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Abstract. The Gergonne point of a triangle is the point at which the three cevians to the
points of tangency between the incircle and the sides of the triangle are concurrent. In this
paper, we follow Koneĉný [7] in generalizing the idea of the Gergonne point and find the
convex coordinates of the generalized Gergonne point. We relate these convex coordinates
to the convex coordinates of several other special points of the triangle. We also give an
example of relevant computations.
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1. Introduction. When cevians of particular significance in the general triangle (me-
dians, angle bisectors, etc.) are concurrent, their common point is often called a special
point of the triangle. Such points have always held interest for geometers. In the past,
we have discovered the convex coordinates [7, 6] of several special points at which ce-
vians from the three vertices are concurrent [3, 2]. We choose the terminology “convex
coordinates” rather than the more widely used “barycentric” or “trilinear coordinates”
because of their relevance to convex sets [9].
Now, let the circle C(I) be the incircle of �V1V2V3 as shown below. The cevians

from the vertices to the points of tangency on the opposite sides of the triangle are
concurrent at the point G which is known as the Gergonne point of the triangle [5, 8].
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Figure 1. Incircle C(I) with Gergonne point G in ∆V1V2V3.

The convex coordinates of a point P in the plane of �V1V2V3 and relative to this
triangle may be taken as weights which if placed at vertices V1, V2, V3, cause P to
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become the balance point for the plane. The plane is taken to be horizontal and oth-
erwise weightless. Also, we require that the sum of the weights have unit value. If P
belongs to the closed triangular region, then all the three weights are nonnegative.
We denote the weight placed at vertex Vi by αi. Then point P has convex coor-

dinates (α1,α2,α3) with respect to V1, V2, V3, in that order, and α1 +α2 +α3 = 1.
For example, the convex coordinates of the vertices V1, V2, V3, are (1,0,0), (0,1,0),
(0,0,1), respectively, and the convex coordinates of the centroid of �V1V2V3 are
(α1,α2,α3)= (1/3,1/3,1/3). All points in the exterior of�V1V2V3 must have at least
one negative coordinate.
Let us return to the Gergonne pointG and consider�V1V2V3 with its incircle C(I) as

redrawn in Figure 2. The point at which C(I) touches the side opposite to Vi is denoted
by Ai. The points of tangency divide the sides into segments of lengths x1,x2,x3 as
shown in the figure.
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Figure 2. ∆V1V2V3, Incircle C(I) and Gergonne point G.

It is not a difficult task to show that the convex coordinates of G have the values

α1 = x2x3w
, α2 = x1x3w

, α3 = x1x2w
, (1)

where w = x1x2+x2x3+x1x3. [1]
The lengths of the sides and measures of the angles of�V1V2V3 are more immedi-

ately accessible numbers than are x1,x2, and x3. So, let �i denote the length of the side
opposite to vertex Vi and θi denote the measure of the angle at Vi. Figure 3 depicts
the triangle again and establishes the notation for the work to follow.
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Figure 3. ∆V1V2V3 with sides and angles labeled.

The lengths of the sides and the values x1,x2, and x3 are related by the equations
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�1 = x2+x3, �2 = x1+x3, �3 = x1+x2. (2)

Thus, x1 = (�2+�3−�1)/2, x2 = (�1+�3−�2)/2, and x3 = (�1+�2−�3)/2. Substitution
of these results into the expressions (1) for the convex coordinates of the Gergonne
point would not improve their already pleasing appearance.
We have found that convex coordinates provide a straightforward method for inves-

tigating special points of triangles.Thus, we read with interest a problem proposed by
V. Koneĉný [7] which concerns a generalization of the Gergonne point. In our paper,
we find the convex coordinates of Koneĉný’s generalized Gergonne point and, in the
process, provide an independent proof that the relevant cevians are concurrent.

2. A generalization of the Gergonne point. Let I be the incenter of�V1V2V3 and let
D(I) be a circle concentric with incircle C(I) as shown in Figure 4. Suppose that lines
are drawn through I perpendicular to the sides of the triangle. These lines intersect
the sides of �V1V2V3 at A1,A2,A3, the points of tangency between the triangle and
the incircle and they intersect circle D(I) at points B1,B2, and B3.
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Figure 4. ∆V1V2V3 and circle D(I).

