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ABSTRACT. Lower dimensional cases of Einstein’s connection were already investigated by
many authors for n = 2,3,4,5. This paper is the first part of the following series of two pa-
pers, in which we obtain a surveyable tensorial representation of 6-dimensional Einstein’s
connection in terms of the unified field tensor, with main emphasis on the derivation of
powerful and useful recurrence relations which hold in 6-dimensional Einstein’s unified
field theory (i.e., 6-g-UFT):

I. The recurrence relations in 6-g-UFT.

II. The Einstein’s connection in 6-g-UFT.

All considerations in these papers are restricted to the first and second classes only,

since the case of the third class, the simplest case, was already studied by many authors.

Keywords and phrases. Generalized Riemannian manifold, 6-dimensional Einstein’s uni-
fied field theory, recurrence relations in 6-g-UFT.
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1. Introduction. In Appendix II to his last book, Einstein ([12], 1950) proposed a
new unified field theory that would include both gravitation and electromagnetism. Al-
though the intent of this theory is physical, its exposition is mainly geometrical. It may
be characterized as a set of geometrical postulates for the space-time X4. Character-
izing Einstein’s unified field theory as a set of geometrical postulates in X4, Hlavaty
([13], 1957) gave its mathematical foundation for the first time. Since then Hlavaty
and number of mathematicians contributed to the development of this theory and
obtained many geometrical consequences of these postulates.

Generalizing X4 to n-dimensional generalized Riemannian manifold X,,, n-dimen-
sional generalization of this theory, so called Einstein’s n-dimensional unified field
theory (n -g-UFT hereafter), had been attempted by Wrede ([16], 1958) and Mishra ([15],
1959). On the other hand, corresponding to n-g-UFT, Chung ([1], 1963) introduced a
new unified field theory, called the Einstein’s n-dimensional *g-unified field theory (n-
*g-UFT hereafter). This theory is more useful than n-g-UFT in some physical aspects.
Chung and et al. obtained many results concerning this theory ([2], 1969; [7], 1981;
[8], 1988; [5, 6], 1998), particularly proving that n-*g-UFT is equivalent to n-g-UFT so
far as the classes and indices of inertia are concerned ([3], 1985). The case of the third
class, which is the simplest case of both unified field theories, was completely studied
for a general n by many authors ([15, 16, 8], etc.) However, in the cases of the first
and second classes of both n-dimensional generalizations, it has been unable yet to
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represent the general n-dimensional Einstein’s connection in a surveyable tensorial
form in terms of the unified field tensor ga,. This is probably due to the complexity
of the higher dimensions.

However, the lower dimensional cases of the Einstein’s connection in n-g-UFT were
investigated by many authors: 2-dimensional case by Jakubowicz ([14], 1969) and
Chung et al. ([4], 1983), 3-dimensional case by Chung et al. ([10, 11, 9], 1979-1981),
and 4 -dimensional case by Hlavaty ([13], 1957) and many other geometers. Recently,
Chung et al. also studied the Einstein’s connection in 4-*g-UFT ([1], 1963) and 3- and
5-*g-UFT ([8], 1988), and obtained respective Einstein’s connection in a surveyable
tensorial form.

The purpose of the present paper, the first part of a series of two papers, is to derive
powerful recurrence relations which hold in 6-g-UFT. In the second part, we prove a
necessary and sufficient condition for the existence and uniqueness of the Einstein’s
connection in 6-g-UFT and establish a linear system of 43 equations for the solution
of 6-dimensional Einstein’s connection, employing the powerful recurrence relations
obtained in Part L.

All considerations in this and subsequent papers are dealt with for the first and
second classes only.

2. Preliminaries. This section is a brief collection of basic concepts, notations, and
results, which are needed in our subsequent considerations. They are due to Chung
([1], 1963; [8], 1988), Hlavaty ([13], 1957) and Mishra ([15], 1959). All considerations
in this section are dealt with for a general n > 1.

