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Abstract. Let X be an arbitrary nonempty set and � a lattice of subsets of X such that
φ, X∈�. �(�) is the algebra generated by � and �(�) denotes those nonnegative, finite,
finitely additive measures µ on �(�). I(�) denotes the subset of �(�) of nontrivial zero-
one valued measures. Associated with µ ∈ I(�) (or Iσ (�)) are the outer measures µ′ and
µ′′ considered in detail. In addition, measurability conditions and regularity conditions are
investigated and specific characteristics are given for �µ′′ , the set of µ′′-measurable sets.
Notions of strongly σ -smooth and vaguely regular measures are also discussed. Relation-
ships between regularity, σ -smoothness and measurability are investigated for zero-one
valued measures and certain results are extended to the case of a pair of lattices �1,�2

where �1 ⊂�2.
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1. Introduction. Let X be an arbitrary nonempty set and � a lattice of subsets of X
such that φ,X∈�. �(�) is the algebra generated by � and �(�) denotes those non-
negative, finite, finitely additive measures on �(�). Associated with a µ ∈�(�), there
is a finitely subadditive outer measure µ′(see below for definitions) whose properties,
especially pertaining to measurability have been investigated (see [9, 8]).
For a measure µ ∈ �σ (�), the elements of �(�) which are σ -smooth on �, we

associate an outer measure µ′′. If µ is also �-regular, then µ′′ coincides with the usual
induced outer measure µ∗. The more general case is investigated here. The results
so obtained extend the results of [4] obtained only for zero-one valued measures.
In particular, we investigate �µ′′ the µ′′-measurable sets. Restrictions on µ yield still
stronger results, for example, if we assume that µ is strongly σ -smooth on � or if µ
is vaguely regular.
It is well known (see [6]) that, for a µ ∈�(�), there exists an �-regular measure ν

such that µ ≤ ν(�) (i.e., µ(L) ≤ ν(�) for all L ∈ �) and µ(X) = ν(X). If µ ∈ �σ (�),
we would like ν to be not only regular but also σ -smooth on � and, hence, countably
additive. This will always be the case under certain strong lattice demands (such as
normal and countably paracompact, see [5]). Here, we investigate conditions in terms
of µ′′ for such results to hold.
We finally extend a number of these results to the case of a pair of lattices �1 and �2,

where �1 ⊂�2. We begin with a brief review of some lattice definitions and notations
which are used throughout. We adhere to standard notation. See, for example, [1, 3,
2, 5, 8, 10].
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2. Background and notations. We begin with some standard background material
for the reader’s convenience. Let X be an abstract set and � a lattice of subsets of X.
It is assumed that φ,X ∈ �. �(�) denotes the algebra generated by � and σ(�) the
σ -algebra generated by �. The lattice � is called normal if, for any L1,L2 ∈ � with
L1∩L2 = φ, there exist L3,L4 ∈ � with L1 ⊂ L′3,L2 ⊂ L′4 and L′3∩L′4 = φ (where prime
denotes complement).
We give now some measure terminology. �(�) denotes the set of finite valued,

nonnegative finitely additive measures on �(�). A measure µ ∈�(�) is called
σ -smooth on � if, for all sequences {Ln} of sets of � with Ln ↓φ, µ(Ln)→ 0.
σ -smooth on �(�) if, for all sequences {An} of sets of �(�)withAn ↓φ, µ(An)→ 0,

i.e., countably additive.
�-regular if, for any A∈�(�),

µ(A)= sup
{
µ(L) | L⊂A,L∈�

}
. (2.1)

We denote by �R(�) the set of �-regular measures of �(�); �σ (�) the set of σ -
smooth measures on �, of �(�); �σ (�) the set of σ -smooth measures on �(�)
of �(�); �σ

R (�) the set of �-regular measures of �σ (�). In addition, I(�), IR(�),
Iσ (�), Iσ (�), and IσR (�) are the subsets of the corresponding �’s which consist of
the nontrivial zero-one valued measures.

