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A PROPER SUBCLASS OF MACLANE’S CLASS
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ABSTRACT. The MacLane’s class « of analytic functions is the class of nonconstant analytic
functions in the unit disk that have asymptotic values at a dense subset of the unit circle. In
this paper, we define a subclass % of # consisting of those functions that have asymptotic
values at a dense subset of the unit circle reached along rectifiable asymptotic paths. We
also show that the class @ is a proper subclass of ¢ by constructing a function f € « that
admits no asymptotic paths of finite length.
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1. Preliminaries. In all what follows, f is a nonconstant analytic function on the
unit disk.

DEFINITION 1 [2]. We say that a simple curve I' : z(t), 0 <t < 1 is a boundary
path ending at £ if |z(t)| — 1 ast — 1 and if I nC = {T}. The number a is called an
asymptotic value associated with T if there is a boundary path I’ such that f(z(t)) — a
ast —1and ['nC = {C}. In that case, we call I an asymptotic path.

DEFINITION 2. We define the set A(f) to be the set of all points C at which f has
an asymptotic value. In particular, we denote by A, the set of all points € associated
with the asymptotic value a, and by A, the set of all points C associated with the
asymptotic value «. We also define the set AR to be the set of all points on the unit
circle at which f has asymptotic values reached along rectifiable asymptotic paths.

DEFINITION 3 [3]. If A(f) is a dense subset of C, we say that f € #, the MacLane
class of analytic functions and we define the set & to be the subset of s for which AR
is a dense subset of the unit circle C.

DEFINITION 4 [1]. Let H C D be arelatively closed subset of D. We say that H is an
Arakelyan set or H € K(D) if, for every zo € D — H, there is a boundary pathI, c D - H
which connects zg to C, that is, if there is a boundary path Iy : z(t), 0 < t < 1, such
that z(t) e D—H, z(0) = zg and d(z(t),C) — 0 as t — 1. Here, d(z(t),C) denotes the
distance from z(t) to C.

DEFINITION 5. Let H C D. We say that H is a set of tangential approximations
(by analytic functions of H) provided that, for each function g continuous on H and
analytic on the interior H° of H, and for each positive continuous function €(t), 0 <
t < 1, there is an analytic function f on D such that, for all z € H,

|f(2)-g(2)| <e(d(z,0)). (1)
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Note that when H® = ¢, the function g is only required to be continuous on H.

LEMMA 1 [1]. LetH €K (D), and H® = ¢. Then H is a set of tangential approximation.
This is Arakelyan’s theorem.

2. Main theorem. @ is a proper subset of .

PROOF. The strategy is to construct a function f € s by approximating a function
g on an Arakelyan set H, with H° = ¢, using Lemma 1.

The set H is the union of

(a) a sequence of circles converging to the circumference C, each having small

equally spaced gaps in it, and

(b) the boundary paths that snake through the gaps.

The gaps in a circle have a total length that approaches zero quickly as the circles ap-
proach the circumference. Also, the gaps on consecutive circles are rotated enough so
that the asymptotic paths approaching a point of the circumference that pass through
the circles only in the gaps (of most of the circles) have infinite length.

The set H so constructed turns out to be a set of tangential approximation. We de-
fine a continuous function g on the set H as follows. On each circle (minus its gaps),
the function is constant, and on consecutive circles, it has values 0,1,2,3,0,1,2,3,0,
1,2,3,.... Along the asymptotic paths of the set H, the function approaches infinity
(uniformly) as the modulus approaches 1. Arakelyan’s theorem allows us to extend
the function g into an analytic function f with the desired property. The set H and
the function g and, consequently, f are constructed in such a way that any asymp-
totic path along which f converges must be either funneled only through the gaps of
the circle (if the limit is other than 0, 1, 2, or 3), or must eventually only hit at most
one of four circles (hence, pass through the gaps most of the time). In either cases,
the asymptotic path must be of infinite length because it is trying to avoid the cir-
cles minus the gaps on which the function keeps alternating between the four finite
values. More specifically, we start with a sequence of circles { CJ;} converging to the
circumference C each having small equally spaced gaps so that the circle minus the
gaps form the first set of arcs {y,{’k}, (n=2,3,....k=1,2,...,n, j = 0,1,2,3). The
arcs {yi’k} will be positioned so that if any asymptotic path were to avoid a ‘good
number’ of them, that asymptotic path would have to be of infinite length. The sec-
ond set of arcs {I)\q}, (¢ =1,2,3,... and p = 1,...,q — 1) consists of boundary paths
ending at a dense subset of C. The set H is the union of the sets {y,{‘k} and {Tp\q}.
First, we show that H € K(D) then we define a function g on H with the property
that g — o as |z| — 1 along the boundary paths I}\4, while the function g takes four
different constant values on subarcs {y,{’k} of four consecutive concentric circles C,{,
j=0,1,2,3. Finally, we show that g and H satisfy the conditions of Lemma 1 and that,
for an appropriate choice of €(t) > 0, the function f in the conclusion of the lemma
has the desired property: f € s —R. O

CONSTRUCTION OF THE SET H.