Koneĉný’s problem is to show that the cevians V1B1,V2B2,V3B3 are concurrent. The
point H at which the cevians are concurrent is a generalized Gergonne point. We
compute the convex coordinates forH and the computational path to our result makes
it obvious that the cevians are concurrent.
We begin by noting that there exists �W1W2W3 for which D(I) is the incircle and

for which H is the Gergonne point. This triangle is similar to �V1V2V3; its sides are
parallel to the corresponding sides of�V1V2V3; and the two triangles are “concentric”.
If the radius of C(I) is r > 0, then the radius of D(I) is r + t, where −r < t. The
corresponding sides of the two triangles are a perpendicular distance of |t| units
apart and the similarity ratio for lengths in the two triangles is (length in�W1W2W3):
(length in�V1V2V3)= (r+t) : r . The geometry of the two triangles and their incircles
is shown in Figure 5.
Points B1,B2,B3 divide the sides of �W1W2W3 into segments of lengths y1,y2,y3

just as A1,A2,A3 divide the sides of�V1V2V3 into segments of lengths x1, x2, x3. An
additional crucial observation is thatWi, Vi, I are collinear for i= 1,2,3 since rays ��������������������������������������������→WiI
and

��������������������������������→ViI bisect the congruent vertex angles at Wi and Vi.



426 J. N. BOYD AND P. N. RAYCHOWDHURY

W3

W1 W2B3 y2y1

y1

y3

B2

y3

y2

B1
V3

V1 V2

R1

R2

R3 t

I

r

A3

A2

H
A1

Figure 5. The geometry of ∆V1V2V3 and W1W2W3.

Let Ri be the point at which ViBi intersects the side of �V1V2V3 opposite to vertex
Vi. We must compute the lengths of V1R3,V2R3,V2R1,V3R1,V3R2, and V1R2. These
segments serve as lever arms when weights α1,α2,α3 are placed at V1,V2,V3 and the
cevians V1R1,V2R2,V3R3 are taken to define balance lines. We show the calculations
for the length of V1R3 in some detail and then simply state the other five lengths.
We extend V1V3 to intersectW1W2 at point P andwe draw angle bisectorW1I through

V1 as shown in Figure 6.
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Figure 6. The geometry for computing V1R3.

Since triangles W1W2W3 and V1V2V3 are similar with similarity ratio (r + t) : r , it
should be clear that

y1 =
(
r +t
r

)
V1A3 =

(
r +t
r

)
x1, (3)
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where the meaning of xi for i= 1,2,3 is given in Figure 2. The length of PB3 is given by

PB3 =y1−t
(
cot

θ1
2
−cotθ1

)
, (4)

and the length of PV1 by PV1 = t
(
cot(θ1/2)−cotθ1

)
.

Before proceeding, let us simplify our notation by letting

m1 =
(
cot

θ1
2
−cotθ1

)
. (5)

Then PB3 =y1−tm1 and PV1 = tm1.
Triangles PV3B3 and V1V3R3 are also similar. Therefore,

V1R3 = (x1+x3)PB3
x1+x3+tm1

, (6)

where x1+x3 = V1V3 = �2.
Appropriate substitutions yield

V1R3 = (x1+x3)
[(
(r +t)/r)x1−tm1

]
x1+x3+tm1

, (7)

so that all values except t depend only upon the geometry of �V1V2V3.
Lettingmi = cot(θi/2)−cotθi for i= 1,2,3, we give the results of the other compu-

tations for lever arms

V2R3 = (x2+x3)
[(
(r +t)/r)x2−tm2

]
x2+x3+tm2

,

V2R1 = (x1+x2)
[(
(r +t)/r)x2−tm2

]
x1+x2+tm2

,

V3R1 = (x1+x3)
[(
(r +t)/r)x3−tm3

]
x1+x3+tm3

,

V3R2 = (x2+x3)
[(
(r +t)/r)x3−tm3

]
x2+x3+tm3

,

V1R2 = (x1+x2)
[(
(r +t)/r)x1−tm1

]
x1+x2+tm1

.

(8)

At first glance, these expressions seem quite complicated but an examination of
the subscripts should reveal their symmetry. The appearance of such symmetry gives
confidence in the computations thus far. However, for the next calculations, a few
changes in form are helpful. We make the substitutions suggested by equations (1)
and (9). The result, denoted by (9), follows from the triangles shown in Figure 7.
We have extendedV3V2 to B onW1W2 and drawnAV2 parallel toV1V3. Thus,�V1V2V3

∼�ABV2. The length of V2A is tm1 and the length of V2B is tm2. From the similar
triangles, we have t�2m2 = t�1m1. Taking the smaller triangle at a different vertex of
�V1V2V3 yields

t�1m1 = t�2m2 = t�3m3 = k. (9)
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Figure 7. Similar triangles V1V2V3 and ABV2.

