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ON THE RITT ORDER AND TYPE OF A CERTAIN CLASS
OF FUNCTIONS DEFINED BY BE-DIRICHLETIAN
ELEMENTS

MARCEL BERLAND

(Received 2 September 1997)

ABSTRACT. We introduce the notions of Ritt order and type to functions defined by the
series

> fu(o+iTo)exp(—sAn), s=0+iT,(0,T) ERXR (%)
n=1

indexed by To on R, where (A)} is a D-sequence and (fn)7" is a sequence of entire
functions of bounded index with at most a finite number of zeros. By definition, the series
are BE-Dirichletian elements. The notions of order and type of functions, defined by B-
Dirichletian elements, are considered in [3, 4]. In this paper, using a technique similar to
that used by M. Blambert and M. Berland [6], we prove the same properties of Ritt order
and type for these functions.
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1. Preliminary lemmas

DEFINITION 1.1 (B. Lepson [10]). An entire function f is said to be of bounded
index if there exists a nonnegative integer v such that

(k) )
mw{W‘ke{O,l,...,v}}>M, (fOU)=rs)) @1

J!
for all j and for all s. The least such integer v is called the index of f.

THEOREM A (F. Gross [8]). An entire function with at most a finite number of zeros
is of bounded index if and only if it is of the form P (s) exp(«s), where P (s) is polynomial
and « is a complex constant.

THEOREM B (S. M. Shah [16]). Let f(s) =P (s)exp(xs), where « is any complex num-
ber and P (s) is a polynomial of degree less than n. Then f is of bounded index and the
index v < p, where p is any integer such that p > n—1 and

n|o<|+<n(n—l)|o(|2) 1 P |ox|™ <1
p+1 2! p(p+1) (p—-n+2)---(p+1) =

(1.2)

Let (/\n)io be a D-sequence (that is a positive strictly increasing unbounded se-
quence) and (f,)} be a sequence of entire functions f, of bounded index v, with


http://ijmms.hindawi.com
http://www.hindawi.com

446 MARCEL BERLAND

at most a finite number of zeros from Theorem A. As a result of the two theorems,
we have Vs € C, Vn € N\{0}

fn(s) =Py(s)exp (ays), (1.3)

where P, (s) is a polynomial of degree m,, and «, is a complex constant, that is,

MmMn
S— Pp(s) =D an;s’ with apm, #0and s € C. (1.4)
j=0

Let us suppose that 3k €]0,A1[, Vn € N\{0}
Xn € d(o,k), (1.5)

where d o) is the closed disc centered at 0 and of radius k.
Consider the space of elements

[

{fro}: Z folo+ito)exp(—sA,), s=o0+iT,(0,T) ERXR (1.6)

n=1

indexed by T on R. By definition, { fr,} is the BE-Dirichletian element. Let

B=limsup{%}, 1.7)
Ap=max{|an;| 1j€{0,1,....,ma}} VneN\{0}. (1.8)

Consider the associated Dirichletian element

{fa}: iAnEXp(_S)\n), (1.9)

n=1

whose coefficients are strictly positive and denote, by O'Cf 4 the abscissa of convergence

of {fa}.
Let us state three lemmas due to M. Blambert and M. Berland [6] which we use later.
These demonstrations are obvious because this sequence ()] is bounded.

LEMMA 1.1. If af*‘ = -0, B < oo, YV € N\{0}, &n € d(ox), then {fr,} converges
absolutely on C for any arbitrary 1o in R.

LEMMA 1.2. If(fcfA =—00,B <0, Vn eN\{0}, o, € d(o ), wehaveV Ty €R,VT € R

;izrgofm(0'+i1’) =0. (1.10)

LEMMA 1.3. If 0" = —c0, V1 € N\{0}, ctn € d (o), We have V1o €R, Vo €R

Py (0 +iTo) exp[on (0 +1iTo) — TAy]
1 (™ ) (1.11)
= lim {T—J fTO(O'+iT)eXp(lT)\n)dT},
2J1

Tp—

where T1 is any arbitrary real number.
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2. Main theorems. Let us define the following quantities. For each o on C,

M(0; fry) =sup{| fr, (0" +iT") [ | 0" = 0, T" €R}, (2.1
My (05 fry) =sup{| frpw (0" +iT")| | 0’ 2 0, T €R}, (2.2)
u(o; fro) = up{lfn o +iTo)| exp(—0A,) | n €N\{0}}, (2.3)
(05 fr,) =sup{|fu(o+iTo) |exp(—0A,) In=n"}; (2.4)
where
From ($) = D fu(o+iT0) exp (—sAy). (2.5)

The quantities defined above are finite.
REMARK. The function o — M(0; f+,) is decreasing onto R.