H = (U0 Unoy Ut (k) ) U (V51 V3o (Tpia)) - @)
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We only take the values of p and g that are relatively prime ((p,q) = 1).

(1) Description of the arcs Y%{,k’ n=273,..;j=0123; k =1,2,...,n. We start
with a sequence of circles {C}, n = 2,3,..., centered at the origin, each of radius
r9=1-1/n, and we let D, n = 2,3,... be the annulus D,, = {r0 < |z| <70, ,}. Let D,
be the disc {z:|z| < rg}. Within each annulus D,,, we define three concentric circles
C,{, (j =0,1,2,3) centered at the origin, of radius n{ =10+ (j/(4n(n+1))), where
Jj =1,2,3. So, the three circles are equally spaced consecutively between C% and CSL 1
Note that here and in all that follows, j is used as an index rather than an exponent
in r,{ On every circle Cy{, (n=2,3,...; j=0,1,2,3) we arrange n (equally spaced) arcs
{yi,k}, (k=1,2,...,n) of equal length so that the gaps

ch-u(vly) )

consist of n open arcs O',ik, each of length Trr;l/Z", such that, for j = 0 or 2, the arcs

Ud,k’ k =1,2,...,n, all have their midpoint at the point 7;e*™/" whereas for j = 1

or 3, the arcs (r,{’k, k =1,2,...,n, have their midpoint at 7 e@k+DTi/n (3 rotation of
angle 1m/n from the previous case). The arcs (Ty{,k, which are the gaps on the circles,
are rotated enough so that a boundary path funneling through a ‘good number’ of
them would be of infinite length. Note that the length of yi’k is

2Trr7{ 'IT‘Vy{

- . “4)
n n

iz
[ =

In the future, we refer to the arcs yéik(oﬂl”k), j=0,1,2,3,in D, as the arcs y,(oy)
provided there is no ambiguity. The distance from a point of o, on Cj to a point of
On+1 0on C) . is at least

Yy T

n 2n

for j=0,1,2, (5)

because of the arrangement of the arcs y, and . Consider a curve J,, C D,, such that
InnGCii#¢ forj=0,1,2,3. (6)

Suppose, in addition, that J,, n yﬂ;,k # ¢ for at most one value of j € {0,1,2,3}. There-
fore, J, crosses a pair of circles C; and CﬂHl for some value of j € {0,1,2,3} at points
of some arcs o, and 0, 1. By the previous remark, the length of such a path is

21’1
(By doing so, we have made sure that the gaps on consecutive circles are rotated
enough so that asymptotic paths approaching a point of the circumference that pass
through the circles only in the gaps (of ‘most’ of the circles) have infinite length.)
(2) Description of the boundary paths I,/4. Forg =1,2,...,and p = 1,2,...,q—1 and
(p,q) =1, let

|Jn|>nry{<% 1). (7)

S = {e?mirla}, (8)

Note that S is a dense subset of C. We define a sequence of disjoint boundary paths
{Ip/q}, where p and g are as mentioned above, and such thatI,,;N{z : |z| = ¥} consists
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of exactly one point for all » satisfying rg <7 < 1. (Iy,q is not defined for r < rg.) We
need to construct the arcs Iy /4 N CJ, for j€{0,1,2,3},and n=q, gq+1,..., so that

Ty/q N Ci # Ty 1 0 Ch, (9)
if p/q + p’/q’. In the special case of I}, we make

[ g for j € {0,2},
In C1J1 = A 1 i 1o
¥ emi/2" gmi/n for Jje{1,3}.
For g > 1, we make

¥, e@milnp/alin)+(pmi/2"1a) for j € {0,2}

Fp/q ﬂC;JL = i ) (1 1)
¥l e@milp/al/m)+(pmi/2"1q) pmiin for j € {1,3},

where | | is the greatest integgr function. The first part of the argument, 2mri|np/q]/n,
is the center of the ‘gap’ O‘,{’k, while the second part of the argument, pri/2""1q,

determines the distance from the point I,/; N Cj) to the midpoint of the arc 0',{‘,(; it

ensures that the point of intersection is still within 0',,{‘,(. Such paths T4, must end at
the dense subset S of C since, for any p and g as described above,

n{ -1 and e@milnp/al/m)+(pmi/2"*tla) __ ,2mip/d 49 1 - oo, (12)

Note that two different paths intersect the circle C9 at two different points since if
pla+p'/q’, then

Tr{ e@milnp/al/m)+(pmi/2n+lq) 4 1,7{e(Zm'lnn’/q’J/n>+(n’7Ti/2"“q’). (13)

We define
Ipjg:z(t), 0<t<l1 (14)
to be the polygonal arc that begins at

i i 1
z(0) = 7/’;)e<27rm/q>+(rom/-?q+ Q. (15)

(Observe that the arc I}/, starts on the arc o), whose midpoint is of argument
2mip/q.) In the annulus Dy, for n = q, g +1,... the arc joins r0e@milnp/al/m)+(pmi/2"1a)
on CY successively

to Tylle(ZTrilnv/qJ/n)+(nm'/2”*‘q)em'/n on Cl,

to r2e@milnp/al/m+(pmi/2"la) on 2

to r3e@milnp/alim+(pmi2"la) priin on €3 and finally
to 1,VIHIe(Zm'lmﬂ/qJ/nH(10171'/2”*101> on C,EH.

