Q),
and (-, -) the inner product of L2(Q) which is compatible with the dual pair. Let |x|x
denote the norm of an element x of a Banach space X.

Consider the following initial boundary value problem of a hyperbolic variational
inequation (inclusion):

w(t)+Bu(t)+g(t) = f(t), ae.tel[0,T],

gx,t) e p(u(x,t)), ae. (x,t)eQr=Qx[0,T], (2.3)
u(x,t) =0, ae. (x,t)e> =2Qx[0,T],
u(0) = uo, u(0) = uy,

where f, 1y, and u; are given.

3. Existence of solution

THEOREM 1. Assume that f € L?(0,T;L*(Q)),uo € H} (Q),u1 € L>(Q). If

(1) 3¢ >0,|b(&)| =c(1+]&l), a.e. E €R,

(2) B: Hé(Q) — H~1(Q) is linear, continuous, symmetric, and semicoercive, i.e., 3c1 >
0,C2>0,C32 0,

|BV|H—1(Q) < C1|V|H(1)(Q)'

(Bu,v) = (Bv,u) VYu,veH}Q), (3.1)
(Bv,v)+C3|v|i2(Q)zczlvlgé(m Vv e HH(Q),

then there exists a function u, defined in Q x [0, T], such that
u € L®(0,T;H} () n C([0,T];L2(Q)),
e l®(0,T;L%(Q))n C([0,TI;H 1(Q)), (3.2)
e L?(0,T;H 1 (Q)),
and
Ww(t)+Bu(t)+g(t) = f(t) inL*(0,T;H 1 (Q)),
gt) e p(u(x,t)), ae. (x,t)eQx[0,T], (3.3)

u(0) = uo, un(0) =u;.
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PROOF. Let{e,},_;beasubsetofV = Hé (Q) satisfying span{e,} =V, (ej,ej) = dij.
Moreover, let x, = > wle; — ug strongly in V,y,, = 3] w?e; — u; strongly in L?(Q).
Consider the following regularized equation of inequation (1.1)

E"=N"+h, E&'o=w", = &0 = w?™, (3.4)

where

& ={&"Huns @' = {w;} 1 W = {wi} h={(f,ei}1xn
N™ ={N{"}1sn» N = —<B<§§}1e1>,ei> - <b(§:§.?31)sei>, 3:2)

where “-” denotes time derivate.

Equation (3.4) is a set of second-order ordinary differential equation and its local
solution &" existson I, = [0,T,,],0< T,, < T.

Set uy, (t) = >V &i'ej (t € I). Equation (3.4) is equivalent to

(iy,ei) = —(Buy,e;) — (b(1tn),ei) +{f,ei), i=1,2,...,n. (3.6)

Multiplying equation (3.6) by El", summing from i = 1 to i = n, and integrating over
[0,t] (t =1I,), we get

t
|n (£) | 520+ (BUtn (£), un (1)) +2J0 (b(ity), tn)dT

t

=2 (i) AT+ (v, ) + (Bn, ),

t t
() 20,120 = |, 1) [t <c [ [ (4l dxdr  G)

t

< %Jo (121 + [t (8) | 720 ) dT

t
c .
<ty Jo | 15 (T) \iz(m dT,

where |Q| denotes the Lebesgue measure of domain Q.
t
Io (b (), tn)dT < |b(i1n) |L2(0,t;L2(Q>) “Nnlr2 0,620

1 . 2 L
=2 (156 L2002 + nlF20 11200)) (3.8)

< %{c4+ (g + 1) Iot | ttp (T) |12_2(Q)dT},
J: (frun)dT < | fl120,1;0200) " [inlr2o, 5120 (3.9
< % (1F 1 220,20 *+ 1in 220,120 ) -
From (3.7), 3¢5 > 0 such that
|1 (£) |i2(Q) +C2 | un () |§{(1)(Q)

(3.10)

1/c t
<cs+cz|u(t) |fz(m + 5 (5 + 1) JO | Un (T) \iz(md-r.
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We note that

t
Un () :un<0>+j0 indr,

: (3.11)
[n (0] 20 < [ (O) 2+ [ Tkl T
By Holder inequality, 3cg,c7 > 0 such that
|Un ()| 7200y < CG+07L: | 0n (T) | 720 AT (3.12)
From (3.10) and (3.12), we obtain: Jcg,cg9 > 0 such that
|t ()| £2(0) + €2 | n (8) | 13 ) < €8+ Co Lt [1n (T) [12(0)dT, (tE€ly).  (3.13)
Hence,
[ n (1) | 7200y < €8+ Co Lt |1n (T) [32(ydT, (tE€1). (3.14)
By Gronwall’s inequality, we have
[n (1) | f2(0) < Csexplcot), (t € Ly). (3.15)
Therefore, from (3.12), (3.15), and (3.16), there exists cio > 0 such that
[1n (t) | 120y < Cro, | un(t) |12 < Cio, |un(t)|H(1)(Q) <Cio, (t€ln),
(3.16)

where ¢4, cs,cg,C7,Cs8,Cg,C10 are positive constants independent of n and T,,. The esti-
mate (3.16) implies that we can prolongate the solution of equation (3.4) to the interval