THEOREM 2.1. Ifa'cfA =—00, B <0, VN € N\{0}, &ty € d (o), Wwe have

(ll_{n M (05 fr)} = and 011111 {M(0; fry)} = . (2.6)
PROOF. We have Ve €]0,1[, 3n'( = n,) € N\{0}, Vn = n/, my/A, < B+ € and
In" (= ny) eN\{0}, Vn=n", k/A, <&, Vo > 0 such that

00

2. | fu(0 +iT0) | exp (- oAy)

n=ny(=max{n’,n"’})

< i Anexp{—(f/\n[l—<(B+E)10g(t;|o-|+|-r0|)+£<1+h;'))]}, 2.7)

n=n;

ve' €]0,1-¢[,30'(=0¢) >0,Vo >0/,

(B+¢€)log(1+|0|+ITol) + |70l e
(02

(2.8)

and

_((B+&)log(1+|o|+]Tol) +&lTol
of1-( ; we)]
o[(l-g)-€]>0'[(1-8)-€](>0). (2.9

Therefore, 3n; € N\ {0} such that

My, (03 fr) < fam (0'[(L—8) =€) = > Agexp[-0'((1-&)—€)A,], (2.10)

n=nj

where

lim {My, (075 fx,)} = 0. (2.11)
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On the other hand, we have, Vn € {1,2,...,n; -1}
;izl;lo{Pn(O'+iT0)eXp [atn (0 +iTg) —0Ay]} =0 (withA; >k and o, € d (o). (2.12)
We have
311130{M(U;fm)} =0. (2.13)

On the other hand, Vo <0, if M(0; f+,) is bounded onto R implies that (from Lemma
1.3)

VneN\{0}:{j€{0,1,...,mu} = an = 0}. (2.14)

Or, thus, we get the contradiction that

anm, #0 VneN\{0} (2.15)
and
glirfloo{M(U;fTO)} = co. (2.16)
Thus, (2.13) and (2.16) prove the theorem. O
Furthermore, let

3 log™ (log™ (M(0; fr,)

p‘}';o =limsup<| ( ( i )> , (2.17)
o——0 -0

. log™ (log" (M (0 fr,)

AR =1(irr£112f<| ( _<U W) | (2.18)

By definition, p?“ and 2\‘}):70 are the Ritt-order and the lower Ritt-order of function

Jr, defined by BE-Dirichletian element {f:,}. Also, M(0;fa) is defined in a similar
manner with f4 in the place of f,. It is trivial that

log® (log™ (fa(o)
o :limsup{ og ( og" (falo ))}, 2.19)
O——00 -0
log* (log™ (fa(o)
¢ g o 00|

THEOREM 2.2. Ifa'cfA =—00, B <00, Vn € N\{0}, &, € d(o), and L(=limsup{logn/

Nn—o00

An}) < oo, we have VT1y €R,

pI{TO =plt and 2\?0 = A (2.21)

PROOF. (1) We get the inequalities, V1o € R,

fro

pht < p}{TO and A <Ay (2.22)

To is any arbitrary real number. Consider the closed interval I(s,A) = {s" € C| |0’ —
ol <A>0,T" =19}, where 0’ =Re(s’), T =Im(s’), and s = 0 +iTy. Let Vn € N\ {0},
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pn(s,A) = sup{|Pn(s’) | |s EW,A)},
pr(s,A) = sup{|Pn(s’) | |s' eI(s,?\)}.
Using Lemma 1.3, we have Vo' € [0 —A,0 +A],Vn € N\ {0},
|Pn(0" +iT0) | exp [(Re (etn) —An) 0" —Im (atn) To] < M (0 = A; fry),
and then (M. Blambert and M. Berland [6])

P (s,A)exp[— (0 +A)(Ay —Re (&) —Im (axn) To] < M(0 = A; fr),
6" pn(s,A) < pyi(s,A),
An(1+1s) ™ <pn(s,A) VA=1, (M.Berland [1]).
Therefore, we have VA > 1, Vo € R, Vn € N\ {0}

My
A

AnsM(U—/\;fm)exp{[a+)\+ Im(a")To]

log (6(1+ 0| +ITol)) + =~
n
where A;, = A, —Re(xy).

