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ON THE RITT ORDER AND TYPE OF A CERTAIN CLASS
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Abstract. We introduce the notions of Ritt order and type to functions defined by the
series

∞∑
n=1

fn
(
σ +iτ0

)
exp

(−sλn
)
, s = σ +iτ, (σ ,τ)∈ R×R (∗)

indexed by τ0 on R, where
(
λn
)∞
1 is a D-sequence and (fn)∞1 is a sequence of entire

functions of bounded index with at most a finite number of zeros. By definition, the series
are BE -Dirichletian elements. The notions of order and type of functions, defined by B-
Dirichletian elements, are considered in [3, 4]. In this paper, using a technique similar to
that used by M. Blambert and M. Berland [6], we prove the same properties of Ritt order
and type for these functions.

Keywords and phrases. Ritt order and type, entire functions of bounded index, BE -
Dirichletian elements, Dirichletian elements.
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1. Preliminary lemmas

Definition 1.1 (B. Lepson [10]). An entire function f is said to be of bounded
index if there exists a nonnegative integer ν such that

max

{∣∣f (k)(s)
∣∣

k!

∣∣∣∣k∈ {0,1, . . . ,ν}
}
≥
∣∣f (j)(s)

∣∣
j!

,
(
f (0)(s)= f(s)

)
(1.1)

for all j and for all s. The least such integer ν is called the index of f .

Theorem A (F. Gross [8]). An entire function with at most a finite number of zeros
is of bounded index if and only if it is of the form P(s)exp(αs), where P(s) is polynomial
and α is a complex constant.

Theorem B (S. M. Shah [16]). Let f(s)=P(s)exp(αs), whereα is any complex num-
ber and P(s) is a polynomial of degree less than n. Then f is of bounded index and the
index ν ≤ p, where p is any integer such that p ≥n−1 and

n|α|
p+1

+
(
n(n−1)

2!
|α|2

)
1

p(p+1)
+···+ |α|n

(p−n+2)···(p+1)
≤ 1. (1.2)

Let
(
λn
)∞

1 be a D-sequence (that is a positive strictly increasing unbounded se-
quence) and (fn)∞1 be a sequence of entire functions fn of bounded index νn with
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at most a finite number of zeros from Theorem A. As a result of the two theorems,
we have ∀s ∈ C, ∀n∈N\{0}

fn(s)= Pn(s)exp
(
αns

)
, (1.3)

where Pn(s) is a polynomial of degree mn and αn is a complex constant, that is,

s � �→ Pn(s)=
mn∑
j=0

an,j sj with an,mn �= 0 and s ∈ C. (1.4)

Let us suppose that ∃k∈]0,λ1[, ∀n∈N\{0}

αn ∈ d(0,k), (1.5)

where d(0,k) is the closed disc centered at 0 and of radius k.
Consider the space of elements

{
fτ0

}
:
∞∑

n=1

fn
(
σ +iτ0

)
exp

(−sλn
)
, s = σ +iτ, (σ ,τ)∈ R×R (1.6)

indexed by τ0 on R. By definition, {fτ0} is the BE -Dirichletian element. Let

β= limsup
n �→∞

{
mn

λn

}
, (1.7)

An =max
{∣∣anj

∣∣ | j ∈ {0,1, . . . ,mn
}} ∀n∈N\{0}. (1.8)

Consider the associated Dirichletian element

{
fA
}

:
∞∑

n=1

An exp
(−sλn

)
, (1.9)

whose coefficients are strictly positive and denote, byσfA
c , the abscissa of convergence

of {fA}.
Let us state three lemmas due to M. Blambert and M. Berland [6] which we use later.

These demonstrations are obvious because this sequence (αn)∞1 is bounded.

Lemma 1.1. If σfA
c = −∞, β < ∞, ∀n ∈ N\{0}, αn ∈ d(0,k), then

{
fτ0

}
converges

absolutely on C for any arbitrary τ0 in R.

