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ABSTRACT. In [3], Gilsdorf proved, for locally convex spaces, that every sequentially webbed
space satisfies the Mackey convergence condition. In the more general frame of topological
vector spaces, this theorem and its inverse are studied. The techniques used are double
sequences and the localization theorem for webbed spaces.
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1. Introduction. A web W in a topological vector space E is a countable family of
balanced subsets of E, arranged in layers. The first layer of the web consists of a
sequence (A, : p = 1,2,...) whose union absorbs each point of E. For each set A,
of the first layer, there is a sequence (A,5: g = 1,2,...) of sets, called the sequence
determined by A, such that

Apg+Apy CA, for each g; (1)
(U{Apq:a=1,2,...} absorbs each point of A,,. (2)

Further, layers are made up in a corresponding way such that each set of the kth layer
is indexed by a finite row of k integers and, at each step, the above mentioned two
conditions are satisfied. Suppose that one chooses a set A, from the first layer, then
a set Ap, of the sequence determined by A, and so on. The resulting sequence S =
(Ap,Apg,Apgr,-..) is called a strand. Whenever we are dealing with only one strand,
we can simplify the notation by writing W; = A,, Wo = Apy, etc. Thus, S = (W) is a
strand, where, for each k, Wy is a set of the kth layer.

Let S = (W) be a strand. Consider xx € Wy and the series >;_; xx. The space E is
webbed if the series >.;_; xx is convergent for any choice of xy € Wy; and E is strictly
webbed if 3}, .1 Xx converges to some x € W, for every n € N and for any choice of
Xk € Wi. The standard references for webs in a topological vector space are [5, 7, 8].

Let (E,T) be a topological vector space. (xy),, C E is a Mackey null sequence if there
exists a sequence of real numbers (), such that ,, — o and 7,x, — 0 in E. We
say that (xy,), C E is Mackey convergent to x if (x, — x), is a Mackey null sequence.
A topological vector space E satisfies the Mackey convergence condition (M.c.c.) if every
null sequence is Mackey null.
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2. Double sequences. A completing double sequence in a topological vector space
(E,T) is a family (K}l)n,J'gN of balanced subsets such that

(1) K;“ - K}“’l for every m, j natural numbers;

(2) K}ﬂl +KJ’.[+1 C K;-L for every m, j natural numbers;

(3) Unen K7 is absorbent in E for every j natural number;

(4) for every jo e N, if x; € K}l with j > jo, then Z;’ljml x;j converges in E to some

X € K};.

Moreover, (KJ’.L) JjneN 18 compatible with the topology if, for each zero neighborhood
U in E and for every natural number n, there exists a natural number J such that
KJ’-‘ c U for every j = J.

For example, if E is sequentially complete and has a fundamental sequence of closed
bounded sets A; C A, C - - - such that, for each bounded set B C E, there exists ng € N
such that B C Ay, (this is the case if E is the strong dual of a metrizable space). In this
case, we define KJ’-‘ =27JA, and itis easy to verify the properties (1) to (4), above. The
reader can find further information concerning double sequences in [6].

A topological vector space (E,T), with a compatible completing double sequence
(K}‘), has a Sequential Double Sequence or the SDS property if, for each x;, — 0 in E,
there exists 1y € N such that, for each j, there exists a natural number M; such that
xm €K}, for every m = M;.

THEOREM 1. Let (E,T) be a topological vector space with the SDS property. Then E
satisfies the Mackey convergence condition.

PROOF. Let x,, — 0in (E,T). Let (KJ’.‘) be a sequential double sequence, then there
exists 1o € N such that, for every j, there exists a natural number M; such that x,, €
K;lo, for every m > M;. For n,j € N, we have K7, , C (1/2)K}; so K}, € (1/2)K},; C
(1/22)K}1. Consequently, for each L € N, K7, C (I/ZL)KJ”. Note that (1/27) < (1/7),
for every j € N and K}, = K, c (1/27)K}° C (1/j)K[°. So, there exists Mpj € N
such that x,, € K}) C (1/2)K;° c (1/j)K;°, for every m = Myj; which implies that
JXm € KJY-LO, for every m = M»;. Analogously, for (j + 1), there exists M1y = Moj
such that (j+1)x, € K‘?fl, for every m = My(;+1); and so, for all j € N. Define 7, = j
if Moj <m < My(j+1), then limy, .o ¥, = lim;_ j = co. Since (KJ’.L) is compatible with

the topology, we conclude that 7, x4, — 0. O

From the theorem, a space with the SDS property is a space with the Mackey con-
vergence condition. In what follows, we study the conditions under which we have
an equivalence of these two properties. First, let us introduce another type of double
sequences: a topological vector space (E, T), with a compatible completing double se-
quence (K}‘), has a quasi-Sequential Double Sequence or the qSDS property if, for each
xn — 0 in E, there exists ny such that, for every j, there exists a natural number M;
and a positive real number «; such that m > M; implies that x;, € (ij;lO.