We have Ve €]0,1[, 3n; e N\{0}, Vn = n,

An <M(0=X; fry) exp {[o+A+ (B +€)log (6(1+ 0| +Tol)) + €] AL,

and Ve¢; €]0,1[, 3o1(=0¢,) >0, Vo < -0y

A+ (B +ée)log(6(1+|o|+|Tol)) +€
-0

< &1,

449

(2.23)

(2.24)

(2.25)

(2.26)
(2.27)
(2.28)

(2.29)

(2.30)

(2.31)

where B’ =limsup{m, /A, } (< o) which implies that, V&; €]0,1[, Vi = n;, Vo < 01

n—oo

Ap <M(0 = A; fry)exp o (1-&1)A%].

Now, Vn € N\{0},Re(«xy) < k (because &, € d(ox))

, Re (x k
An:An<l)(\n”)) zAn<lfﬁ).

We have, V&, €]0,1[, 3n’ e N\{0}, Vn = n’,

AL<82 and A, =A,(1-&) (=B =8
n

which implies that, VA > 1, Vn = max{n,,n'} (=ny), Vo < -0
Apexp[—o(1-&1)(1-&)An] <M(0 —A; fry)-
Put, Vn € N\ {0}

Hng o) = (I-&)(1-&)Ap (>0),

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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(Hn, 5) is @ D-sequence. Consider the Dirichletian element

{fA(l,Z)} : i An eXp(‘ﬂln(l,z)) (2.37)
n=1

Faq )

indexed by the couple (1,2) and denote, by o, , the abscissa of convergence of

faq - .
{faq }- We have, o = —co (since ol

Ritt-order is

= —), fa,, is an entire function and, its

o _ imsup {log+ (log* _( iA(LZ) (0))) } 2.38)
and its lower Ritt-order is
A£A<1,2> _ l(irrEiI}of{log+ <log+_<£A<L2) (U)>> } (2.39)
Now, Vo €R,
Fron (@) = fa(c(1-a1)(1-22)) (2.40)
and
o' = (1-e) (1-e)oft, 241)
N = (1) (- ) A (242)

Put (Q. S. Liu [11]) Vo €R,

[T (O‘;fA“m) = sup {Anexp (—Uun(l‘z)) |n = nz}. (2.43)
We have Ve > 0,Vo €R

[

Sag oy, (0) < n:znz (An exp [*(0' —L—¢&)pn, ]) exp [7(L + E)“"<1,2>] (2.44)

< Hn, (U—L—e;fA(l,Z))an (€)

with Ky, (€) = 35, exp[ — (L + &) piny ) |-
Hence, Ve >0, Vo €R

Faiom (0) <ty (0 —L=8fa, ) ) Kny (€). (2.45)
Then we have, VA > 1, 3n, = max{n,,n'}, vn=n,, Vo < -0y
A, exp (—oyn(l,2)> <M(0—A; fr)- (2.46)
This implies that
[T <U;fAu,2)) <M(o—A; fr). (2.47)

From (2.45) and (2.47), we have
fA(l,Z),nZ (O-+L+€) SM(O-_A;f'TO)I<1’12(E)1 (248)

Faqom 3 - -
o s o (Jim, (570 )) = o (249
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Or

fAaq oy n fag -
pp tPm2 = p M2 (ML Blambert [5]).

We have, V&, €]0,1[, Ve €]0,1(
P = (1-&1) (1- &)l < pi™,
N = (1-e) (1- )M < ag
As & and &, are arbitrary, we have
plt < pl™ andthen A <AL®
(2) We get the inequalities, VT1p €R,
and  ALO <Al

’

From Theorem 2.1, we have Ve €]0,1[, V&' €]0,1—¢[, 30’ >0, Vo < -0

0'[1—((B+£)10g(1+|0|+|T0|) (1+@))ea]

lo| lo|

=U[l+(ﬁ+f)log(1+|0|+|TO|) +s<1+m)]

lo] lo

U[1+((B+25)s'+e)] =0(l+¢&),

where €] = (B+2¢€)e’ +¢,0, =1if 0 >0and 0, = -1 if o <O0.
Hence, Vo < —0”’, 3n; € N\{0},

Mm (O_!fTo) =< fA,Vl] (0—(1 +51)),
which implies that

FOM < P (1)) = (1+61) pit,

Pr
and where

piomt < pfaand  AZOM <A
Now, 0 € R,

M (03 fry) < MJ, (05 fry) + Mn, (0 fr,),
where

M3, (0 fry) = sup{ | foy, (0" +i7)| 0" 2 0,7 € R}
and
ny—

{f?o,nl} Z (o +iTo) exp (—sAy).
Then VT €R,

Pk <m {pfo ", pﬁ“‘"l} = P

Foomy

since pp 7" = 0.
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(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)
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Finally, we have

pio < pla, (2.63)

and, similarly, we can show that
PALPSY A (2.64)
Hence, (1) and (2) implies (2.21) which proves this theorem. O