3. Finitely subadditive and cover regular outer measures. In this section, we de-
fine finitely subadditive outer measures (f.s.a.) and (cover) regular outer measures in
contrast to an ordinary outermeasure which is countably subadditive. Associated with
µ ∈�(�) and µ ∈�σ (�) are the outer measures µ′ and µ′′ which were investigated
in [9]. We first review some of the basic properties of these outer measures and then
develop new results.

Definition 3.1. A nonnegative µ defined on �(X) is a f.s.a. outer measure if
(a) µ is nondecreasing.
(b) µ

(⋃n
i=1EI

)≤∑n
i=1µ(Ei) for any E1,E2, . . . ,En ⊂ X.

(c) µ(φ)= 0.

Definition 3.2. Let ν be a f.s.a. outer measure. We say that a set E is measurable
with respect to ν if, for any A⊂ X,

ν(A)= ν(A∩E)+ν(A∩E′). (3.1)

Let �ν be the set of ν-measurable sets, with ν a f.s.a. outer measure. ν is called (cover)
regular if, for any S ⊂ X, there exists E ∈ �ν such that S ⊂ E and ν(S) = ν(E). It is
easy to prove that if ν is a f.s.a. outer (cover) regular measure and ν(X) is finite, then
E ∈�ν if and only if ν(X)= ν(E)+ν(E′).

Definition 3.3. Let µ ∈�(�) and define

µ′(E)= inf
n∑
i=1
µ
(
L′i
)
, E ⊂

n⋃
i=1
L′i, Li ∈�, E ⊂ X. (3.2)
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The definition is equivalent to

µ′(E)= infµ(L′), E ⊂ L′, L∈�. (3.3)

Clearly, µ′ is a f.s.a. outer measure and E ∈�µ′′ if and only if

µ′(A′)≥ µ′(A′ ∩E)+µ′(A′ ∩E′) for all A∈� (see [9]). (3.4)

Definition 3.4. Let µ ∈�σ (�) and define

µ′′(E)= inf
∞∑
i=1
µ
(
L′i
)
, E ⊂

∞⋃
i=1
L′i, Li ∈�, E ⊂ X. (3.5)

Clearly, µ′′ is a countably subadditive outer measure and E ∈�µ′′ if and only if

µ′′(A′)≥ µ′′(A′ ∩E)+µ′′(A′ ∩E′) for all A∈� (see [9]). (3.6)

Clearly, for µ ∈ I(�) (or Iσ (�)), µ′ and µ′′ are regular outer measures. In addition, if
µ ∈ I(�), then

�µ′ =
{
E ⊂ X | E ⊃ L, L∈�, µ(L)= 1 or E′ ⊃ L, L∈�, µ(L)= 1

}
. (3.7)

Also, if µ ∈ Iσ (�), then

�µ′′ =
{
E ⊂ X | E ⊃

∞⋂
n=1

Ln,Ln ∈�, µ(Ln)= 1 or E′ ⊃
∞⋂
n=1

Ln,Ln ∈�, µ(Ln)= 1
}
. (3.8)

Furthermore, if µ ∈ Iσ (�) , then
(a) µ ≤ µ′′ ≤ µ′(�),
(b) µ′′ ≤ µ′ = µ(�′), and
(c) If µ ∈ IσR (�), then µ = µ′′ = µ′(�) and µ′′ = µ′ = µ(�′).

These results extend readily to the general case of µ ∈�σ (�).

Theorem 3.1. Let µ ∈�σ (�). Then
(a) µ′′(X)= µ(X),
(b) µ ≤ µ′′(�).
Proof. (a) Suppose that µ′′(X)≤ µ(X). Then there exists Li ∈� such that

X⊂
∞⋃
i=1
L′i and

∞∑
i=1
µ
(
L′i
)
< µ(X). (3.9)