2.1. n-dimensional g-unified field theory. The Einstein’s n-dimensional unified
field theory, denoted by n-g-UFT, is an n-dimensional generalization of the usual
Einstein’s 4-dimensional unified field theory in the space-time Xj. It is based on the
following three principles as indicated by Hlavaty [13].

PRINCIPLE A. Let X, be an n-dimensional generalized Riemannian manifold re-
ferred to a real coordinate system xY, which obeys the coordinate transformation
x¥ — xV'. (Throughout the present paper, Greek indices are used for the holonomic
components of tensors, while Roman indices are used for the nonholonomic compo-
nents of a tensor in X,,. All indices take the values 1, 2,...,n, and follow the summation
convention with the exception of nonholonomic indices x, vy, z, t.) for which

det(ax ) +0. @.1)
ox

In n-g-UFT the manifold X, is endowed with a real nonsymmetric tensor ga,, called
the unified field tensor of X,,. This tensor may be decomposed into its symmetric part
ha, and skew-symmetric part ka,

Gau = hay +kay, (2.2a)

where

g =det(gau) =0, f = det(hau) =0, k = det (kay)- (2.2b)
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We may define a unique tensor h?” = hV? by
ha h™ = 6. (2.3)

In n-g-UFT the tensors h,, and hv will serve for raising and/or lowering indices of
tensors in X;, in the usual manner.

PRINCIPLE B. The differential geometric structure on X, is imposed by the tensor
Jau by means of a connection F)‘(u defined by a system of equations

Dwgau = stuo‘g)\fx- 2.4)

Here D, denotes the symbolic vector of the covariant derivative with respect to F)t’u
and S,," is the torsion tensor of FAVH. The connection F/{’u satisfying (2.4) is called
the Einstein’s connection. Under certain conditions the system (2.4) admits a unique
solution Iy),.

PRINCIPLE C. In order to obtain g,y involved in the solution for Iy, certain condi-
tions are imposed. These conditions may be condensed to

Sy =5%=0, Rpa = a[uX)\], (2.5)

where X} is an arbitrary nonzero vector, and R,,a” and Ry, are the curvature tensors
of I}, defined by

R’ =2 (a[,,rlva] +r;[urm,]), Rua = Roga ™. (2.6)

2.2. Algebraic preliminaries. In this subsection, notations, concepts, and several
algebraic results in n-g-UFT are introduced.

(i) NOoTATIONS. The following scalars, tensors, and notations are frequently used
in our further considerations.

g:%, k=2 (2.72)

Kp = k[a] alkazaz . -ko(p]o‘p, (D = 0,1,2,...), (2.7b)

O, = OX, WY =krY, Pk, =D ;2 %k Y, (p=1,2,...), (2.7¢)

Kopv = Vvkou+Vkvy +Viukey, (2.7d)
0, if nis even,

o= (2.7e)
1, if nis odd,

where V, is the symbolic vector of covariant derivative with respect to the Christoffel
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symbols {,,} defined by hy,. It has been shown that the scalars and tensors intro-
duced in (2.7) satisfy

Ko=1, K,=k if n is even and K, =0 if pisodd, (2.8a)
g:1+K2+"'+ano'y (2.8b)
(p)kAu - (—I)P(p)ku)\, (p)kAv _ (_1)P(p)kvA_ (2.8¢)

Furthermore, we also use the following useful abbreviations, denoting an arbitrary
tensor Tyua, skew-symmetric in the first two indices, by T

par  pqr

T = Twu?\ = Taﬁy(p)kwa(mkuﬁ (T)k]\y, (2.9a)
000
T= Twu)\ =T ’ (2.9b)
rar par par (pa)r rar apr
2 Twiapl = Twrp— Twpa, 2 T wapu = Twap+ Twau, etc. (2.9¢0)
We then have

par apr

Tw?\u = - T/\wp- (2.10)

