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ABSTRACT. By using the method of successive approximation, we prove the existence and
uniqueness of a solution of the fuzzy differential equation x’(t) = f(t,x(t)), x(tg) = xo.
We also consider an e-approximate solution of the above fuzzy differential equation.
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1. Introduction. The differential equation
x'(t) = f(t,x(t)), x(to) =xo (1.1)

has a solution provided f is continuous and satisfies a Lipschitz condition by C.
Corduneanu [2]. The definition given here generalizes that of Aumann [1] for set-
valued mappings. Kaleva [3] discussed the properties of differentiable fuzzy set-valued
mappings and gave the existence and uniqueness theorem for a solution of the fuzzy
differential equation x’(t) = f(t,x(t)) when f satisfies the Lipschitz condition. Also,
in [4], he dealt with fuzzy differential equations on locally compact spaces. Park [6, 7]
showed existence of solutions for fuzzy integral equations and a fixed point theorem
for a pair of generalized nonexpansive fuzzy mappings.

In this paper, we prove the existence and uniqueness theorem of a solution to the
fuzzy differential equation (1.1), where f : I X E" — E™ is levelwise continuous and
satisfies a generalized Lipschitz condition.

Under some hypotheses, we consider an e-approximate solution of the above fuzzy
differential equation.

2. Preliminaries. Let Px(R™) denote the family of all nonempty compact convex
subsets of R™ and define the addition and scalar multiplication in Pg (R™) as usual.
Let A and B be two nonempty bounded subsets of R™. The distance between A and B
is defined by the Hausdorff metric

d(A,B) = max {sup inf|la—b||, supinf ||a — bll}, 2.1)
acAbeB beB A€EA
where ||-|| denotes the usual Euclidean norm in R". Then it is clear that (Px(R™),d)

becomes a metric space.

THEOREM 2.1 [8]. The metric space (Pg(R™),d) is complete and separable.
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Let T = [c,d] C R be a compact interval and denote
E"™ = {u:R"™ — [0,1] | u satisfies (i)-(iv) below}, (2.2)

where
(i) u is normal, i.e., there exists an xy € R™ such that u(xg) =1,
(ii) u is fuzzy convex,
(iii) u is upper semicontinuous,
(iv) [ul® =cl{x € R" | u(x) > 0} is compact.
For 0 < « < 1, denote [u]® = {x € R" | u(x) > «}, then from (i)-(@iv), it follows that
the «-level set [u]* € Px(R™) forall 0 < xx < 1.
If g:R"xXR" — R™ is a function, then, according to Zadeh’s extension principle, we
can extend g to E™ X E"™ — E™ by the equation

gu,v)(z) = sup min{u(x),v(y)}. (2.3)
z=g(x,y)
It is well known that
[9(u,v)]% = g([ul*, [v]*) (2.4)

for all u,v € E", 0 < ¢ <1 and g is continuous. Especially for addition and scalar
multiplication, we have

[u+v]*=[ul*+[v]*, [kul® =k[ul®, (2.5)
where u, v e E", ke R,0<x<1.

THEOREM 2.2 [5]. Ifu € E", then

(1) [u]*ePx(R") forall0 <o <1,

2) [ul*clul® forall0 < ox; < xp <1,

(3) if {xx} € [0,1] is a nondecreasing sequence converging to « > 0, then

[w]®= () [u]*. (2.6)
k=1

Conversely, if {A%| 0 < «x < 1} is a family of subsets of R" satisfying (1)-(3), then there
exists u € E™ such that

[ul*=A% forO0<aoa<l1 2.7)
and
[ul®= J Axc A’ (2.8)
O<x=<1
Define D : E" X E™ — R* U {0} by the equation
D(u,v) = sup d([ul*[v]¥), (2.9
O=x<1

where d is the Hausdorff metric defined in Px (R™).
The following definitions and theorems are given in [3].

DEFINITION 2.1. A mapping F : T — E" is strongly measurable if, for all x € [0,1],
the set-valued mapping Fy : T — Px (R™) defined by

Fu(t) = [F(t)]* (2.10)
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is Lebesgue measurable, when Px (R") is endowed with the topology generated by the
Hausdorff metric d.