Lemma 1.2. IfσfA
c =−∞,β <∞,∀n∈N\{0},αn ∈ d(0,k), we have∀τ0 ∈ R,∀τ ∈ R

lim
σ→∞fτ0(σ +iτ)= 0. (1.10)

Lemma 1.3. If σfA
c =−∞, ∀n∈N\{0}, αn ∈ d(0,k), we have ∀τ0 ∈ R,∀σ ∈ R

Pn
(
σ +iτ0

)
exp

[
αn
(
σ +iτ0

)−σλn
]

= lim
τ2→∞

{
1
τ2

∫ τ2

τ1

fτ0(σ +iτ)exp
(
iτλn

)
dτ
}
,

(1.11)

where τ1 is any arbitrary real number.
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2. Main theorems. Let us define the following quantities. For each σ on C,

M
(
σ ;fτ0

)= sup
{∣∣fτ0

(
σ ′ +iτ′

)∣∣ | σ ′ ≥ σ, τ′ ∈ R
}
, (2.1)

Mn′
(
σ ;fτ0

)= sup
{∣∣fτ0,n′

(
σ ′ +iτ′

)∣∣ | σ ′ ≥ σ, τ′ ∈ R
}
, (2.2)

µ
(
σ ;fτ0

)= sup
{∣∣fn(σ +iτ0

)∣∣exp
(−σλn

) |n∈N\{0}}, (2.3)

µn′
(
σ ;fτ0

)= sup
{∣∣fn(σ +iτ0

)∣∣exp
(−σλn

) |n≥n′
}
; (2.4)

where

fτ0,n′(s)=
∞∑

n=n′
fn
(
σ +iτ0

)
exp

(−sλn
)
. (2.5)

The quantities defined above are finite.

Remark. The function σ �M(σ ;fτ0) is decreasing onto R.

Theorem 2.1. If σfA
c =−∞, β <∞, ∀n∈N\{0}, αn ∈ d(0,k), we have

lim
σ→∞

{
M
(
σ ;fτ0

)}= 0 and lim
σ→−∞

{
M
(
σ ;fτ0

)}=∞. (2.6)

Proof. We have ∀ε ∈]0,1[, ∃n′( = n′ε
) ∈ N\{0}, ∀n ≥ n′, mn/λn < β+ ε and

∃n′′(= n′′ε )∈N\{0}, ∀n≥n′′, k/λn < ε, ∀σ > 0 such that

∞∑
n=n1(=max{n′,n′′})

∣∣fn(σ +iτ0
)∣∣exp

(−σλn
)

≤
∞∑

n=n1

An exp

{
−σλn

[
1−

((
β+ε

)
log

(
1+|σ |+|τ0|

)
σ

+ε
(

1+ |τ0|
σ

))]}
, (2.7)

∀ε′ ∈]0,1−ε[, ∃σ ′(= σε′
)
> 0, ∀σ >σ ′,

(
β+ε

)
log

(
1+|σ |+|τ0|

)+ε|τ0|
σ

< ε′ (2.8)

and

σ
[
1−

(
(β+ε) log

(
1+|σ |+|τ0|

)+ε|τ0|
σ

+ε
)]

>σ
[
(1−ε)−ε′

]
>σ ′[(1−ε)−ε′

]
(> 0). (2.9)

Therefore, ∃n1 ∈N\{0} such that

Mn1

(
σ ;fτ0

)
< fA,n1

(
σ ′[(1−ε)−ε′

])= ∞∑
n=n1

An exp
[−σ ′((1−ε)−ε′

)
λn
]
, (2.10)

where

lim
σ→∞

{
Mn1

(
σ ;fτ0

)}= 0. (2.11)
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On the other hand, we have, ∀n∈ {1,2, . . . ,n1−1}
lim
σ→∞

{
Pn(σ +iτ0)exp

[
αn(σ +iτ0)−σλn

]}= 0
(
with λ1 > k and αn ∈ d(0,k)

)
. (2.12)

We have

lim
σ→∞

{
M
(
σ ;fτ0

)}= 0. (2.13)

On the other hand, ∀σ < 0, if M(σ ;fτ0) is bounded onto R implies that (from Lemma
1.3)

∀n∈N\{0} :
{
j ∈ {0,1, . . . ,mn} �⇒ an,j = 0

}
. (2.14)

Or, thus, we get the contradiction that

an,mn �= 0 ∀n∈N\{0} (2.15)

and

lim
σ→−∞

{
M
(
σ ;fτ0

)}=∞. (2.16)

Thus, (2.13) and (2.16) prove the theorem.