(ii) CLASSIFICATION, BASIC VECTORS, AND BASIC SCALARS

DEFINITION 2.1. The tensor gy, (or k) is said to be
(1) of the first class, if Ko # 0;
(2) of the second class with the jth category (j > 1), if

K»; #0, Kyjio=Kpjia=-+-=Ky o5 =0; (2.11)

(3) of the third class,if Ky =Ky =---=K;,_5 =0.
The solution of the system of equations (2.4) is most conveniently brought about in
a nonholonomic frame of reference, which may be introduced by the projectivity

MAY =k,"A¥, (M a scalar). (2.12)

DEFINITION 2.2. An eigenvector A of k,, that satisfies (2.12) is called a basic
vector in X,,, and the corresponding eigenvalue M is termed a basic scalar.

It has been shown that the basic scalars M are solutions of the characteristic equa-
tion

MO (M™% +K,M™27 % 4. 4Ky 0 oM?+ Ky ) = 0. (2.13)

(iii) NONHOLONOMIC FRAME OF REFERENCE. In the first and second classes, we
have a set of » linearly independent basic vectors A” (i = 1,...,n) and a unique recip-
i 1

13
rocal set Ay(i =1,...,n), satisfying
i i
AAY=68],  AAY =6). (2.14)
1 1

With these two sets of vectors, we may construct a nonholonomic frame of reference
as follows:
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DEFINITION 2.3. If T}’ are holonomic components of a tensor, then its nonholo-
nomic components T}_‘_‘_‘ are defined by

TH =TV A, AN (2.15a)
An easy inspection shows that
T =THIAY Ay (2.15b)
Furthermore, if M is the basic scalar corresponding to Av then the nonholonomic
components of ””kA are given by
(n)kxl — ];,1105;, <n>kxi — I;/Iphxi, (P) Xt = ]\;Iph"i. (2.16)

Without loss of generality we may choose the nonholonomic components of hy, as

hlZ = h34 == hnflfcr,nfzr = 1;
1 o (2.17)
Ohyi, =0,, remaining h;; =0

where the index iy is taken so that det(h;;) # 0 when 7 is odd.
2.3. Differential geometric preliminaries. In this subsection, we present several
useful results involving Einstein’s connection. These results are needed in our subse-

quent considerations for the solution of (2.4).
If the system (2.4) admits a solution F)t’u, it must be of the form

r]r,u = {/\‘;J}"'S/\uv"'Uv)\u; (2.18)
where
001
Uvau =2 S vaaw- (2.19)

The above two relations show that our problem of determining F{u in terms of ga, is
reduced to that of studying the tensor S, . On the other hand, it has been shown that

the tensor S,," satisfies
(110)

S=B-3 S , (2.20)
where
2Buwuy = Keopy + 3Ky ko “ kP (2.21)

Therefore, the Einstein’s connection F,\Vu satisfying (2.4) may be determined if the so-
lution Sa,” of the system (2.20) is found. The main purpose of the present paper is to
find a device to solve the system (2.20) when n = 6.

Furthermore, for the first two classes, the nonholonomic solution of (2.20) is given
by

xAJ/z[zS"yZ =Bxy: (2.22a)
or equivalently
ZXAy/[ZSXyZ =Kxyz + BK[xyZ]IL/H\y/I, (2.22b)
where
M =1+MM+MM+MM. (2.23)
xyz Xy y z z x
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Therefore, in virtue of (2.22), we see that a necessary and sufficient nonholonomic
conditions for the system (2.4) to have a unique solution in the first two classes is

M +0 forall x,y,z. (2.24)
xXyz

3. The recurrence relations of the first kind in n-g-UFT. This section is devoted
to the derivation of the recurrence relations of the first kind and two other useful
relations which hold in n-g-UFT. All considerations in this section are also dealt with
for a general n > 1.

The recurrence relations of the first kind in n-g-UFT are those which are satisfied by
the tensors P k,"”. These relations will be proved in the following theorem.

