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ABSTRACT. Two characterizations of an Azumaya Galois extension of a ring are given in
terms of the Azumaya skew group ring of the Galois group over the extension and a Galois
extension of a ring with a special Galois system is determined by the trace of the Galois
group.

Keywords and phrases. Azumaya algebras, Galois extensions, H-separable extensions,
skew group rings.

1991 Mathematics Subject Classification. 16S30, 16W20.

1. Introduction. Let S be aring with 1, G a finite automorphism group of S of order
n for some integer n invertible in S, S¢ the subring of the elements fixed under each
element in G, C the center of S, and S*G the skew group ring of G over S. In [3] and [2],
S is called an Azumaya Galois extension of S¢ if it is a G-Galois extension of S¢ which
is an Azumaya CC¢-algebra. It was shown that S is an Azumaya Galois extension if and
only if $*G is an Azumaya CC-algebra. The purpose of the present paper is to give
two more characterizations of an Azumaya Galois extension in terms of the Azumaya
skew group ring S*G. We show that S is an Azumaya G-Galois extension if and only
if $*G is an Azumaya algebra over its center Z, a G'-Galois extension with an inner
Galois group G’ induced by the elements of G, and ZG is a finitely generated projective
C%module of rank n. Moreover, for the skew group ring S*G, where S is a separable
CC-algebra, an expression of the commutator subring of C in $*G is obtained by using
S and its commutator subring in S*G. Furthermore, let H be a normal subgroup of G,
K the commutator subgroup of H in G, and H' the inner automorphism group of S*G
induced by the elements of H (K’ and (G/H)' are similarly defined). Then, it is shown
that (§*G)X is a (G/K)'-Galois extension with a Galois system {m~'g;, g}l/gj in H}
if and only if Trg/ (gi) = 0 for each g; not in K, where m is the order of H for some
integer m and Trg (g;) is the trace of G’ at g;.

2. Preliminaries. Throughout, let S be a ring with 1, G = {g1,...,gn} for some in-
teger n invertible in S, C the center of S, S¢ the subring of the elements fixed un-
der each element in G, and S*G the skew group ring of G over S. Let B be a sub-
ring of a ring A. We call A a separable extension of B if there exist {ai,b;} in A,
i =1,...,m for some integer m, such that > a;b; =1 and Y aa;®b; = > a; ® b;a
for all a in A, where ® is over B and {ai,b;} is called a separable system for A.
An Azumaya algebra is a separable extension over its center. A ring A is called an
H-separable extension of B if A® A is a direct summand of a finite direct sum of
A as an A-bimodule, where ® over B. Denote the commutator subring of B in A by
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Va(B). An H-separable extension A over B is equivalent to the existence of an H-
separable system {d; in V4(B); 2.(xij ® ¥ij) in Vaga(A)}, j=1,...,uandi=1,...,v
for some integers u and v such that > d;(>(x;;® i) =1®1,i=1,...,v and
j=1,...,u. Thering S is called a G-Galois extension of S¢ if there exist {¢;,d; in S,i =
1,...,k for some integer k} such that >.c;d; = 1 and > a;g;(b;) = 0 for each g; # 1,
where {c;,d;} is called a G-Galois system for S. It is well known that an Azumaya
algebra is an H-separable extension and that an H-separable extension is a separa-
ble extension. A skew group ring S*G is a ring with a free basis {g;} over S such that
gis = (gi(s))g; for each g; in G and s in S. We denote the center of $*G by Z, the inner
automorphism group of $*G induced by the elements of the subgroup H of G by H'
(={g'/g (x) = gxg~!' for g in H and all x in $*G}), and the commutator subgroup
of H in G by Vg (H).

3. Skew group rings. In this section, keeping the notations of Section 2, we give
two characterizations of an Azumaya Galois extension and an expression of the com-
mutator subring of C in $*G when S is a separable CC-algebra.

THEOREM 3.1. The following statements are equivalent:
(i) S is an Azumaya Galois extension,
(ii) S*G is an Azumaya Z-algebra and S satisfies the double centralizer property in
S*G, and
(i) S*G is an Azumaya Z-algebra and a G’-Galois extension of (S*G)C', and ZG is
a finitely generated and projective CS-module of rank n.

PROOF. (i)=(ii). Since S is an Azumaya Galois extension, S*G is an Azumaya C°-
algebra (that is, Z = C%) and S*G is an H-separable extension of S [3, Thm. 3.1].
Noting that S is a direct summand of $*G as a left S-module, we conclude that
VS*G(VS*G(S)) =S [6, Prop. 12]

(ii)=(@). Since Vg« (Vsxc(S)) = S, Z is contained in S; and so Z is contained in C. But
then Z = CC¢. This implies that S*G is an Azumaya CC%algebra by (ii). Thus, S is an
Azumaya Galois extension [3, Thm. 3.1].