[0,T],ie., I,,=[0,T] (Vn).
From (3.6), we see that, for every n € span{ey,ez,...,en},

| (itn,n) | < |f(t)|L2(Q)' \’7|L2<Q)+ \b(un”LZ(Q)' |’7<L2(Q)

+|B] - |un|Hé(Q) ' |TI|H3<Q),
where |B] is the norm of the linear continuous operator B.

|1 (D) | -1y = sup [(@n(t),n)| = sup [ (i (t),n)]
Inly=1 nespa‘111‘{el,l...,en}
nly=

=C11 (|f(t) |L2(Q) + |b(un) |L2(Q)) +|B| - |un(t)|Hé(Q),

where c;; is the imbedding constant which Hé (Q) imbeds in L2(Q).

. § Cc .
|b (i) (t) 3200 < cL2 (1+ | ttn(t)])’dx < E(|Q| +in(8) [ F20)-

(3.17)

(3.18)

(3.19)

This shows that {b(11,,)} is also a bounded subset of L®(0,T;L2(Q)). Hence, (3.18)

implies that {ii,,} is a bounded subset of L2(0, T;H~1(Q)).
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Therefore, there exists a subsequence of {u,} (still denoted by itself) and a function
u such that u € L* (0, T; H} (Q)), % € L* (0, T;L?(Q)),it € L>(0, T; H~1(Q)) satisfying
uy — u  weakly-star in L* (0, T; HL (Q)),
My — 1t weakly-star in L (0, T;L2(Q)),
i, — it weakly in L% (0, T; H™1(Q)),
b(u,) — g weakly-star in L* (0, T;L>(Q)).

(3.20)

Furthermore, 11, (t,x) — 1 (t,x), a.e. (t,x) € [0,T] x Q.

It is well known that the space W(V), defined by W(V) = {u € L?(0,T;V),u €
L2(0,T;V’)} with the norm |uly = |[ul2.v) + |20, is continuously imbed-
ded in C([0,T]; L?(Q)). It is obvious that u € C(0,T;L%(Q)), 1t € C(0,T;H 1(Q)).
Hence, 1(0), 1(0) make sense.

For A € L%(0,T), by (3.6), we have

jT (i, Ae;)dt = —JT (B(un),Aeth—JT (b(iLn), Aer)dt
0 0 0

T (3.21)
[ rwaear i=12.n
0
For every given positive integer i, let n — oo in (3.21). Then, it follows that
T T T
j (it Ae;)dt = —j (B(u),?\ei)dt—J (g.Ae)dt
’ T ’ (3.22)
+J (f(t),Ae))dt, i=1,2,....
0
Therefore,
W) +Bw)+g(t)=f(t) inL*(0,T;H 1(Q)). (3.23)
In the following, we show that
glx,t) e (u(x,t)), ae. (x,t)€Qr=Qx[0,T]. (3.24)

Since 1, (x,t) — u(x,t), a.e. (x,t) € Qr, by Eropob’s theorem [12], for every § > 0,
there exists a subset Qs € Qr =Qx[0,T1],1Qs| <6,

Uy (x,t) — 1(x,t) uniformlyin Q71/Qs. (3.25)

That is, for every ¢ > 0, there exists a positive integer N, when n = N,

|1, (x,t) —1(x,t) | <€ V(x,t) €Qr/Qs. (3.26)
It is obvious that
b (1(x,t)) <b(n(x,t)) <b:(u(x,t)) V(x,t) €Qr/Qs. (3.27)
For every pu € L1 (0, T;L%3(Q)), u=0
JQT\QEg(x,t)u(x,t)dxdt = Tllfrolo 0r0s b (1, (x,t))u(x,t)dx dt

< J be(i(x,t))ulx, t)dxdt, (3.28)
Qr\Qs
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J gx,tu(x,t)dxdt < limsup be(i(x,t))ulx, t)dxdt
Qr\Qs e—0t JQr\Qs

< J b(1(x,t))u(x, t)dxdt. (3.29)
Qr\Qs
Analogously, we can obtain

J g(x,t)u(x,t)dxdtzj b(t(x,t))u(x,t)dxdt. (3.30)
Qr\Qs Qr\Qs

Hence,
g(x,t) € p(u(x,t)), ae. (x,t)€Qr/Qs. (3.31)
Letting 6 — 07, we get
gx,t) epiix,b), ae. (x,t)eQr=Qx[0,T]. (3.32)

Let A € C'[0,T1,A(T) = 0. Integrating by parts the left-hand sides of equations (3.21)
and (3.22) gives

T
—{11,(0),A(0)e;) — JO (11n,Ae;)dt = the right of (3.21),

T (3.33)
—{11(0),A(0)e;) —JO (11,Ae;)dt = the right of (3.22).
Making a comparison between the two equations of (3.33), we get
}ngo(un(O)—u(O),eQ:o, i=1,2,.... (3.34)
Therefore,
Un(0) — 1(0) weakly in H™'(Q). (3.35)

The uniqueness of the limit implies that 1(0) = u; (in H~1(Q)).