Hence,

µ(X) >
∞∑
i=1
µ
(
L′i
)= lim

n→∞

n∑
i=1
µ
(
L′i
)≥ lim

n→∞µ
( n⋃
i=1
L′i

)
(3.10)

with
⋃n
i=1L

′
i ∈�′ and

⋃n
i=1L

′
i ↑
⋃∞
i=1L

′
i = X. Since µ ∈�σ (�), limn→∞µ

(⋃n
i=1L

′
i
)= µ(X),

a contradiction.
(b)

µ′′(L)≥ µ′′(X)−µ′′(L′)= µ(X)−µ′′(L′)
≥ µ(X)−µ′(L′)= µ(X)−µ(L′)= µ(L), (3.11)

since µ′ = µ(�′).
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Definition 3.5. Let µ ∈�(�) and define

µi(E)= sup
{
µ(L), L⊂ E, L∈�, E ⊂ X

}
. (3.12)

The following statements are easy to prove and they can be found in [9].
(a) µ(X)= µi(L)+µ′(L′),L∈�.
(b) µ(X)= µi(L′)+µ′(L),L∈�.
(c) E ∈�µ′ if and only if µi(E)= µ′(E), E ⊂ X.
(d) If � is normal, then µi is finitely additive on �′.

Definition 3.6. Let µ ∈�σ (�) and define, for E ⊂ X,

µj(E)= µ(X)−µ′′(E′). (3.13)

Theorem 3.2. Let µ ∈�σ (�). Then
(a) µi ≤ µj ≤ µ′′ ≤ µ′,
(b) If, in addition, µ′′ is a (cover) regular outer measure, then

E ∈�µ′′ if and only if µj(E)= µ′′(E). (3.14)

Proof. (a) Clearly, the relation µ′′ ≤ µ′ always holds. Now, consider
µ(X)−µi(E)= µ(X)−sup

{
µ(L),L⊂ E,L∈�

}
= inf

{
µ(X)−µ(L),E′ ⊂ L′,L∈�

}
= inf

{
µ(L′),E′ ⊂ L′,L∈�

}
= µ′(E′).

(3.15)

Hence,

µi(E)= µ(X)−µ′(E′) (3.16)

and since µj(E)= µ(X)−µ′′(E′), it follows that µi ≤ µj . Finally,
µj(E)= µ′′(X)−µ′′(E′)≤ µ′′(E) (3.17)

since µ′′ is an outer measure.
(b) Since µ′′ is a regular outermeasure, E ∈�µ′′ if and only if µ′′(X)= µ′′(E)+µ′′(E′).

Suppose that E ∈�µ′′ . Since

µ ∈�σ (�), µ(X)= µ′′(X)= µ′′(E)+µ′′(E′), (3.18)

hence, µj(E)= µ′′(E).
Conversely, assume that µj(E)= µ′′(E). We have

µ(X)= µj(E)+µ′′(E′)= µ′′(E)+µ′′(E′), (3.19)

hence, µ′′(X)= µ′′(E)+µ′′(E′).
Definition 3.7. Let µ ∈�σ (�). We say that µ satisfies

Condition (3.1). If µ′′(L′)= sup{µ(L̃), L̃⊂ L′, L̃∈�, L∈�}.
In particular, if µ ∈ Iσ (�), we say that µ satisfies
Condition (3.2). If µ′′(L′) = 1, L ∈ � implies that there exists L̃ ∈ �, L̃ ⊂ L′, and

µ(L̃)= 1.



REMARKS ON µ′′-MEASURABLE SETS . . . 395

Theorem 3.3. Let µ ∈�σ (�) and suppose that µ′′ is a (cover) regular outer mea-
sure and that µ satisfies condition (3.1). Then
(a) �⊂�µ′′ ,
(b) µ ≤ µ′′(�), where µ′′|�(�) ∈�σ

R(�).