Furthermore, let

ρ
fτ0
R = limsup

σ→−∞




log+
(

log+
(
M
(
σ ;fτ0

)))
−σ


 , (2.17)

λ
fτ0
R = liminf

σ→−∞




log+
(

log+
(
M
(
σ ;fτ0

)))
−σ


 . (2.18)

By definition, ρ
fτ0
R and λ

fτ0
R are the Ritt-order and the lower Ritt-order of function

fτ0 defined by BE -Dirichletian element {fτ0}. Also, M(σ ;fA) is defined in a similar
manner with fA in the place of fτ0 . It is trivial that

ρfA
R = limsup

σ→−∞




log+
(

log+
(
fA(σ)

))
−σ


 , (2.19)

λfA
R = liminf

σ→−∞




log+
(

log+
(
fA(σ)

))
−σ


 . (2.20)

Theorem 2.2. IfσfA
c =−∞,β <∞,∀n∈N\{0},αn ∈ d(0,k), and L(= limsup

n→∞
{logn/

λn}) <∞, we have ∀τ0 ∈ R,

ρ
fτ0
R = ρfA

R and λ
fτ0
R = λfA

R . (2.21)

Proof. (1) We get the inequalities, ∀τ0 ∈ R,

ρfA
R ≤ ρ

fτ0
R and λfA

R ≤ λ
fτ0
R . (2.22)

τ0 is any arbitrary real number. Consider the closed interval I(s,λ) = {s′ ∈ C | |σ ′ −
σ | ≤ λ > 0,τ′ = τ0}, where σ ′ = Re(s′),τ′ = Im(s′), and s = σ +iτ0. Let ∀n∈N\{0},
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pn(s,λ)= sup
{∣∣Pn

(
s′
)∣∣ | s′ ∈ d(s,λ)

}
, (2.23)

p∗n(s,λ)= sup
{∣∣Pn

(
s′
)∣∣ | s′ ∈ I(s,λ)

}
. (2.24)

Using Lemma 1.3, we have ∀σ ′ ∈ [σ −λ,σ +λ],∀n∈N\{0},
∣∣Pn

(
σ ′ +iτ0

)∣∣exp
[(

Re
(
αn
)−λn

)
σ ′ − Im

(
αn
)
τ0
]≤M

(
σ −λ;fτ0

)
, (2.25)

and then (M. Blambert and M. Berland [6])

p∗n(s,λ)exp
[−(σ +λ)

(
λn−Re

(
αn
))− Im

(
αn
)
τ0
]≤M

(
σ −λ;fτ0

)
, (2.26)

6−mnpn(s,λ)≤ p∗n(s,λ), (2.27)

An
(
1+|s|)−mn ≤ pn(s,λ) ∀λ≥ 1, (M. Berland [1]). (2.28)

Therefore, we have ∀λ≥ 1, ∀σ ∈ R, ∀n∈N\{0}

An ≤M
(
σ −λ;fτ0

)
exp

{[
σ +λ+mn

λ′n
log

(
6
(
1+|σ |+|τ0|

))+ Im
(
αn
)

λ′n
τ0

]
λ′n
}
, (2.29)

where λ′n = λn−Re(αn).
We have ∀ε ∈]0,1[, ∃n1 ∈N\{0}, ∀n≥n1

An ≤M
(
σ −λ;fτ0

)
exp

{[
σ +λ+(β′ +ε

)
log

(
6
(
1+|σ |+|τ0|

))+ε
]
λ′n
}
, (2.30)

and ∀ε1 ∈]0,1[, ∃σ1
(= σε1

)
> 0, ∀σ <−σ1

λ+(β′ +ε
)
log

(
6
(
1+|σ |+|τ0|

))+ε
−σ < ε1, (2.31)

where β′ = limsup
n→∞

{mn/λ′n}(<∞) which implies that, ∀ε1 ∈]0,1[, ∀n≥n1, ∀σ <σ1

An ≤M
(
σ −λ;fτ0

)
exp

[
σ
(
1−ε1

)
λ′n
]
. (2.32)