Equations (7) and (8) become

V1R3 = �2
[
�1
(
(r +t)/r)x1−k]
�1�2+k ,

V2R3 = �1
[
�2
(
(r +t)/r)x2−k]
�1�2+k ,

V2R1 = �3
[
�2
(
(r +t)/r)x2−k]
�2�3+k ,

V3R1 = �2
[
�3
(
(r +t)/r)x3−k]
�2�3+k ,

V3R2 = �1
[
�3
(
(r +t)/r)x3−k]
�1�3+k ,

V1R2 = �3
[
�1
(
(r +t)/r)x1−k]
�1�3+k .

(10)

It becomes clear at this stage that V1R1,V2R2, and V3R3 must be concurrent. That
conclusion follows from Ceva’s theorem since

V1R3
V2R3

· V2R1
V3R1

· V3R2
V1R2

= 1. (11)

To find the convex coordinates ofH, the generalized Gergonne point at which the ce-
vians are concurrent, we place weights α′1,α

′
2,α

′
3 at V1,V2,V3 respectively and require

that the cevians V3R3 and V1R1 define balance lines. This means that

(V1R3)α′1 = (V2R3)α′2 (12)

and

(V2R1)α′2 = (V3R1)α′3. (13)

The weights are denoted by α′i since we will not normalize coordinates until we have
convinced ourselves that we have a triple of weights with point H as balance point.
Then we write αi =α′i/(α′1+α′2+α′3).
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A bit of algebra suggests that

α′1 = (V2R3)(V3R1)=
�1
[
�2
(
(r +t)/r)x2−k]
�1�2+k · �2

[
�3
(
(r +t)/r)x3−k]
�2�3+k ,

α′2 = (V1R3)(V3R1)=
�2
[
�1
(
(r +t)/r)x1−k]
�1�2+k · �2

[
�3
(
(r +t)/r)x3−k]
�2�3+k ,

α′3 = (V2R1)(V1R3)=
�3
[
�2
(
(r +t)/r)x2−k]
�2�3+k · �2

[
�1
(
(r +t)/r)x1−k]
�1�2+k .

(14)

The reader may satisfy himself that α′1,α
′
2,α

′
3 do indeed satisfy equations (12) and

(13). The two cevians define balance lines and their point of intersection must be the
balance point. The third cevian defines a balance line if and only if

(V3R2)α′3 = (V1R2)α′1. (15)

Substitution of the values for α′1,α
′
2,α

′
3 into equation (15) yields (V3R2)(V2R1)×

(V1R3)= (V1R2)(V2R3)(V3R1) which holds true if and only if
V1R3
V2R3

· V2R1
V3R1

· V3R2
V1R2

= 1. (16)

This last equation is valid by Ceva’s theorem. Thus, the convex coordinates of the
generalized Gergonne point H are given by

α1 = α′1
α′1+α′2+α′3

, α2 = α′2
α′1+α′2+α′3

, α3 = α′3
α′1+α′2+α′3

, (17)

where the definitions of α′1,α
′
2,α

′
3 are given by equation (14).

3. Three checks and an example

Check 1. if �V1V2V3 is equilateral, then x1 = x2 = x3 and �1 = �2 = �3 which
implies that α1 = α2 = α3 = 1/3 as desired since the symmetry of the triangle forces
H to coincide with the centroid.

Check 2. If t = 0, H becomes the Gergonne point. Letting t = 0 means that k =
0. Then equations (7), (8), and (14) imply that α1,α2,α3 have the values given by
equations (1).

Check 3. If t→−r . Then H approaches the incenter I of ∆V1V2V3 and the convex
coordinates (α1,α2,α3) approach the convex coordinates of the incenter,

(
�1

�1+�2+�3 ,
�2

�1+�2+�3 ,
�3

�1+�2+�3
)
·[4] (18)

Example. Let �V1V2V3 be the 3-4-5 right triangle shown in Figure 8. Observation
and a bit of computation yield that �1 = 5, �2 = 3, �3 = 4, r = radius of incircle C(I)=
1, x1 = 1, x2 = 3, x3 = 2, θ1 = 90◦, cotθ1 = 0, cot(θ1/2)= 1.
Let the radius ofD(I) be 2, which implies that t = 1. Then k= t�1m1=t�1

(
cot(θ1/2)

−cotθ1
)= 5.
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Figure 8. The 3-4-5 right triangle located in the Cartesian Plane.

From equations (14) and (15), we obtain the convex coordinates of point H to be
α1 = 143/228, α2 = 33/228, α3 = 52/228. Then the Cartesian coordinates of H are

(x,y)=
(
0·α1+4·α2+0·α3,0·α1+0·α2+3·α3

)

=
(
4· 33
228

,3· 52
228

)
=
(
11
9
,
13
19

)
.

(19)

These Cartesian coordinates can also be found by analytic geometry as a further
check upon the accuracy of our computations.
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