(i)=(iii). Since the restriction of G’ to S is G, S*G is a G'-Galois extension of (S*G)¢’
with the same Galois system as S (for S is G-Galois). Also, by hypothesis, S is an
Azumaya Galois extension, so $*G is an Azumaya CC-algebra [3, Thm. 3.1]. Moreover,
since Z = C%, ZG is a free Z-module of rank n.

(iii)=(@). Since S*G is a G’-Galois extension of (S*G)¢ with an inner Galois group
G', it is an H-separable extension of (§*G)¢" [7, Cor. 3]. But n is a unit in S, so
Vs« ((S*G)C') is a separable Z-algebra and a finitely generated and projective Z-
module of rank n [7, Prop. 4]. Moreover, S*G is a G’-Galois extension of (S* G)Y', soit
is finitely generated and projective (§*G)¢-module. Since 7 is a unit in S, ZG is a sep-
arable Z-algebra. But then Vo ((S¥*G)G') = Vgrg (Vs (ZG)) = ZG by the commutator
theorem for Azumaya algebras [4, Thm. 4.3]. Therefore, ZG is a finitely generated
and projective Z-module of rank n [1, Prop. 4]. From the fact that there are n ele-
ments {g;} of G as generators of ZG, it is not difficult to show that {g;} are free over
Z. Hence, Z is a finitely generated and projective C¢module. Thus, the rank of ZG
over C¢ is a product of the rank of ZG over Z and the rank of Z over C¢; that is,
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n = n(rank of Z over C%). This implies that Z = C%. Therefore, S*G is an Azumaya
CC-algebra; and so S is an Azumaya Galois extension [3, Thm. 3.1]. O

COROLLARY 3.2. Let S be a separable CS-algebra. If Vs« (S) is a G"'-Galois exten-
sion, where G'' is the inner automorphism group of Vs=¢(S) induced by and isomorphic
with G, then S is an Azumaya Galois algebra.

PROOF. Since Vsx;(S) is a G"-Galois extension, there exists a G'’-Galois system
{ci,d; in Vs« (S) | i =1,...,k} for Vs« (S). Then, it is straightforward to check that
{Cj;Zgjdi@g;l, i=1,...,kand j=1,...,m for some integers k and m} is an H-sep-
arable system for S*G over S [1, Thm. 1]. Hence, S satisfies the double centralizer
property in S*G [7, Prop. 1.2]. Moreover, n is a unit in S, so $*G is a separable exten-
sion of S. By hypothesis, S is a separable CC-algebra, so S*G is a separable C%-algebra
by the transitivity of separable extensions. But then S$*G is an Azumaya Z-algebra.
Therefore, S is an Azumaya Galois extension by Theorem 3.1. O

For the skew group ring S*G of G over a separable C¢-algebra S, we next give an
expression of Vs+(C) in terms of S and Vs« (S) (for more about Vg« (S), see [1]).

THEOREM 3.3. If S is a separable C¢-algebra, then
(i) CZ is a commutative separable subalgebra of S*G and
(ii) SZ,Vsx¢(S), and Vs« (C) are Azumaya CZ-algebras contained in S* G, such that
Vsxg(C) = SZ®Vsxc(S), where ® is over CZ.

PROOF. (i) Since S is a separable CC-algebra, C is also a separable C¢-algebra.
Hence, C ® Z is a separable Z-algebra, where ® is over C%; and so the homomorphic
image CZ of C® Z is also a separable Z-algebra. Clearly, CZ is commutative.

(ii) Since m is aunitin S, S*G is a separable S-extension. Hence, S*G is a separable
CC- algebra by the transitivity of separable extensions; and so S$*G is an Azumaya Z-
algebra. But then Vg« (CZ) is a separable subalgebra of $* G such that Vg« (Vsxg (CZ))
= CZ [4, Thm. 4.3] (for CZ is a separable subalgebra of $*G by (i)). This implies that
the center of Vg« (CZ) is CZ. Thus, Vg« (CZ) is an Azumaya CZ-algebra. By hypothe-
sis again, S is a separable CC-algebra, so it is an Azumaya C-algebra. Hence, S ® CZ is
an Azumaya CZ-algebra, where ® is over C. Thus, SZ is also an Azumaya CZ-algebra.
Noting that SZ C Vg+¢(CZ), we conclude that Vs« (CZ) = SZ®Vsx(SZ), where ® is
over CZ [7, Thm. 4.3]. Moreover, since Vs« (CZ) = Vgxq(C) and Vsxg(SZ) = Vg« (S),
we conclude that Vg« (C) = SZ®Vs+;(S), where ® is over CZ. O

By [3, Thm. 3.1], if S is an Azumaya Galois extension, then S*G is an Azumaya C°-
algebra (that is, Z = C%) and S is a separable C%-algebra. Thus, we have the following
result.