Now, ∀n∈N\{0},Re(αn)≤ k (because αn ∈ d(0,k))

λ′n = λn

(
1− Re

(
αn
)

λn

)
≥ λn

(
1− k

λn

)
. (2.33)

We have, ∀ε2 ∈]0,1[, ∃n′ ∈N\{0}, ∀n≥n′,

k
λn

< ε2 and λ′n ≥ λn
(
1−ε2

)
( �⇒ β′ = β) (2.34)

which implies that, ∀λ≥ 1, ∀n≥max{n1,n′}(=n2), ∀σ <−σ1

An exp
[−σ

(
1−ε1

)(
1−ε2

)
λn
]≤M

(
σ −λ;fτ0

)
. (2.35)

Put, ∀n∈N\{0}

µn(1,2) =
(
1−ε1

)(
1−ε2

)
λn (> 0), (2.36)
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(µn(1,2) ) is a D-sequence. Consider the Dirichletian element

{
fA(1,2)

}
:
∞∑

n=1

An exp
(
−sµn(1,2)

)
(2.37)

indexed by the couple (1,2) and denote, by σ
fA(1,2)
c , the abscissa of convergence of

{fA(1,2)}. We have, σ
fA(1,2)
c =−∞ (since σfA

c =−∞), fA(1,2) is an entire function and, its
Ritt-order is

ρ
fA(1,2)
R = limsup

σ→−∞




log+
(
log+

(
fA(1,2) (σ)

))
−σ


 , (2.38)

and its lower Ritt-order is

λ
fA(1,2)
R = liminf

σ→−∞




log+
(
log+

(
fA(1,2) (σ)

))
−σ


 . (2.39)

Now, ∀σ ∈ R,

fA(1,2) (σ)= fA
(
σ
(
1−ε1

)(
1−ε2

))
(2.40)

and

ρ
fA(1,2)
R = (1−ε1

)(
1−ε2

)
ρfA
R , (2.41)

λ
fA(1,2)
R = (1−ε1

)(
1−ε2

)
λfA
R . (2.42)

Put (Q. S. Liu [11]) ∀σ ∈ R,

µn2

(
σ ;fA(1,2)

)
= sup

{
An exp

(
−σµn(1,2)

) ∣∣n≥n2

}
. (2.43)

We have ∀ε > 0,∀σ ∈ R

fA(1,2),n2
(σ)≤

∞∑
n=n2

(
An exp

[
−(σ −L−ε)µn(1,2)

])
exp

[
−(L+ε)µn(1,2)

]

≤ µn2

(
σ −L−ε;fA(1,2)

)
Kn2(ε)

(2.44)

with Kn2(ε)=
∑∞

n=n2
exp

[−(L+ε)µn(1,2)

]
.

Hence, ∀ε > 0, ∀σ ∈ R

fA(1,2),n2
(σ)≤ µn2

(
σ −L−ε;fA(1,2)

)
Kn2(ε). (2.45)

Then we have, ∀λ≥ 1, ∃n2 =max{n1,n′}, ∀n≥n2, ∀σ <−σ1

An exp
(
−σµn(1,2)

)
≤M

(
σ −λ;fτ0

)
. (2.46)

This implies that

µn2

(
σ ;fA(1,2)

)
≤M

(
σ −λ;fτ0

)
. (2.47)

From (2.45) and (2.47), we have

fA(1,2),n2
(σ +L+ε)≤M

(
σ −λ;fτ0

)
Kn2(ε), (2.48)

ρ
fA(1,2),n2
R ≤ ρ

fτ0
R

(
lim

σ→−∞

(
σ −λ

σ +L+ε

))
= ρ

fτ0
R . (2.49)
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Or

ρ
fA(1,2),n2
R = ρ

fA(1,2)
R (M. Blambert [5]). (2.50)