THEOREM 3.1 (The recurrence relations of the first kind in n-g-UFT). The tensors
WK\ satisfy the following recurrence relations:
FOR THE FIRST CLASS.

“Hp)k)\v +K> ("+p72)kg\v +---+Ky_g_2 (p+0+2)k)\v +Kn o <p+0)k)\v =0 (3.1a)

which may be condensed to

n-o
S KPPk =0, (p=0,1,2,...). (3.1b)
£=0
FOR THE SECOND CLASS WITH THE jth CATEGORY.
(21+P)k/\v +K2(21+P*2)k2\" 4 +K2j(P)kAV =0 (3.2a)

which may be condensed to
2j
S KDY =0, (p=1,2,...). (3.2b)
=0
PROOF OF THE CASE OF THE FIRST CLASS. Let 1§Cfl be a basic scalar. Then, in virtue
of (2.13), we have

n-o
> KgM™ =0 3.3)
f=0

Multiplying 8% to both sides of (3.3) and making use of (2.16), we have

n—-o .
> KDkt =0 (3.4a)
f=0
whose holonomic form is
n-o
> K Pk =0. (3.4b)
f=0

The relation (3.1) immediately follows by multiplying "’ k" to both sides of (3.4b).
O

PROOF OF THE CASE OF THE SECOND CLASS WITH THE jTH CATEGORY. When g,
belongs to the second class with the jth category, the characteristic equation (2.13) is
reduced to
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2j 2j
> KpM =M Y K MA S =0, (3.5a)
=0 f=0

Hence, if 1}(/[ is a root of (3.5a), it satisfies

2j 2j
2j-f _ 2j—f+1 _
A)gfgoKfzg goKflg 0. (3.5b)

In virtue of (2.16), multiplication of 5% to both sides of (3.5b) gives

2j A
> Kp@in gt =0. (3.6a)
=0

The holonomic form of (3.6a) is
27 ‘

z Kf‘zf’f”)kA"‘ =0. (3.6b)
=0

Consequently, the relation (3.2) follows by multiplying ?~Vk" to both sides of (3.6b).
O

REMARK 3.2. When g,, belongs to the second class with the first category, the
relation (3.2) is reduced to

P + Ko Pk =0, (p=1,2,...). (3.7)

In the following two theorems we prove two useful relations.

THEOREM 3.3 ( For the first and second classes). In the first two classes, a tensor
Twuv, Skew-symmetric in the first two indices, satisfies

(pa)r x ¥y z
T wpv= 2. TxyzMPMPM"Ay,ALA,, (3.8a)
Xz X y z
r(pa) x ¥y z
T viop = 2, TetyatMPMUM"A A Ay (3.8b)
xX,¥,z

PROOF. Making use of (2.15b) and (2.17), the relation (3.8a) may be proved as in
the following way:

(ra)r (pa)r x ¥ z
T wpv = Z T xyzAwAuAv
xX,¥,z
1 . . . 2 (7) x ¥y z
=5 > Tijk[(”)kx”‘”kyj+(“)kx”’7)ky1] kXALALA, (3.9)
xX,¥,z

1 P p4a apfp A Y
=5 > Tepz(M M+ MM JM" A AuAy .

xX,¥,z

The second relation can be proved similarly. O
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THEOREM 3.4 (For all cases). The tensor By, given by (2.21), satisfies

(pﬁ)r (p@)r p'ar War (pa)r’

=S+ S + S5 + S, (3.10)
(pa)r (pa)r (p'a")r (r'ar’ (pa)r’
B wuy = K wuv+ K wuv+ K v[wu]+ K viwuls (3-11)
where
p'=p+1, q=q+1, v =r+l (3.12)

PROOF. In virtue of (2.9) and (2.20), the relation (3.10) may be shown as in the
following way:

(ra)r  (pa)r 1 (r)
B = B wuv=EBuﬁy[(’”)kw“(q)kuﬁ+<q)kw“(P)KpB] k,”

1
=5 [Sapy + Senyka kg + Sepn ko ky" + Suen kg k"] (3.13)

x [Pk * @k, P +@ kw‘"(")kuﬁ]m k.