Observe the rotation provided by the e™/" factor. From the definition of T, and
from the fact that T4 N CJ'L #Tp g N CJL incase p/q # p’'/q’, the paths are disjoint. As
an illustration, we take the path Iy/s. Its initial point is the point 79e2mi(#/5)+4mi/ 2% o
the arc 05 C C2. The path Iy/5 ends at the point of C of the argument 27i(4/5). The
second circle that I'y;5 crosses at a point on an arc 0, whose midpoint is of argument
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21ri(4/5) (more informally, the gap at 27ti(4/5)), is the circle C ?0. The kth such circle is
the circle C2,. (Note that this is a justification for using the greatest integer function. In
fact, the solution for n in the equation e2™iln4/51/n — p2mi(4/5) jg 41 = S5k.) Now, consider
the paths I3 and I3 4. They both intersect Cé’ at different points of the same arc crg 2
In fact,

. . 1n9 . 159
1—'1/3 A Cé) _ Tge(2n1[8(1/3)J/8)+(n1/2 3) — Té)e(rrl/2)+(1n/2 3) (16)

while

TisnCQ = Té)e(ZTri[S(1/4)J/8)+(Tri/293) _ Té)e(m/z>+(m/294)_ 17)
In general, there might be more than two paths T}, intersecting a circle C9 at different
points of the same arc O‘r{’k. However, there are finitely many (n?) such paths since
q < n and p < q. Note that the arcs {y,} and {0, } have been arranged so that any
such path I},/4 is of infinite length since, I';;/; N D, contains an arc joining a point of
o-,{'k to a point of o-r{;l, j=0,1,2, similar to the arcs J, in a previous remark. Finally,
define the set H to be the following disjoint union:

H= <U§=0 Un=1 Yk=1 (Yr{k)) U (Uaozl Ug;i (rn\q)) . (18)

The set H is relatively closed because every arc yik is closed and I},\; are closed arcs
in D,,.

PROOF OF H € K(D). Let zo € D — H. We need to find a path I, € D — H that con-
nects zo to C. Note that zg ¢ y, for any n, and zo ¢ I,,4 for any I,;; € H. Choose n
so that zo € D,,. Since D — H is open in D, we can construct a path I in D — H that
first joins zo to some point z; € o, — H for some 0, C D. Observe that there might
be more than one path I, crossing the same arc o3. Let I;/m C H be the boundary
path in H with the property that I}, N 0y is the closest to z, on oy,. From z;, we
make the path Iy ¢ D —H follows I}, so closely in D,, — H that Iy intersects no path
I'»/q C H, and so that the distance between Iy and I}/, in the annulus D,, approaches
0 as n — . Thus, I) connects z( to the boundary without intersecting H, and it ends
at the point e2™i(h/m) a9 desired.

CONSTRUCTION OF THE FUNCTION g ON H.

J forz €y, c Ch, j=0,1,2,3,

z) = 19
9(2) 1—1\z| forzely,forallp/q, q=1,2,...; p=1,2,...,q-1. (19)

Observe that g — o as |z| — 1 along I),,4. Note that H has no interior and g is contin-
uous on H.

CONSTRUCTION OF A FUNCTION f € & —%. Since g and H satisfy the conditions
of Lemma 1, there corresponds to every positive continuous function e(t):0 <t <1,
some analytic function f on D with the property that

|f(z)-g(2)| <e(d(z,C)) forall z € H. (20)
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Let f denote the function corresponding to €y (t) = 1/9 for all t.
Since

g — o as|z| —1 whenzel,y, (21)
then

f—owas|z| —1 whenzeTl,, (22)

as well, and since the paths I);,; end at a dense subset S of C, it follows that « is
reached as an asymptotic value at a dense subset of the unit circle, that is A, is a
dense subset of C, so that f € s, the MacLane class.

Since the function g has values that differ by one on the arcs y,, of the different cir-
cles CJL, j€1{0,1,2,3}, the function f has values that differ at least by 1-2(1/8) = 3/4
on the arcs y, of the different circles C,J{, j € 1{0,1,2,3}. Therefore, if n is sufficiently
large, no asymptotic path can cross the arcs y, on more than one of the four circles
C{l, j€10,1,2,3}; hence, by a previous remark,

1 1
|Tp/qg N Dy | =17 (E—Z—n) for all n > q. (23)
Finally, since the regions D,, are disjoint and

[ =uy_{TnDy}, (24)

it follows that, for any asymptotic path T,

1 1
0 _
IFI Z%T(Tn (5—27> = 00, (25)
In other words, no asymptotic path is rectifiable, and so f & R. O
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