We have, ∀ε1 ∈]0,1[, ∀ε2 ∈]0,1[

ρ
fA(1,2)
R = (1−ε1

)(
1−ε2

)
ρfA
R ≤ ρ

fτ0
R , (2.51)

λ
fA(1,2)
R = (1−ε1

)(
1−ε2

)
λfA
R ≤ λ

fτ0
R . (2.52)

As ε1 and ε2 are arbitrary, we have

ρfA
R ≤ ρ

fτ0
R , and then λfA

R ≤ λ
fτ0
R . (2.53)

(2) We get the inequalities, ∀τ0 ∈ R,

ρ
fτ0
R ≤ ρfA

R and λ
fτ0
R ≤ λfA

R . (2.54)

From Theorem 2.1, we have ∀ε ∈]0,1[, ∀ε′ ∈]0,1−ε[, ∃σ ′ > 0, ∀σ <−σ ′

σ
[
1−

((
β+ε

) log(1+|σ |+|τ0|)
|σ | +ε

(
1+ |τ0|

|σ |
))

θσ

]

= σ
[
1+(β+ε

) log(1+|σ |+|τ0|)
|σ | +ε

(
1+ |τ0|

|σ |
)]

>σ
[
1+

((
β+2ε

)
ε′ +ε

)]
= σ

(
1+ε1

)
,

(2.55)

where ε1 =
(
β+2ε

)
ε′ +ε, θσ = 1 if σ > 0 and θσ =−1 if σ < 0.

Hence, ∀σ <−σ ′, ∃n1 ∈N\{0},
Mn1

(
σ ;fτ0

)≤ fA,n1

(
σ
(
1+ε1

))
, (2.56)

which implies that

ρ
fτ0 ,n1
R ≤ ρ

fA,n1
R

(
1+ε1

)= (1+ε1
)
ρfA
R , (2.57)

and where

ρ
fτ0 ,n1
R ≤ ρfA

R and λ
fτ0 ,n1
R ≤ λfA

R . (2.58)

Now, σ ∈ R,

M
(
σ ;fτ0

)≤M0
n1

(
σ ;fτ0

)+Mn1

(
σ ;fτ0

)
, (2.59)

where

M0
n1

(
σ ;fτ0

)= sup
{∣∣f 0

τ0,n1

(
σ ′ +iτ′

)∣∣ | σ ′ ≥ σ, τ′ ∈ R
}

(2.60)

and

{
f 0
τ0,n1

}
:
n1−1∑
n=1

fn
(
σ +iτ0

)
exp

(−sλn
)
. (2.61)

Then ∀τ0 ∈ R,

ρ
fτ0
R ≤max

{
ρ
fτ0 ,n1
R , ρ

f0
τ0 ,n1

R

}
= ρ

fτ0 ,n1
R (2.62)

since ρ
f0
τ0 ,n1

R = 0.



452 MARCEL BERLAND

Finally, we have

ρ
fτ0
R ≤ ρfA

R , (2.63)

and, similarly, we can show that

λ
fτ0
R ≤ λfA

R . (2.64)

Hence, (1) and (2) implies (2.21) which proves this theorem.

If ρ
fτ0
R > 0, we put

τ
fτ0
R = limsup

σ→−∞




log
(
M
(
σ ;fτ0

))
exp

(
−σρ

fτ0
R

)

 , (2.65)

ν
fτ0
R = liminf

σ→−∞




log
(
M
(
σ ;fτ0

))
exp

(
−σρ

fτ0
R

)

 . (2.66)

By definition, τ
fτ0
R and ν

fτ0
R are the Ritt-type and the lower Ritt-type of order of fτ0 .