After a lengthy calculation, we note that the right-hand side of the above equation is
equal to (3.10). The relation (3.11) may be proved similarly. O

4. The recurrence relations of the second and third kinds in 6-g-UFT. This sec-
tion is specially concerned with the 6-dimensional case; that is with 6-g-UFT. In this
section, we first investigate the basic scalars and some relations satisfied by them. In
order to obtain a tensorial representation of the 6-dimensional Einstein’s connection
FX“ in terms of g,,, we need powerful recurrence relations of the third kind which are
satisfied by an arbitrary tensor Ty, skew-symmetric in the first two indices. There-
fore, we finally derive these relations, after introducing the recurrence relations of the
second kind which are satisfied by the basic scalars. All considerations in this section
are restricted to n = 6.

In 6-g-UFT there are four cases; that is, the unified field tensor gy, belongs to

(1) the first class, if K¢ # 0,

(2) the second class with the first category, if K> + 0, K4 = Kg =0,

(3) the second class with the second category, if K4 + 0, Kg = 0,

(4) the third class, if K» = K4 = Kg = 0.

In this section we investigate the first three cases.

Before we start investigations about the basic scalars, we first note that in 6-g-UFT

the relation (2.8b) is reduced to

g=1+K2+Ks+Kg, 4.1)

and formally state in the following theorem the recurrence relations of the first kind
when n = 6, which are direct consequences of (3.1) and (3.2).
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THEOREM 4.1 (The recurrence relations of the first kind in 6-g-UFT). The tensors

Wk, satisfy the following recurrence relations in 6-g-UFT for p = 0,1,2,...:

Class and Category Recurrence relations of the first kind in 6-g-UFT
P+6) .V — 1, p+ .V _ g 2. Y _ . P,V
The ﬁ}’St class k)\ K2 k/\ K4 k/\ K6 k)\ . (4.23)
The second class with
the second category P = —K, P2 kY — Ky Pk (4.2b)
The second class with
the first category P+ = K, P k. (4.2c)
THEOREM 4.2. The basic scalars in 6-g-UFT are given by
Class and Category The basic scalars I\;I
M = —J\Z/I = —& + o+ B,
The first class ; jXI: /——+wa+w23 (4.3a)
=_M= K 2
]\5/1 ]\éI 3 + w20+ wp
M=o =VLok
The second class with the
M=-M=+L-K, (4.3b)
second category 3 4
M=M=0
5 6
The second class with the M=-M=+y-K;+0,
first category M=M=M=M=0 (4.3¢)
3 4 5 6
where
—1+V3E (4.4)
2
1/3
2@ (5)
=|-c++(%) +(= 4.4
1o { 5 > 3 , (4.4b)
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b4 ]

2
0=Ky— (KSZ) , (4.40)
. KKy 2
¢ =Kp 3 +27(K2),
L= (ﬁ)sz k=X (4.4d)
== 2 4, - 2 . .

PROOF. Since the characteristic equation (2.13) for the first class in 6-g-UFT is
reduced to

(M?)? + K> (M?)* + KaM? + Ko = 0 (4.5)

equation (4.3a) follows by the method of Cardano, using the notations given by (4.4a).
In this case we note that all basic scalars are not zero in virtue of (4.6d). The other
cases may be shown similarly. O

THEOREM 4.3. The basic scalars ];/I in 6-g-UFT satisfy the following relations:

Classes and Category Relations between the basic scalars
M+M=M+M=M+M=0, (4.6a)
1 2 3 4 5 6
2 2 2 _
The first class M H\ZI M=Ky, (4.6b)
M?M? + M?M? + M>M? = Ky, (4.60)
a p b C c a
M*M?M? = —Kg. (4.6d)
a p ¢
M+M=M+M=M+M =0, (4.7a)
The second class with the L2 3 4 , > 26
second category MM=MM=0, M"+M"=-K, (4.7b)
M?M? =K,, M’M?=M>M?=0. (4.7¢)
a p a c b ¢
The second class with the ]\1/1+1\2/I = ]\;IH\;I =0, (4.8a)
first category (x,y =b,c)
g Y MM =Ky, MM=MM=MM =0. (4.8b)
12 1 x 2 X Xy

Here, the indices a,b,c are assumed to take values asa =1,2; b =3,4;c =5,6.
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PROOF. The relations (4.6), (4.7), and (4.8) follow from (4.3), (4.3b), and (4.3c), re-
spectively. In the proof of (4.6), use of the following relations are made

w?=-1-w, w3 =1, (4.9)
O(B:—%K4+é(1<2)2, (4.10)
K>K 2
3 3_ 2h4 £ 3
0.4 +B = K6+ 3 27(K2) . (411)
O

Using the relations given in Theorem 4.3, we may prove the recurrence relations of
the second kind in the following theorem.

THEOREM 4.4 (The recurrence relations of the second kind in 6-g-UFT). In6-g-UFT
the basic scalars I\;I satisfy the following recurrence relations which hold for all values
of x and y whenx = y:

FOR THE FIRST CLASS.

MOMY = - M@MY - MOM? —KoMOCMY — KoM CMY —KyM MO (4.12a)
X y X % X % X y X y R y ’ ’
2M OMY = —M3M3 - 2KoM CMP —K,MM, (4.12b)
X v x ¥ X y Xy
MOM? = —MGOMD K, MBM? + KgM I MO, (4.120)
X y X ¥ X ¥y X Yy
2MOM? = —M*M* - Ko M3 M3 + KyM?M? + 2KeM @M? + KgMM, (4.12d)
X ¥y X ¥y X ¥y X ¥y x ¥ Xy
MOMY = KM BM? + KgM CMY + KM CMY, (4.12e)
x ¥ x ¥ x ¥ x Yy
]\;151}/15 = KZJ\x441\y44 +2K4]\)§I<4J§//12) +2K61\x4<41\y40> (4.12f)

+KaM3M3 +2KgM S MY + KgM?M?.
X y X y X y

FOR THE SECOND CLASS OF THE SECOND CATEGORY.

MOMO = _MCMD —K,MIMP, (4.13a)
X y X b% X b%
2M CMY = —M?M? + K4MO°MO — Ko MM, (4.13b)
x ¥ X Y x ¥ xy
MOM? = K,MOIMO, (4.13¢)
X y X y
M3M3 = KoM2M? + 2K4M @MY + K,MM. (4.13d)
x ¥y x ¥y X y Xy

FOR THE SECOND CLASS OF THE FIRST CATEGORY.
1\1/11\2/1 =Ko. (4.14)

PROOF OF THE RELATIONS IN (4.12). The values of index x belong to anyone of
the following three groups:

x=a=1,2; x=b=3,4; x=c=5,6.
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For the values of two different indices x and 7y, we have two cases. The first case is that
x and y belong to the same group. The second case is that each of x and y belongs
to two different groups. In the first case, it may be easily shown that the relations in
(4.12) are identities 0 = 0, because in the proof given below each of A, B, C, D, E, and F
contains the factor ]\;I +J\;I = 0. Therefore, in the proof of the relations (4.12) it suffices
to show the validity of the relations for the second case only. Now let x,y, and z be
indices each of which belongs to mutually different groups.
In order to prove (4.12a), consider
A= (M+M)(M*M?+ M2M? + M?M?).
Xy