If p,{TO > 0, we put
- log (M (o;
T£ = limsup log (M(03.fr)) J;TO)) , (2.65)
2 exp (—oo")

1g<M<af>>} .66

v;f"’ = liminf yh
77 Lexp(—0pr”)

By definition, TIJ;TO and v,J:TO are the Ritt-type and the lower Ritt-type of order of fr,.
It is trivial that if p,J;A >0,

T4 = limsup 71°g(ff‘(‘7;) , (2.67)
o= | exp(-opg')

V}?A:hmh’lf M . (268)
7= | exp (—(TpRA>

THEOREM 2.3. IfocfA =—o00, B < oo, L(=lim,_«(logn/A,)) =0, Vn e N\{0}, &, €
do.k), p?‘) > 0, we have V1) €R,

™o =T, (2.69)
PROOF. (1) We have the inequality, V1o € R,
i <l 2.70)

To is any arbitrary real number. From Theorem 2.2, we have, Ve €]0,1[, 3n; € N\ {0},
Vn=n,, Vo eR; VA>1,

Ay sM(O'—/\;fTO)eXp{[cr+2\+ (B +¢&)log (6(1+|o|+]|Tol)) +e]?\’n}, (2.71)

where

Ay, =An—Re(oty) and B’ = limsup{mn} (B =B) < . (2.72)

n-eo LAy
Now, Vo <0,

_0(2A+(B+e)log (6(1+ 0| +]T0l)) +¢)
-

AnsM(o—A;fTo)exp{[U—A }A’n

(2.73)
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Also, we have V& €]0,1[, 301 (=0¢,) >0, Vo < —07,
2A(B+e)log (6(1+ 0| +]|Tol)) +&
-
An <M(0 =i fry) exp{[o(1-£1) -AA,]

< &1,

sM(U—A;fTO)eXp[(U—%ﬁ)unw],
where Vn > n, = max {n,n},
Hng, = (1—&)(1-&)An, AyzAn(l-&) (e€]0,1[)
which implies that, VA >1,Vn > n,, Vo < —0;
Apn=M (U—)\;fTO) exp |:0' (1 - %) F‘nu,z)] .
1

;
T30
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(2.74)

(2.75)

(2.76)

(2.77)

z 0 is the Ritt-type of order of f,, we have, V&' > 0,30’ (=0¢) >0, Vo < -0’

log (M(O’*?\;fTO)) < (TIJ:TO +e’) exp[f (0’*7\)[)?0].
Hence, Vn = n,, Ve’ >0,

T ’ T A
logA, < T,J;°+s exp —(O'—A)pfso +( 0= tng,-
(1-¢&1) 2

Let us consider f),, the function defined by
fn(o) =aexp[— (0 =A)b]+pn, (0+c),

and indexed by n > n,. Choosing

a=10+& >0, b=py° >0, c=$1/11,
we get Vn > ny, Vo € R\{oy},
Sn(a) > fu(om)
with
1 ab
Tn=A= Elog (“"<12) )
and

limo, = —c0o = 3In3 € N\{0}, Vn =max{n,,ns},

Nn—oo

op < —max{oy, o'},

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)



454 MARCEL BERLAND

where

H A 1 ab
logAnan(O-n) = n(bLZ)_._( _1 +10g) “n(lvz)
)

bikng )

£1Ab
Hny ) ( n ) <eabexp <1—>

1-&

Or, if L(=1lim,_(logn/A,)) = 0, we have

fa
fa fa pr " un
1,2) 12 _y; R (1,2)
TR epg = hrrrll SUp - Hn( o) | An ,
— 00

(M. Berland [3], following the theorem of Lindel6f-Blambert-Yu) and

fT 1 fA
PR 0= pIJgA = mpR (1'2), (Theorem 22),
T}J;A _ T}?u,z),
from which
P I (—61) (1-£2)An] fr ¥ f1ApL"
(1—61)(1—52)2\n( n )se(T§°+e’)pRAexp T
—&1
and

f, £
ZRA/AnSAﬁRA/[(lfﬂ)(Hz)?\n]_

Then, V&, €]0,1[, Ve&r €]10,1[, V& > 0, p‘,’;A >0,

fo_ TRt E1ApR"
Tt < ex ,
(1-&1)(1-€) 1-g

as &1, &, and &’are arbitrary, we deduce immediately that
VTo €R: T < T,{TO.
(2) We get, when Ty is a fixed real number, Ve > 0, 30 >0, Vo < —0%,
| fro(T+iT) | < [ fa(o(1+8))].
In particular, V&’ > 0, 30 >0, Ve € ]0,¢" /o [, 0 > 0, VO < —max{0:, 0}
faloc(1+¢)) < fa(o—¢"), (M. Berland [3])

and, hence, Ve’ > 0,

Yo < —max{o, 0} : M((r;fTO) < falo—¢).