It is trivial that if ρfA
R > 0,

τfA
R = limsup

σ→−∞


 log

(
fA(σ)

)
exp

(
−σρfA

R

)

 , (2.67)

νfA
R = liminf

σ→−∞


 log

(
fA(σ)

)
exp

(
−σρfA

R

)

 . (2.68)

Theorem 2.3. If σfA
c =−∞, β <∞, L(= limn→∞(logn/λn))= 0, ∀n∈N\{0}, αn ∈

d(0,k), ρ
fτ0
R > 0, we have ∀τ0 ∈ R,

τ
fτ0
R = τfA

R . (2.69)

Proof. (1) We have the inequality, ∀τ0 ∈ R,

τfA
R ≤ τ

fτ0
R , (2.70)

τ0 is any arbitrary real number. From Theorem 2.2, we have, ∀ε ∈]0,1[, ∃n1 ∈N\{0},
∀n≥n1, ∀σ ∈ R; ∀λ≥ 1,

An ≤M
(
σ −λ;fτ0

)
exp

{[
σ +λ+(β′ +ε

)
log

(
6
(
1+|σ |+|τ0|

))+ε
]
λ′n
}
, (2.71)

where

λ′n = λn−Re
(
αn
)

and β′ = limsup
n→∞

{
mn

λ′n

} (
β′ = β

)
<∞. (2.72)

Now, ∀σ < 0,

An ≤M
(
σ −λ;fτ0

)
exp

{[
σ −λ− σ

(
2λ+(β+ε

)
log

(
6
(
1+|σ |+|τ0|

))+ε
)

−σ

]
λ′n

}
.

(2.73)
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Also, we have ∀ε1 ∈]0,1[, ∃σ1
(= σε1

)
> 0, ∀σ <−σ1,

2λ(β+ε) log
(
6
(
1+|σ |+|τ0|

))+ε
−σ < ε1, (2.74)

An ≤M
(
σ −λ;fτ0

)
exp

{[
σ
(
1−ε1

)−λ
]
λ′n
}

≤M
(
σ −λ;fτ0

)
exp

[(
σ − λ

1−ε1

)
µn(1,2)

]
,

(2.75)

where ∀n≥n2 =max
{
n1,n

}
,

µn(1,2) =
(
1−ε1

)(
1−ε2

)
λn, λ′n ≥ λn

(
1−ε2

) (
ε2 ∈]0,1[

)
(2.76)

which implies that, ∀λ≥ 1,∀n≥n2, ∀σ <−σ1

An ≤M
(
σ −λ;fτ0

)
exp

[
σ
(

1− λ
1−ε1

)
µn(1,2)

]
. (2.77)

τ
fτ0
R is the Ritt-type of order of fτ0 , we have, ∀ε′ > 0, ∃σ ′(= σε′

)
> 0, ∀σ <−σ ′

log
(
M
(
σ −λ;fτ0

))≤ (τfτ0
R +ε′

)
exp

[
−(σ −λ)ρ

fτ0
R

]
. (2.78)

Hence, ∀n≥n2, ∀ε′ > 0,

logAn ≤
(
τ
fτ0
R +ε′

)
exp

[
−(σ −λ)ρ

fτ0
R

]
+
(
σ − λ

(1−ε1)

)
µn(1,2) . (2.79)

Let us consider fn, the function defined by

fn(σ)= a exp
[−(σ −λ)b

]+µn(1,2) (σ +c), (2.80)

and indexed by n>n2. Choosing

a= τ
fτ0
R +ε′ > 0, b = ρ

fτ0
R > 0, c = λ

ε1−1
, (2.81)

we get ∀n≥n2, ∀σ ∈ R\{σn},

fn(σ) > fn
(
σn
)

(2.82)

with

σn−λ= 1
b

log

(
ab

µn(1,2)

)
(2.83)

and

lim
n→∞σn =−∞ �⇒∃n3 ∈N\{0}, ∀n≥max

{
n2,n3

}
, (2.84)

σn <−max
{
σ1,σ ′}, (2.85)
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where

logAn ≤ fn
(
σn
)= µn(1,2)

b
+
(

ε1λ
1−ε1

+ 1
b

log
ab

µn(1,2)

)
µn(1,2)$%&

µn(1,2)

(
A

b/µn(1,2)
n

)
≤ eabexp

(
ε1λb
1−ε1

)
.