DEFINITION 2.2. A mapping F : T — E™ is called levelwise continuous at to € T if
the set-valued mapping Fy(t) = [F(t)]* is continuous at t = ty with respect to the
Hausdorff metric d for all x € [0,1].

A mapping F : T — E" is called integrably bounded if there exists an integrable
function h such that ||x|| < h(t) for all x € Fy(t).

DEFINITION 2.3. Let F: T — E™. The integral of F over T, denoted by [;F(t) or
fcd F(t)dt, is defined levelwise by the equation

(LF(t)dt)a _ LF,X(t)dt

(2.11)
= «U f)dt| f: T — R™is a measurable selection for Fa}
T
foral0 < x<1.
A strongly measurable and integrably bounded mapping F : T — E™ is said to be
integrable over T if [ F(t)dt € E™.

THEOREM 2.3. IfF:T — E™" is strongly measurable and integrably bounded, then F
is integrable.

It is known that [ [ F(t)dt]° = [7 Fo(t)dt.

THEOREM 2.4. LetF,G:T — E™ be integrable, and A € R. Then
() [f(F(t)+G))dt = [ F(t)dt+ [ G(t)dt.

(i) [fAF(t)dt=A[pF(t)dt.

(iii) D(F,G) is integrable.

@iv) D([pF(t)dt, [; G(t)dt) < [; D(F,G)(t)dt.

DEFINITION 2.4. A mapping F : T — E" is called differentiable at ty, € T if, for
any « € [0,1], the set-valued mapping F,(t) = [F(t)]* is Hukuhara differentiable at
point to with DF4(to) and the family {DF,(ty) | « € [0,1]} define a fuzzy number
F(ty) € E".

If F: T — E" is differentiable at ty € T, then we say that F’ (ty) is the fuzzy derivative
of F(t) at the point t,.

THEOREM 2.5. Let F:T — E! be differentiable. Denote Fy(t) = [ fx(t), g (t)]. Then
fo and g are differentiable and [F' (t)]1% = [ f4 (1), g, (t)].

THEOREM 2.6. Let F: T — E™ be differentiable and assume that the derivative F' is
integrable over T. Then, for each s € T, we have

F(s) :F(a)+JSF'(t)dt. (2.12)

DEFINITION 2.5. A mapping f: T XE" — E™ is called levelwise continuous at point
(to,x0) € T X E™ provided, for any fixed & € [0,1] and arbitrary € > 0, there exists a
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d(€,®) > 0 such that
(L (&,2]% [ £ (to,x0)]%) <€ (2.13)
whenever |t —tg] < 6(€,x) and d([x]%,[x0]%) < 6(e,x) forallt € T, x € E™.
3. Fuzzy differential equations. Assume that f : I x E" — E" is levelwise contin-

uous, where the interval I = {t : |t — ty] < 6 < a}. Consider the fuzzy differential
equation (1.1) where x¢ € E". We denote Jo = I XB(x,b), wherea > 0, b > 0, xo € E",

B(xo,b) = {x € E" | D(x,x0) < b}. (3.1)

DEFINITION 3.1. A mapping x : I — E" is a solution to the problem (1.1) if it is
levelwise continuous and satisfies the integral equation

t
x(t):x0+L f(s,x(s))ds foralltel. (3.2)
0

According to the method of successive approximation, let us consider the sequence
{xy (t)} such that

t
xn<t>=xo+L Fs,xn1())ds, n=1,2,..., (3.3)
0

where xo(t) = xo, t € 1.

THEOREM 3.1. Assume that
(i) a mapping f : Jo — E™ is levelwise continuous,
(ii) for any pair (t,x),(t,y) € Jo, we have

A([F (0] [F(6,)]%) < Ld([x1%,[¥1%), (3.4)

where L > 0 is a given constant and for any «x € [0,1].
Then there exists a unique solution x = x(t) of (1.1) defined on the interval

. b
|t—t0|55=mln{a,ﬁ}, (3.5)

where M = D(f(t,x),0), 0 € E" such that 0(t) =1 fort = 0 and 0 otherwise and for
any (t,x) € Jo.

Moreover, there exists a fuzzy set-valued mapping x : I — E™ such that D (x, (t),x(t))
—0onlt—tyl <6 asn— o.