Proof. (a) By Theorem 3.2(a), we have µi ≤ µj ≤ µ′′ ≤ µ′. But since µ satisfies
condition (3.1), it follows that µi(L′) = µ′′(L′),L ∈ �. Therefore, µi = µj = µ′′ on �′.
Hence, by Theorem 3.2(b), �′ ⊂�µ′′ which implies that �⊂�µ′′ .
(b) By Theorem 3.1, µ ≤ µ′′(�); �⊂�µ′′ implies that �(�)⊂�µ′′ , since �µ′′ is an

algebra; µ′′ a measure on �µ′′ implies that µ′′|�(�) is a measure on �(�). We have

µ′′(L′)= sup
{
µ(L̃), L̃⊂ L′, L̃∈�,L∈�

}
. (3.20)

Therefore, for given ε > 0, there exists L̃⊂ L′ such that

µ′′(L′) < µ(L̃)+ε ≤ µ′′(L̃)+ε, (3.21)

hence, µ′′ is �-regular. Finally, µ′′ ∈�σ (�), �R(�) implies that µ′′ ∈�σ
R (�).

As a special case, we obtain the following result (see [4]).

Corollary 3.1. Let µ ∈ Iσ (�) and suppose that µ satisfies condition (3.2). Then
�⊂�µ′′ and µ ≤ µ′′(�), where µ′′|�(�) ∈ IσR (�).
We next consider a pair of lattices of subsets of X, �1 and �2, where �1 ⊂ �2, and

investigate some of the above results.

Definition 3.8. Let �1 ⊂ �2 be lattices of subsets of X and let µ ∈ �σ (�1). We
say that µ satisfies

Condition (3.3). If µ′′(B′)= sup{µ(A),A⊂ B′,A∈�1,B ∈�2}.
In particular, if µ ∈ Iσ (�1), we say that µ satisfies
Condition (3.4). If µ′′(B′) = 1 for some B ∈ �2 implies that there exists A ∈ �1,

A⊂ B′, and µ(A)= 1.

Theorem 3.4. Let �1 ⊂�2 be lattices of subsets of X and let µ ∈�σ (�1). Suppose
that µ′′ is a (cover) regular outer measure and µ satisfies condition (3.3). Then
(a) �2 ⊂�µ′′ ,
(b) µ ≤ µ′′|�(�1) ∈�σ

R (�1) on �1, and
(c) µ′|�(�2) ∈�σ

R (�2).

Proof. (a) Let B ∈�2. We have

µi(B′)= sup
{
µ(A),A⊂ B′,A∈�1,B ∈�2

}= µ′′(B′). (3.22)

Combining with Theorem 3.2(b), µi = µj = µ′′(�′
2). µ′′ regular implies that �′

2 ⊂ �µ′′ ,
hence, �2 ⊂�µ′′ .
(b) and (c) Now, µ ∈�σ (�1). Therefore, µ ≤ µ′′(�1). Since �1 ⊂�2 ⊂�µ′′ , it follows

that�(�1),�(�2)⊂�µ′′ which is aσ -algebra. Also, µ′′ being ameasure on�µ′′ implies
that µ′′|�(�1), is a measure on �(�1) and µ′′|�(�2) is a measure on �(�2). Since µ
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satisfies condition (3.3), for given ε > 0, there exists A⊂ B′ such that

µ′′(B′) < µ(A)+ε ≤ µ′′(A)+ε, (3.23)

hence, µ′′ is �1-regular and �2-regular. As in Theorem 3.3, it follows that µ′′|�(�1) ∈
�σ

R (�1) and µ′|�(�2) ∈�σ
R (�2).

Corollary 3.2. Let �1 ⊂�2 be lattices of subsets of X and let µ ∈ Iσ (�1). If µ
satisfies condition (3.4), then �2 ⊂�µ′′ , µ ≤ µ′′|�(�1) ∈ IσR (�1) on �1 and µ′′|�(�2) ∈
IσR (�2).

4. Strongly σ -smooth measures. To continue investigating �µ′′ , we consider first
the notion of a strongly σ -smooth measure and give some new results and extensions
of some of the preceding theorems. Then we consider vaguely regular measures and
their relationship with strongly σ -smooth measures.