(2.86)

Or, if L(= limn→∞(logn/λn))= 0, we have

τ
fA(1,2)
R eρ

fA(1,2)
R = limsup

n→∞


µn(1,2)


Aρ

fA(1,2)
R /µn(1,2)

n




 , (2.87)

(M. Berland [3], following the theorem of Lindelöf-Blambert-Yu) and

ρ
fτ0
R = ρfA

R = 1(
1−ε1

)(
1−ε2

) ρfA(1,2)
R , (Theorem 2.2), (2.88)

τfA
R = τ

fA(1,2)
R , (2.89)

from which

(
1−ε1

)(
1−ε2

)
λn

(
A

ρ
fA
R /[(1−ε1)(1−ε2)λn]

n

)
≤ e

(
τ
fτ0
R +ε′

)
ρfA
R exp


ε1λρ

fτ0
R

1−ε1


 (2.90)

and

A
ρ
fA
R /λn

n ≤A
ρ
fA
R /[(1−ε1)(1−ε2)λn]

n . (2.91)

Then, ∀ε1 ∈]0,1[, ∀ε2 ∈]0,1[, ∀ε′ > 0, ρfA
R > 0,

τfA
R ≤ τ

fτ0
R +ε′(

1−ε1
)(

1−ε2
) exp


ε1λρ

fτ0
R

1−ε1


 , (2.92)

as ε1, ε2, and ε′are arbitrary, we deduce immediately that

∀τ0 ∈ R : τfA
R ≤ τ

fτ0
R . (2.93)

(2) We get, when τ0 is a fixed real number, ∀ε > 0, ∃σε > 0, ∀σ <−σε,

∣∣fτ0(σ +iτ)
∣∣≤ ∣∣fA(σ(1+ε)

)∣∣. (2.94)

In particular, ∀ε′ > 0, ∃σε′ > 0, ∀ε ∈ ]0,ε′/σε′[, ∃σε > 0, ∀σ <−max{σε,σε′ }

fA
(
σ(1+ε)

)≤ fA
(
σ −ε′

)
, (M. Berland [3]) (2.95)

and, hence, ∀ε′ > 0,

∀σ <−max{σε,σε′ } : M
(
σ ;fτ0

)
≤ fA

(
σ −ε′

)
. (2.96)
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From ρ
fτ0
R = ρfA

R > 0, we get the inequality, ∀ε′ > 0,

τ
fτ0
R ≤ τfA

R exp
(
ε′ρfA

R

)
. (2.97)

As ε′ is arbitrary, we have

∀τ0 ∈ R : τ
fτ0
R ≤ τfA

R . (2.98)

As a result of this theorem, we have an expression for τ
fτ0
R in terms of λn and An.

If σfA
c =−∞, β <∞, ∀n∈N\{0}, αn ∈ d(0,k), ∀τ0 ∈ R,

L
(
= lim

n→∞

(
logn
λn

))
= 0, ρ

fτ0
R > 0, (2.99)

we have

τ
fτ0
R eρ

fτ0
R = limsup

n→∞

{
λn

(
A

ρ
fτ0
R /λn

n

)}
. (2.100)

Remark. The notions of Ritt-type of order of functions, defined by B−Dirichletian
elements, are considered in [3] with the same result of this theorem.

Theorem 2.4. If σfA
c = −∞, β <∞, ∀n ∈ N\{0}, αn ∈ d(0,k), L = 0, λn ∼ λn+1, ϕ

defined by

ϕ(n)= log
(
An/An+1

)
λn+1−λn

, (2.101)

is a nondecreasing function of n≥n1, and ρfA
R > 0, we have, ∀τ0 ∈ R,

ν
fτ0
R = νfA

R . (2.102)

Proof. (1) We have the inequality, ∀τ0 ∈ R,

νfA
R ≤ ν

fτ0
R . (2.103)

Suppose that the inequality is false. Then

∃τ0 ∈ R : ν
fτ0
R < νfA

R . (2.104)

Let ε ∈]0,νfA
R −ν

fτ0
R [, ε′ ∈]0,ε/νfA

B [ and ν = νfA−ε
R /(1−ε′); then ν

fτ0
R < ν < νfA

R . Under
the conditions stated in Theorem 2.4, R. K. Srivastava [17] proved that