PROOF. Llett €1, from (3.3), it follows that, for n =1,
t
x1(t) :X0+J f(s,x0)ds (3.6)
to

which proves that x(t) is levelwise continuous on |t —ty| < a and, hence on |t —t(| < .
Moreover, for any « € [0, 1], we have

t 4 t
(i (01% xo1®) = | tf(S,xO)dS] 0) < [ dllfex0l*0ds G
0 0

and by the definition of D, we get
D(x1(t),xo) <M|t—tgl <Mbé=Db (3.8)
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if |t —tg| < &, where M = D(f(t,x),0), 0 € E™ and for any (t,x) € Jp.
Now, assume that x,_; (t) is levelwise continuous on |t —to| < 6 and that

D(xnfl(t),X())SM|t—t0|SM5=b 3.9)

if |t —to| <&, where M = D(f(t,x),0), 0 € E™ and for any (t,x) € Jo.
From (3.3), we deduce that x,, (t) is levelwise continuous on |t —ty| < 6 and that

D(xn(t),x0) <M|t—tg| <MS=Db (3.10)
if [t —to| < 8, where M = D(f(t,x),0), 0 € E™ and for any (t,y) € Jo.
Consequently, we conclude that {x, (t)} consists of levelwise continuous mappings
on |t —ty| <6 and that

(t,xn (D) €Jo, lt—tol =8, m=1.2,.... (3.11)

Let us prove that there exists a fuzzy set-valued mapping x : I — E" such that D (x, (t),
x(t)) — O uniformly on |t —ty| <6 as n — o. For n = 2, from (3.3),

t
xz(t)=x0+L f(s,x1(s))ds. (3.12)
0

From (3.6) and (3.12), we have

d([x(0)]% [x1(0]%) (U Flsx(s)as| U F(s,x0)ds | )

. (3.13)
sj d([f(s,xl(s))]“,[f(s,xo)]o‘)ds
to
for any @ € [0,1].
According to the condition (3.4), we obtain
A ([x: (D)1, [x1 (0] J Ld([x1(5)]1%, [x01%)ds (3.14)
and by the definition of D, we obtain
t
D(x2(t),x1(t)) < LL D(x1(s),x0(s))ds. (3.15)
0

Now, we can apply the first inequality (3.8) in the right-hand side of (3.15) to get

2 2
D (x2 (1), x1 (1)) <ML% SML%. (3.16)
Starting from (3.8) and (3.16), assume that
_ n n
D (xp(t),xn_1(t)) sML"—I% sML"‘l% (3.17)

and let us prove that such an inequality holds for D (x, 1 (t),x,(t)).
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Indeed, from (3.3) and condition (3.4), it follows that
t o3 t [0
(1 (D1 [xa(D)] )—d(Utof(s,xnu))ds] |, Flexrnas] )

< Jt d([f(s,xn(s))]“, [f(s,xn_l(s))]“)ds (3.18)

to

t
< L Ld([xn(s)]o‘,[xn,l(s)]'x)ds
0

for any @ € [0,1] and from the definition of D, we have

t
D (xns1 (£), 0 (1)) sLL D (xn(s), xn_1(s))ds. (3.19)
0

According to (3.17), we get

t 1 n+1
Is—tol™ [t —to|™* 0
n — n n
D(xp1(t),xn(t)) < ML LO R ds =ML D) <ML CESI (3.20)
Consequently, inequality (3.17) holds for n = 1,2,.... We can also write
M (L6)"
D (xn(t),xn-1(t)) < f( ,) (3.21)
n!
forn=1,2,...,and |t —ty| < 0.
Let us mention now that
Xn(t) =x0+[x1() —x0]+ - -+ [xn(t) —xn-1(1)], (3.22)
which implies that the sequence {x,(t)} and the series
xo+ > [xn(t) =xn-1(1)] (3.23)
n=1

have the same convergence properties.

From (3.21), according to the convergence criterion of Weierstrass, it follows that the
series having the general term x,, (t) —xy,-1(t), S0 D (x5 (t),Xy—1(t)) — O uniformly on
[t—tol <6 asn — oo,

Hence, there exists a fuzzy set-valued mapping x : I — E™ such that D (x, (t),x(t)) —
0 uniformly on [t —tg] <6 as n — .