Let A € C2[0,T], A(T) = 0, A(T) = 0. Analogously, integrating by parts the left-hand
sides of equations (3.33), and making a comparison with the obtained results again
gives: 1(0) = ug(in L2(Q)). This completes the proof. O

THEOREM 2. Letf € L(0,T;L%(Q)), uo € HY (Q), u1 € L?(Q). Assume that b satisfies

(1) b(§)E = 6 for almost everywhere € € R, and 3¢ > 0, |b(§)| <c(1+ |E|"),
ae.EeR,ifn>2,0<p<2n)/(n-2);ifn<2,0<p < o, and condition (2) of
Theorem 1 is valid. Then there exists a function v, defined in Q x [0, T], satisfying

veL®(0,T;H}(Q)), veL®(0,T;L*(Q)), (3.36)
and

V+B(W)+g(t) = f(t) inL'(0,T;H Y (Q)+LY(Q)),
gx,t) e (vix,t)), ae. (x,t)€Qr=Qx[0,T], (3.37)

v(0) = uy, v(0) = u;.
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PROOF. Analogously to Theorem 1, we still may get (3.7), where {e, },_; is abasis of
Hé(Q) NL®(Q) satisfying (e;,e;) = 6;j. Under assumption (1), jé(b(un),un)d'r > —9.
From (3.7), we have

. . ; t
| (£) | 2200 + €2 | n (8) | 130y = Cat-€3 [ Un (D) | 2y +2 JO (fiip)dt.  (3.38)

It is easy to see that equations (3.12), (3.13), (3.15), and (3.16) are still true and the
solution of equation (3.4) may still be extended to the interval [0, T].
By Sobolev Imbedding Theorem, we have, for a.e. t € [0, T], if n > 2, then

H{(Q) CLP (Q) CLP(Q), p*= % (3.39)
and if n = 2, then
H}(Q) CLUQ) V1=<gq< oo, (3.40)
SO
| un(t) | 1p o) < c11|un(t) <Hé(Q) < C11C9; (3.41)
if n =1, then
H}(Q) € C(Q), and ditto, | uy, (t) lea@ = T£g|un(x,t)| < €11C9, (3.42)

where Q denotes the Closure of Q and c;; is the imbedding constant which H&(Q)
imbeds in L? (Q) or C(Q). Everyway, we always have that b(1t,,) € L*(0,T;L'(Q)) and
{b(11,)} is a bounded subset of L* (0, T;L'(Q)).

Therefore, there exists a subsequence of {1}, still denoted by itself, and a function
v, such that v € L*(0, T; H} (Q)),V € L (0, T;L?(Q)), satisfying

uy — v weakly-star in L* (0, T; H} (Q)),
N, — v weakly-star in L° (0, T;L*(Q)), (3.43)
b(tt,) —g weakly-star in L*(0, T;L'(Q)).

Since the dual of the space H} (Q) nL*(Q) is the space H~1(Q) + L' (Q), by (3.6), it
is easy to obtain

V) +B(WV)+g(t) = f(t) inLY(0, T;H(Q) +LY(Q)). (3.44)
The rest is analogous to that of Theorem 1.
This completes the proof. O
4. Decay of solution

THEOREM 3. Let T = +oo, f = 0. Suppose that (Bw,w) = 0,Vw € H}(Q). If (b(w),
w) = olw Iiz(m, then, under the conditions of Theorem 2, the solution in Theorem 2,
obtained from the regularized equation (3.4), satisfies

[1(t) |32 < thexp(—pit), ae.t=0, 4.1

where Ly, U1, and L are positive constants.
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PROOF. Letu, be asolution of (3.4), i.e., u, satisfies (3.6) and (3.7). Since (b(w),w)

> uOlwliz(Q), by (3.7), we have

t
[8n (£) | 720 + (Bun (£),un (1)) < 12— 240 jo |1n (T) [32(0ydT, tE€[0,+0), (4.2)

where ¢, is a positive constant independent of n.
If (Bw,w)=0,Vw e H&(Q) and (Bu, (t),u,(t)) = 0, then, by Gronwall inequality,

[Ty (1) |iz<Q) <cpexp(=2upt), ae.t=0. 4.3)
Since
[1tn ()] 20y < Co, Tn — 1 weakly-star in L* (0, 00;L?(Q)), (4.4)

it is easy to obtain that 1, (t) — 1 (t) weakly in L2(Q) for almost everywhere t > 0. But
L2(Q) is a real Hilbert space, hence, [1(t)[;2(q) < lim, . |1n (£)]12(q), a.e. t = 0 (see
[4]). Finally, we get

|8(t) |20y < C12exp(—280t), (ace.t=0). (4.5)
O

REMARK 1. If Bu = —Au, @(u) = |u|?u then (1.1) is the equation which was ever
considered by J. L. Lions [6]. J. L. Lions ever obtained the existence and uniqueness. But
at this case, the result of decay of solution is true since the conditions of Theorem 3
is satisfied.

REMARK 2. When Bu = —Au and @ denotes the friction potential, equation (1.1)
was considered by P. D. Panagiotopoulos under stronger conditions [8].
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