νfA
R eρfA

R = liminf
n→∞

{
λn

(
A

ρ
fA
R /λn

n

)}
, (2.105)

which implies that ∃n′ ∈N\{0},∀n≥n′,

νeρfA
R < λn

(
A

ρ
fA
R /λn

n

)
. (2.106)
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Now, ∀ε1 ∈]0,1[, ∀ε2 ∈]0,1[, ∃σ1
(= σε1

)
> 0, ∀σ <−σ1, ∀n≥n2(=max{n1,n′}),

An ≤M
(
σ −λ;fτ0

)
exp

[(
σ − λ

1−ε1

)
µn(1,2)

]
, (2.107)

where λ is a constant lying in [1,∞[ and

µn(1,2) =
(
1−ε1

)(
1−ε2

)
λn (see Theorem 2.3), (2.108)

which gives

logAn−
(
σ − λ

1−ε1

)
µn(1,2) ≤ log

(
M
(
σ −λ;fτ0

))
, (2.109)

logAn+ λ
1−ε1

µn(1,2)−σµn(1,2) ≤ log
(
M
(
σ −λ;fτ0

))
. (2.110)

Let us consider ϕn, the function defined by

ϕn(σ)= αn−βnσ

exp
[−(σ −λ)ρfA

R
] , (2.111)

and indexed by n≥n2. Choose

αn = logAn+ λ
1−ε1

µn(1,2) , βn = µn(1,2) (> 0). (2.112)

This takes the maximum value at

σn = αn

βn
− 1

ρfA
R


= logAn

µn(1,2)

+ λ
1−ε1

− 1

ρfA
R


 , (2.113)

max
{
ϕn(σ) | σ ∈ R

}= µn(1,2)

ρfA
R e

(
Aρ

fA
R /µn(1,2)

)
exp

(
ε1λ

1−ε1
ρfA
R

)

≤ log
(
M
(
σn−λ;fτ0

))
exp

[
−(σn−λ

)
ρ
fτ0
R

] (for ρfA
R = ρ

fτ0
R ).

(2.114)

As ∀n∈N\{0},

µn(1,2) < λn⇐⇒Aρ
fA
R /µn(1,2) > A

ρ
fA
R /λn

n (2.115)

which gives

(
1−ε1

)(
1−ε2

)
ρfA
R e

exp
(

ε1λ
1−ε1

ρfA
R

)
λn

(
AρfA/λn

n

)
≤ logM

(
σn−λ;fτ0

)
exp

[(−σn−λ
)
ρ
fτ0
R

] . (2.116)

Finally, we have, ∀ε3 > 0, ∃(σn
)∞

1 , lim
n→∞σn =−∞,

logM
(
σn−λ;fτ0

)
exp

[(−σn−λ
)
ρ
fτ0
R

] ≤ ν
fτ0
R +ε3. (2.117)
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Hence, we get, ∀ε3 > 0, ∀ε1 ∈]0,1[, ∀ε2 ∈]0,1[,
((

1−ε1
)(

1−ε2
)
exp

(
ε1λ

1−ε1
ρfA
R

))
ν ≤ ν

fτ0
R +ε3. (2.118)

Choosing ε3 = ε1 = ε2 of ]0,1[, we get

ν ≤ ν
fτ0
R . (2.119)

Thus, we get the contradiction that

ν
fτ0
R < (ν ≤)νfτ0

R (2.120)

which proves, under the stated conditions, that it is impossible to find a τ0 of R such

that ν
fτ0
R < νfA

R .
(2) We have the inequality, ∀τ0 ∈ R,

ν
fτ0
R ≤ νfA

R (see Theorem 2.3, 2). (2.121)

As a result of this theorem, we have an expression for ν
fτ0
R in terms of λn and An,

∀τ0 ∈ R,

ν
fτ0
R eρ

fτ0
R = liminf

n→∞

{
λn

(
A

ρ
fτ0
R /λn

n

)}
. (2.122)
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