COROLLARY 3.4. If S is an Azumaya Galois extension, then Vgxg(C) = S ® Vg5 (S)
as Azumaya C-algebras, where ® is over C such that Vs« (C) is a G'-Galois extension
of Vs (CG).

PROOF. By the above remark, it suffices to show that Vs« (C) is a G'-Galois exten-
sion of Vg« (CG). In fact, since S is a G-Galois extension and S C Vg« (C), Vg (C)
is a G’-Galois extension with the same Galois system as S by noting that Vg« (C) is
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G’-invariant (for G is the restriction of G’ to S). Moreover, it is clear that (Vs (C))¢ =
Vs (CG). O

4. A Galois system. Itis well known that {n~'g;, g; 1| giin G} is a separable system
for a separable group ring RG over a ring R with 1, where G = {g; | i = 1,...,n} for
some integer n invertible in R, for a separable skew group ring S*G over S and for a
separable projective group ring RG s over R as defined in [9]. In this section, we give an
equivalent condition for (S *G)X’ to have a (G/K)'-Galois system similar to the above
separable system for a normal subgroup K of G.

THEOREM 4.1. Let H be a normal subgroup of G and Vs (H) = K. Then
(i) K is a normal subgroup of G and
(ii)) Try'(gi) = 0 for each g; not in K if and only if (S*G)X' is a (G/K)'-Galois ex-
tension of(S*G)G’ with a Galois system {m’lgj, g]l | gj in H}, where m is the order
of H.

PROOE. (i) We want to show that g;Kg;*

;~ CK for each g; in G. For any x in K
and y in H, gixg;'y = gixg;'vgig;' = gixzg;', where z = g;'yg;. Since H is
normal in G, z is in H. Hence, xz = zx. But then gixg;'y = gixzg;' = gizxg;' =
9i9;'vgixg;' = ygixg;"'. This implies that g;xg; "' is in K. Thus, K is normal in G.

(ii) Assume that Try (g;) = 0 for each g; not in K. Then Egjgigfl =0, where H =
{gj | j = 1,...,m for some integer m}; that is, 3 g,9:9;'9; "9i = > 9;((9:)' (g; ")) 9i
=0,j=1,...,m. Hence, (m!) ng((gi)'(gjl)) =0 for each g; not in K. Clearly, for
each g; in K, (m’l)ng((gi)'(ngl)) = 1. Thus, {"m’lgj,gjf1 | gjin H} is a (G/K)*
Galois system for (S*G)X" (for H c (§*G)X'), where m is the order of H.

Conversely, (m~1) > g;((gi)'(g;")) = 0 for each g; not in K, so >.g;gig;'9;"' = 0.
Hence, Zgjgigjfl = 0; that is, Try' (g;) = 0 for each g; not in K. O

We derive the following corollaries.

COROLLARY 4.2. S*G has a (G/K)'-Galois system {nflgi,gi’l | gi in G}, whereK is
the center of G, if and only if Tr¢/ (gi) = 0 for each g; not in K.

PROOF. Let H be G. Then K = the center of G; and so the corollary follows imme-
diately from the theorem. O

COROLLARY 4.3. S*G has a G'-Galois system {1’L’1gi,gi‘1 | gi in G} if and only if
Tre (gi) =0 for each g; # 1.

PROOF. This is the case of the theorem that the center of G is trivial. O

We derive an equivalent condition for a Galois subring of S*G arising from a G'-
invariant subring.

COROLLARY 4.4. Let A be a G’-invariant subring of S*G and H = {g; in G | gi(a) =
a for each a in A}. Then
(i) H is normal in G and
(ii) Denoting (S*G)H by B and Vi (H) by K, Trx: (gi) = 0 for each g; not in H if
and only if {m*lgj,gjfl | g; inK} is a (G/H)'-Galois system for B, where m is the
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order of K.

PROOF. Part (i) is straightforward and part (ii) follows immediately from Theo-
rem 4.1. O

We conclude the present paper with an example of an Azumaya skew group ring
S*G which is a G’-Galois extension such that the rank of ZG over C¢ is not n (see
Theorem 3.1(iii)). Hence, S is not an Azumaya Galois extension by Theorem 3.1.

Let R be the real field, S = R[i, j,k] the quaternion algebra over R, and G = {1,g |
g(x) =ix(i)~! for each x in S}. Then

(1) S is a G-Galois extension with a Galois system {271,271j:1,—j}. Hence, S*G is a
G'-Galois extension with the same Galois system.

(2) Since S*G is a separable extension of S and S is an Azumaya R-algebra, S*G is
a separable R-algebra. Hence, S$*G is an Azumaya Z-algebra.

(3) The center Z of S*G is (R + Ri) by direct computation.

(4) ZG is free over Z by direct verification.

(5C=Rand C¢=C=R.

(6) Z is a free R-module of rank 2 and ZG is a free C¢-module of rank 4 (# 2 = the
order of G), so one of the three conditions in Theorem 3.1(iii) does not hold.
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