Definition 4.1. A measure µ ∈�(�) is strongly σ -smooth on � or µ ∈�(σ ,�) if
and only if for any sequence {Ln ∈�}Ln ↓ L where L∈�, then

µ(L)= inf
n
µ(Ln)= lim

n
µ(Ln). (4.1)

Correspondingly, for µ ∈ I(�), we have I(σ ,�) the set of strongly σ -smooth zero-one
valued measures on �.

Theorem 4.1. (a) If µ ∈�(σ ,�), then µ′′ = µ(�′) and �µ′ ⊂�µ′′ .
(b) If µ ∈�σ (�) and µ′′ is a (cover) regular outer measure, then �µ′ ⊂�µ′′ .
(c) If µ ∈ �σ (�) and µ′′ is a (cover) regular outer measure and µ′′ = µ(�′), then

µ ∈�(σ ,�).

Proof. (a) By Theorem 3.1(b), µ′′ ≤ µ(�′). Let L ∈ � and Ln ∈ � such that L′ ⊂⋃n=1
∞ L′n. Then L′ =⋃∞n=1(L′n∩L′), hence,

µ(L′)≤
∞∑
n=1

µ
(
L′n∩L′

)≤ ∞∑
n=1
µ
(
L′n
)
, (4.2)

and then

µ(L′)≤ inf

{ ∞∑
n=1
µ
(
L′n
)
,L′ ⊂

∞⋃
n=1
L′n,L,Ln ∈�

}
= µ′′(L′ ). (4.3)

Thus, µ′′ = µ(�′). Now, in general , µ′ = µ(�′), hence, µ′ = µ′′(�′). Let E ∈ �µ′ and
A∈�.

µ′′(A′)= µ′(A′)≥ µ′(A′ ∩E)+µ′(A′ ∩E′)≥ µ′′(A′ ∩E)+µ′′(A′ ∩E′), (4.4)

since µ′′ ≤ µ′ in general. Hence, E ∈�µ′′ and E arbitrary in �µ′ . Therefore, �µ′ ⊂�µ′′ .
(b) By Theorem 3.2(a), µi ≤ µj ≤ µ′′ ≤ µ′. Let E ∈ �µ′ . Then µi(E) = µ′(E), hence,

µi(E)= µj(E)= µ′′(E)= µ′(E). By Theorem 3.2(b), it follows that E ∈�µ′′ and since E
is arbitrary in �µ′ , it follows that �µ′ ⊂�µ′′ .
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(c) Suppose that µ �∈�(σ ,�). Then there exist Ln ↓ L, with Ln,L∈�, and limµ(Ln) >
µ(L)+ε,ε > 0. Hence,

limµ(L′n) < µ(L
′)−ε. (4.5)

But
⋂∞
n=1Ln = L implies that

⋃∞
n=1L′n = L′ and µ′′ is regular and µ′′ = µ(�′), hence,

limµ(L′n)= lim µ′′
(
L′n
)= µ′′(L′)= µ(L′)≥ lim µ(L′n)+ε, (4.6)

a contradiction.

Theorem 4.2. Let µ ∈ �(σ ,�) and suppose that µ satisfies condition (3.1). Then
µ ∈�σ

R (�).

Proof. µ ∈�(σ ,�) implies that µ′′ = µ(�′), hence,

µ′′(L′)= µ(L′)= sup
{
µ(L̃), L̃⊂ L′, L̃∈�, L∈�

}
, (4.7)

i.e., µ ∈�R(�). Therefore, µ ∈�σ
R (�).

Corollary 4.1. Let µ ∈ I(σ ,�) and suppose that µ satisfies condition (3.2). Then
µ ∈ IσR (�). See [4].

Theorem 4.3. (a) Let µ ∈�(�). Then

�µ′ ∩�= {L∈� | µ(L)= µ′(L)}. (4.8)

(b) Let µ ∈�σ (�) and suppose that µ′′ is a (cover) regular outer measure. Then

�µ′′ ∩�= {L∈� | µ(L)= µ′′(L)} (4.9)

if and only if µ ∈�(σ ,�).