X ¥ y z z x

In virtue of (4.6¢), we have

A=2K;MOMO, (4.15a)
X ¥
On the other hand, the relation (4.6b) gives

A=2MIMO [M2M2+M2(—K2—M2—MZ) +M2(—K2—M2 —MZ)]
X ¥ x ¥y b2 X b% X X ¥

=2M MO [ 2K, M MO — 20 G4mO —MZMZ] (4.15h)
X % X y X ¥ X ¥y

= —2KoMOBOMY — 2K, M @MY —2M G M —2Mm UMY —2Mm Cpm?
X v X y X % X b4 X y ’

Consequently, the relation (4.12a) follows from (4.15a) and (4.15b).
The remaining relations in (4.12) may be proved similarly by considering

B= (M+M)M(5M0), for the proof of (4.12b),
x y/'x Ty

C:M2M2(M+M>(M2+M2+M2), for the proof of (4.12¢),
X ¥y \x y/\x y z

D=(M+M)MOM?, for the proof of (4.12d),
X v/ x ¥y
E= MM(M+M)M2M2M2, for the proof of (4.12e),
Xy \x Y/ x ¥y z
F=MM(M+M)MOM?), for the proof of (4.12f). 0
X ¥y \x v/ x y

PROOF OF THE RELATIONS IN (4.13) AND (4.14). Theserelations may be obtained
from (4.12) by substituting the corresponding conditions of each case . O

Now, we are ready to prove the recurrence relations of the third kind in the following
theorem. These relations are very important for the solution of (2.4) or (2.20) in 6-g-
UFT. We use these relations in our subsequent paper to establish a linear system
equivalent to (2.4) and to find a precise and surveyable tensorial representation of
6-dimensional Einstein’s connection in terms of the unified field tensor ga.

THEOREM 4.5 (The recurrence relations of the third kind in 6-g-UFT). IfT is a skew-
symmetric tensor in the first two indices, the following recurvence relations hold in
6-g-UFT:
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FOR THE FIRST CLASS .

(50)r “4r  (32)r (30)r 21)r (10)r
T =—-T - T -Ky T -Kp» T —Kyq4 T , (4.16a)
GDr 33r Bhr 11r
2T =-T -2K, T —K4 T, (4.16b)
(52)r (43)r 32)r (10)r
T =-T -Kx T +K¢ T (4.16¢)
(53)r 44y 337 22r (20)r 11r
2T =—T—-KoxT +KaT -2Kg T +Kg T, (4.16d)
(54)r 32)r (30)r )r
T =K4 T +K¢ T +Kg T , (4.16e)
557 44r (42)r (40)r 33r BL)r 22r
T =Ko T +2K4 T +2K¢ T +K4T +2Kg T +K4T. (4.16f)

FOR THE SECOND CLASS WITH THE SECOND CATEGORY.

(30)r 1)r (10)r

T =—T -K» T, (4.17a)
BL)r 22r 11r 00r

T =-T-KxT +K4 T, (4.17b)
(32)r (10)r

=K4s T, (4.17¢0)
33r 22r (20)r 11r
T =K, T +2K4 T +K4T. (4.17d)

FOR THE SECOND CLASS WITH THE FIRST CATEGORY.

11r 00r
T =K, T. (4.18)

PROOF. We first note that the terms in the right-hand side of (3.8a) vanish identi-
cally when x = y. Therefore, whenever we use (3.8a), it suffices to consider the terms
corresponding to the cases x + 7y only. The proof of the above relations follow from
(3.8a), using (4.12) for the proof of (4.16), (4.13) for the proof of (4.17), and (4.14) for
the proof of (4.18), respectively. For example, the relation (4.16b) may be proved in
the following way:

51)r G)r _ x Y z
2T =2 T wyv= 2 2Tey2M MYVM"A,A A,
X,z X y z
1 3p/3 x4
= > Teyz| - 2KoM OMY - M3MP - KuMM|M" A A A,
Xz xy o x xylz (4.19)
3D)r 33r 11r

(
:_ZKZ T wpv — Twuv_K4 Twuv

3)r  33r 117
=-2K, T — T —-K4T. O
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