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)
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From pIJ:TO = p]J:A > 0, we get the inequality, V&' > 0,
T <t exp (¢} (2.97)
As ¢’ is arbitrary, we have

V1o €R: T};TO <. (2.98)

As a result of this theorem, we have an expression for T}{TO in terms of A,, and A,,.
If 0/ = —c0, B < 00, V1 €N\{0}, ctn € dio.), VT0 ER,

1 T
L<= lim< Og”)) —0, ploso, (2.99)
n—oo An
we have
fr fr prO /An
T Cepr ® =limsup{ A, | A . (2.100)
n—oo
O

REMARK. The notions of Ritt-type of order of functions, defined by B—Dirichletian
elements, are considered in [3] with the same result of this theorem.

THEOREM 2.4. Ifa;fA = —00, B <00, VN €N\{0}, oty Ed(ok), L=0, Ay ~ Aps1, @
defined by

pn) = w, (2.101)
Ani1—Ap

is a nondecreasing function of n > ny, and p{:A >0, we have, VT €R,

vt Z (2.102)
PROOF. (1) We have the inequality, V1y €R,
Vit < vl (2.103)
Suppose that the inequality is false. Then

Ity €R: VIJ;TO < vf;A. (2.104)

Let ¢ e]O,v,{A —V,J;TO [, €& e]O,e/v{;A[ and v = vaA*f /(1-¢"); then vIJ;TO <v< VI{A. Under

the conditions stated in Theorem 2.4, R. K. Srivastava [17] proved that
SA 5 A _ i PiA/ An
vi'epy Zhyrfllo?f{)‘"( n )}, (2.105)
which implies that 3n’ e N\{0}, Vn > n’,

fa
vepl < Au (AR ™). (2.106)



456 MARCEL BERLAND

Now, V& €]10,1[, Ve €]0,1[, 301 (= 0¢,) > 0, VO < —01, Vi = Ny (= max{n;,n’'}),

A
A?’l <M <0- _A;fT0> exp |:(0-_ TEI) Un(lvz)] ’
where A is a constant lying in [1, co[ and
Hng, = (1—&1)(1-&2)An (see Theorem 2.3),

which gives

log Ay, — (o’ ) Hing, <log (M (U—?\:fro)),

_1—61

log Ap + %ﬁu”u.m — O Hn,,, <log (M (U - A;fTO)) :

Let us consider @, the function defined by

&n— Bno
exp[— (0 —A)pf]

(o) =
and indexed by n = n,. Choose

A
on = lOgAn + 1_751“1’1(1’2)1 Bn = u"(l,Z) (> 0)

This takes the maximum value at

gt L (loma A1)
B‘Vl pRA lJn(l’Z) 1 —& pRA

fa
max{@, (o) | o eR} = %(APR /“"<1,2>)exp (1517)\,3}’%*)
PrR'e 4

_ o8 (M (0 Xif,)
exp [~ (00— A) x|

(for p§* = p").

As Vn e N\{0},
£ fa
Un(lyz) < An <:>APRA/U"(1,2) >A$1R /An

which gives

1- 1- A f logM —A;
( 5132(\ &) exp < 15_1 p£A>An (Aﬁ Aldn) < ogM (o fTﬁT)
pPre exp[(—a'n—)\)pR0

Finally, we have, V&3 > 0, 3(00)7, yllifl;loo-" = —oc0,

10gM(O-n_A;fTO) S

eXp[(—Un—?\)m{TO] -

(2.107)

(2.108)

(2.109)

(2.110)

(2.111)

(2.112)

(2.113)

(2.114)

(2.115)

(2.116)

(2.117)
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Hence, we get, Ve3 > 0, Ve, €]0,1[, Ve €]0,11,

((1751)(1752)exp(%p£‘))vsv,{T°+$3. (2.118)
—cl

Choosing €3 = €1 = & of ]0,1[, we get

v <yl (2.119)

Thus, we get the contradiction that

Vi < (v <)l (2.120)
which proves, under the stated conditions, that it is impossible to find a Ty of R such
that VI{TO <vir.

(2) We have the inequality, V19 € R,

VI{TO < vf;*‘ (see Theorem 2.3, 2). (2.121)

As a result of this theorem, we have an expression for VI{TO

V19 €R,

in terms of A,, and A,
fr fr PfTO /An
vp'lepr? = lirlgio{.lf An [ AR . (2.122)
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