Proof. (a) Let L ∈ �µ′ ∩�. Then µ′(L) = µi(L) = µ(L) since µi = µ(�). Conversely,
let L∈� such that µ(L)= µ′(L). Then µ′(L)= µi(L), i.e., L∈�µ′ .
(b) Suppose that µ ∈�(σ ,�) and let L∈�µ′′ ∩�. By Theorem 4.1(a), µ′′ = µ(�′) and

since µ′′(X)= µ(X) and µ′′ regular, we get

µ(L)= µ′′(L). (4.10)

Now, suppose that L∈� and µ(L)= µ′′(L). Hence,

µ′′(X)= µ(X)= µ(L)+µ(L′)= µ′′(L)+µ′′(L′), (4.11)

i.e., L ∈ �µ′′ . Conversely, suppose that �µ′′ ∩� = {L ∈ � | µ(L) = µ′′(L)}. Then µ′′ =
µ(�′) and since µ′′ regular, it follows by Theorem 4.1(c) that µ ∈�(σ ,�).

Theorem 4.4. Suppose that � is normal and let µ ∈ �(σ ,�). If A = ⋂∞n=1B′n, A ∈
�, Bn ∈� all n, then A∈�µ′ ⊂ Sµ′′
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Proof. By Theorem 4.1(a), �µ′ ⊂�µ′′ . By normality, there exist Cn and Dn ∈ �

such that A⊂ C′n ⊂Dn ⊂ B′n. Therefore,

A=
∞⋂
n=1
C′n =

∞⋂
n=1
Dn =

∞⋂
n=1
B′n, (4.12)

and we may assume that C′n ↓ and Dn ↓. Then µ(A) = limµ(Dn) since µ ∈ �(σ ,�).
Hence,

µ(A)≤ µ(C′n)≤ µ(Dn) �→ µ(A) as n �→∞. (4.13)

Clearly,

µ(A)= lim
n
µ(C′n)≥ µ′(A), (4.14)

and so

µ(A)≥ µ′(A). (4.15)

But, in general, µ ≤ µ′(�), hence, µ(A) = µ′(A). Now, by Theorem 4.3(a), it follows
that A∈�µ′ ∩�.

Remark. In the zero-one valued case, we can weaken the hypothesis and the con-
clusion to obtain that if µ ∈ Iσ (�) and � is normal, then, for A∈� with A=⋂∞n=1B′n,
Bn ∈� all n, it follows that A∈�µ′′ .

Definition 4.2. We say that µ ∈�σ (�) satisfies

Condition 4.1. If

µ(L′)= sup


µ′′


 ∞⋂
n=1

Ln


 , ∞⋂

n=1
Ln ⊂ L′, L,Ln ∈�


 . (4.16)

We say that µ ∈�σ (�) satisfies
Condition 4.2. If

µ′′(L′)= sup


µ′′


 ∞⋂
n=1

Ln


 , ∞⋂

n=1
Ln ⊂ L′, L,Ln ∈�


 . (4.17)

Definition 4.3. Let µ ∈�σ (�). µ is called vaguely regular if

µ(L′)= sup
{
µ′′(L̃), L̃⊂ L′, L̃∈�, L∈�

}
. (4.18)

The set of vaguely regular measures on � is denoted by �v(�).

Theorem 4.5. Let µ ∈�σ (�). Then
(a) If µ satisfies condition (4.1), then it also satisfies condition (4.2).
(b) If µ ∈ �(σ ,�), then µ satisfies condition (4.1) if and only if µ satisfies condi-

tion (4.2).
(c) If µ satisfies condition (4.1) and µ′′ is (cover) regular, then µ ∈�(σ ,�).
(d) If µ ∈�v(�) and µ′′ is (cover) regular, then µ satisfies condition (4.1).
(e) If µ ∈�v(�) and µ′′ is (cover) regular, then µ ∈�(σ ,�).