From (3.4), we get

A(Lf(txa )] [F(6x(0)]%) < Ld([xn (D], [x(0)]) (3.24)
for any « € [0,1]. By the definition of D,
D(f(t,xn(t)),f(t,x(t))) <LD(xn(t),x(t)) — 0 (3.25)

uniformly on |t —ty| <6 as n — oo.
Taking (3.25) into account, from (3.3), we obtain, for n — oo,

t
x(t) =x0+L f(s,x(s))ds. (3.26)
0
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Consequently, there is at least one levelwise continuous solution of (1.1).
We want to prove now that this solution is unique, that is, from

t
y(t) :x0+L f(s,y(s))ds (3.27)
0

on |t —tg| < 6, it follows that D(x(t),y(t)) = 0. Indeed, from (3.3) and (3.27), we
obtain

d([y O] [xn ()] (H Fsysnas| U F (%01 ds | )

< Jt A(LF (5,7 ()], LF (5,Xn-1(0)]% ) ds (3.28)

to
th L([y ()], [xn-1(5)]%)ds
to

forany x € [0,1], n=1,2,....
By the definition of D, we obtain

t
D(y(t),xn(t)) sLL D(y(s),xn-1(s))ds, n=1,2,.... (3.29)
0

But D(y(t),xo) < b on |t —ty| <, ¥(t) being a solution of (3.27). It follows from
(3.29) that

D(y(t),x1(t)) <bL|t—to| (3.30)

on |t —tg| < 6. Now, assume that

nlt=tol"
D(y(t),xn(t)) <bL T (3.31)
on the interval |t —ty| < 6. From
t
DO, Xna(0) <L | D(3(),xa(5))dls (3.32)
0
and (3.31), one obtains
D(y (1), xns (1)) < prrst L=l (3.33)
= m+1) - :
Consequently, (3.31) holds for any n, which leads to the conclusion
D(y(t),xn(t)) =D (x(t),xn(t)) — O (3.34)
on the interval [t —tg| < 6 as n — oo.
This proves the uniqueness of the solution for (1.1). O

DEFINITION 3.2. A mapping x : L — E" is an e-approximate solution of (1.1) if the
following properties hold

(a) x(t) is levelwise continuous on |t —ty| < 6,

(b) the derivative x'(t) exists and it is levelwise continuous,

(c) for all t for which x’(t) is defined, we have

D (x'(t), f(t,x(t))) <e. (3.35)
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THEOREM 3.2. A mapping f : Jo — E™" is levelwise continuous, and let € > 0 be
arbitrary. Then there exists at least one e-approximate solution of (1.1), defined on
|t —tg| < § =min{a,b/M}, where M = D(f(t,x),0), 0 € E™ and for any (t,x) € Jo.

PROOF. Inasmuch as amapping f :Jo — E™ is alevelwise continuous on a compact
set Jo, it follows that f(t,x) is uniformly levelwise continuous.

Consequently, for any o € [0,1], we can find 6 > 0 such that d([ f (t,x)]%,[f(s,»)]1%)
<E€.

Now, we construct the approximate solution for t € [tg,to + 6], the construction
being completely similar for t € [ty —9,to].

Let us consider a division

to<ti<--<th=th+0 (3.36)
of [to,to+ 6] such that
max (ty —t )<A—min{6 é} (3.37)
X (T = L1 = M .

We define a mapping x : I — E™ as follows

x(to) = xo, (3.38)
x(t) = x(tr) + f (te, x (£x)) (= ty) (3.39)

onty<t=<tgi1,k=0,1,...,n—1.

It is obvious that a mapping x : I — E™ satisfies the first two properties from the
definition of an e-approximate solution.

Now, we want to prove that the last property is also fulfilled. Indeed, x'(t) = f(t,
x(ty)) on (ty,tx+1) and for any « € [0,1],

d ([x" (1% Lf (£, (0)]%) = d (Lf (b (01 LF (,x()]%) < € (3.40)
since |t —tx| <A <6,
d (Lx(0)1%, Ix (t)1%) < d([f (te,x ()], 0) [t — t| < MA < 6. (3.41)
Thus, by the definition of D, we have
D(x' (1), f(t,x(1)) <€ (3.42)

on |[t—tyl <o and (t,x) € Jp.
Theorem 3.2 is completely proved. O
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