If &¢j = 1, for every j, in a gSDS, then it becomes on SDS. So, the gSDS is more general
than the SDS. The next proposition gives the condition for the equivalence.

PROPOSITION 2. Let (E,T) be a topological vector space with the Mackey conver-
gence condition. Then the SDS and the gSDS are the same.
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PROOF. Let x;;, — 0 in a space (E,T) with qSDS property. By the Mackey conver-
gence condition, there exists a scalar sequence 7, — c such that ¥,,x;;, — 0. Then
there exists ng such that r,,x,m € « J-K;l“, for some o > 0 whenever m > M;. Hence,
Xm € (O(A,-/rm)K;LO CK;lO if m=M;and 7, = ;. O

Next, we see an example, where the gSDS property holds and the SDS property does
not.

Let (E,| - ||) be a Banach space with a sequence (x;,)men Weakly convergent to zero
and not norm convergent. Let B be the closed unit ball in E. For each n,j € N, let
KJ” =27JB. Then (KJ’.‘) is a compatible completing double sequence with respect to the
norm topology and, consequently, with respect to any weaker topology T, especially
the weak topology since the map i: (E,| - ||) — (E,T) is continuous. Now, (X;)men
is not contained in KJ’-‘, since K}1 are neighborhoods in the norm topology such that
N; K}l = {0} and, by [4, Ex. 4] and [4, cor. of Thm. 3], (E,o) does not have the M.c.c.
Nevertheless, (X;,)men is bounded with respect to both the weak and norm topologies.
So, for every KJ’.L, there exists «; such that (x;,)m C (xJ-KJ’.L.

We have the following implication: SDS = gSDS. This implication can be reversed if
the space has the M.c.c. Furthermore SDS = M.c.c. So, we have the following corollary:

COROLLARY 3. Let E be a topological vector space with a compatible completing
double sequence. Then E has SDS property if and only if the gSDS property and M.c.c.
hold.

3. Mackey convergence and sequentially webbed spaces. E is sequentially webbed
if it has a compatible web W such that, for every null sequence (x,)nen in E, there
exists a finite collection of strands {(W,i”),..., (W,fm) )} of W such that, for every nat-
ural number k, there exists M such that n > My implies x, € U?i 1 W,ii). Gilsdorf [3]
proved two relations between the M.c.c. and the sequentially webbed spaces in the
locally convex case.

Here, we generalize these results. One to topological vector spaces and the other
to locally r-convex spaces. In fact, the concept of webbed spaces, introduced here,
does not use local convexity. Note that in this case, in each strand, we have 2Wy,; C
Wis1+Wii1 C Wy so that Wy, C 271Wy, and then following the proof of [3, Thm. 12],
we have: if (E, T) is a sequentially webbed topological vector space, then E has the M.c.c.

In order to obtain a converse of this result, we need to use a localization theorem
[5, Thm. 5.6.3.].

Let 0 <7 <1 fixed. A C E is r-convex if AA + uA C A, for every A,u > 0 such that
A" +u" = 1. Moreover, if A is balanced, we say that A is absolutely v-convex. If v = 1,
we have the usual convexity definition.

For U C E balanced and absorbent, let q,, : E — R* be the Minkowski functional
defined by x — inf{p > 0: x € pU}. qy is an r-seminorm if q, (x + )" < qu(x)" +
qu(y)". Furthermore, if g;;' (0) = 0, it is called an r-norm. (E,T) is locally r-convex if
it has a fundamental system of zero neighborhoods formed by 7-convex sets.

Now, we can use the Ep spaces for locally 7-convex spaces. (E,T) locally r-convex
space is locally v-Baire if, for every bounded set A C E, there exists B absolutely 7-
convex and bounded such that A C B and the space (Eg, pp) is a Baire space, where Ep
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is the span of B and pj is the topology generated by the -norm gj.

THEOREM 4. Let (E,T) be alocally r-Baire locally v-convex space and strictly webbed.
If E satisfies the Mackey convergence condition, then E is sequentially webbed.

PROOF. Let W beastrictwebin E; (x,), C E anull sequence, and r;,, — o a sequence
of real numbers such that v, x,, — 0in E. Let A = {r,,x,, : n € N}, A is bounded, then
there exists a bounded absolutely 7-convex set B such that (Eg, pp) is a Baire space
and A is a bounded set in Ep. The identity map i : Ez — E is continuous. Hence, by
the localization theorem, i has a closed graph and there exists a strand (Wj) such
that i~1(Wy) = Ez n Wy is a zero neighborhood in (Eg,pg) for every k. Finally, A C
ok (Eg nWy) C ox Wi for some o, a positive real number. So, v, x, € cx Wi and x,, €
(0t /1) Wy C Wy, for n sufficiently large such that |(o/7,)] < 1. O
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