Proof. In general, µ′′ ≤ µ(�′).
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(a) Suppose that µ satisfies condition (4.1). Then for L∈�

µ′′(L′)≤ µ(L′)= sup

{
µ′′
( ∞⋂
n=1

Ln

)
,
∞⋂
n=1

Ln ⊂ L′,L,Ln ∈�

}
≤ µ′′(L′)≤ µ(L′). (4.19)

Hence,

µ′′(L′)= µ(L′)= sup

{
µ′′
( ∞⋂
n=1

Ln

)
,
∞⋂
n=1

Ln ⊂ L′,L,Ln ∈�

}
, (4.20)

i.e., µ satisfies condition (4.2).
(b) Suppose that µ satisfies condition (4.2). Since µ ∈�(σ ,�), we have µ′′ = µ′(�′).

Hence, µ′′(L′)= µ(L′)= sup{µ′′(⋂∞n=1 Ln),⋂∞n=1 Ln ⊂ L′,L,Ln ∈�}.
(c) Let L∈�. Since µ satisfies condition (4.1),

µ(L′)= sup

{
µ′′
( ∞⋂
n=1

Ln

)
,
∞⋂
n=1

Ln ⊂ L′,L,Ln ∈�

}
. (4.21)

If µ �∈�(σ ,�), then there exist Ln ↓ L, where L,Ln ∈� and limµ(Ln) > µ(L)+ε,ε > 0.
Then limµ(L′n) < µ(L

′)−ε, ⋂∞n=1 Ln = L.
Hence,

⋃∞
n=1L′n = L′. By condition (4.1), there exists Am ∈� such that

∞⋂
n=1
Am ⊂ L′ and µ′′

( ∞⋂
n=1
Am

)
> µ(L′)−ε > limµ

(
L′n
)
. (4.22)

But µ′′ is regular, thus

limµ′′
(
L′n
)= µ′′(L′)≥ µ′′

( ∞⋂
n=1
Am

)
> limµ

(
L′n
)≥ limµ′′

(
L′n
)
, (4.23)

a contradiction.
(d)

µ′′
(
L′
)≤ µ(L′ )= sup

{
µ′′
(
L̃
)
, L̃⊂ L′, L̃∈�,L∈�

}

≤ sup

{
µ′′
( ∞⋂
n=1

Ln

)
,
∞⋂
n=1

Ln ⊂ L′,L,Ln ∈�

}

≤ µ′′(L′ )≤ µ(L′ ).
(4.24)

Therefore,µ′′ = µ(�′) andµ′′ is regular. By Theorem 4.3(c), it follows thatµ ∈�(σ ,�).
Hence, µ(L′)= sup{µ′′(⋂∞n=1 Ln),⋂∞n=1 Ln ⊂ L′,L,Ln ∈�}.
(e) See part (d) above. Or, µ satisfies condition (4.1) by (d). Use (c) to obtain that

µ ∈�(σ ,�).

Theorem 4.6. Let µ ∈�σ (�). If µ = µ′′(�) and µ′′ is a (cover) regular outer mea-
sure, then
(a) �⊂�µ′′ ,
(b) µ ∈�σ (�), and
(c) µ satisfies condition (4.1).
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Proof. (a) We must show that µ′′(X)= µ′′(L)+µ′′(L′), for all L ∈�. If we assume
that µ′′(X) < µ′′(L)+µ′′(L′), we get a contradiction because µ′′ ≤ µ(�′).
(b) Since �µ′′ is a σ -algebra, we have �(�)⊂�µ′′ and then µ′′|�(�) is a measure on

�(�). µ′′ countably additive and µ = µ′′(�) implies that µ ∈�σ (�).
(c) Let L∈� and ε > 0. Then there exists Ln ∈� such that

L⊂
∞⋃
n=1
L′n (4.25)

and

µ(L)+ε = µ′′(L)+ε >
∞∑
n=1

µ
(
L′n
)≥ ∞∑

n=1
µ′′
(
L′n
)≥ µ′′

( ∞⋃
n=1
L′n

)
. (4.26)

Therefore, since �⊂�µ′′ , we get

µ(L′)−ε < µ′′
( ∞⋃
n=1

Ln

)
. (4.27)

Remark. In the case of zero-one valued measures, the above theorem was investi-
gated in [4].
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