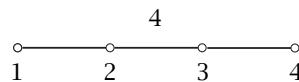


SOME REMARKS ON THE ALGEBRAIC STRUCTURE OF THE FINITE COXETER GROUP F_4

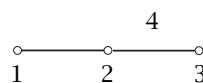
MUHAMMAD A. ALBAR and NORAH AL-SALEH

(Received 10 October 1996 and in revised form 31 January 1997)

ABSTRACT. We consider in this paper the algebraic structure and some properties of the finite Coxeter group F_4 .


Keywords and phrases. Presentation, Reidemeister-Schreier method, Coxeter groups.

1991 Mathematics Subject Classification. 20F05.


1. Introduction. The group F_4 is one of the irreducible Coxeter groups [9] defined by the presentation

$$F_4 = \left\langle x_1, x_2, x_3, x_4 \mid x_i^2 = e, \quad 1 \leq i \leq 4 \right. \\ \left. (x_1x_2)^3 = (x_3x_4)^3 = (x_2x_3)^4 = (x_1x_3)^2 = (x_1x_4)^2 = (x_2x_4)^2 = e \right\rangle. \quad (1)$$

It has the graph

It is obvious that the group B_3 whose graph is

is a subgroup of F_4 . The order of B_3 is known to be 48 [4]. It is easy to see that the index of B_3 in F_4 is 24 and hence the order of F_4 is 1152.

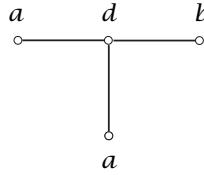
2. The structure of F_4 . We define F_4 by the presentation given in Section 1. We consider the symmetric group of degree 3 with the presentation

$$S_3 = \langle x, y \mid x^2 = y^2 = (xy)^3 = e \rangle. \quad (2)$$

We define the map $\theta : F_4 \rightarrow S_3$, where

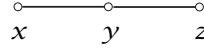
$$\theta(x_1) = x, \quad \theta(x_2) = y, \quad \theta(x_3) = \theta(x_4) = e. \quad (3)$$

It is easy to see that θ is an epimorphism and so $F_4 / \ker \theta \cong S_3$. We use the Reidemeister-Schreier process to find a partition for $\ker \theta$.

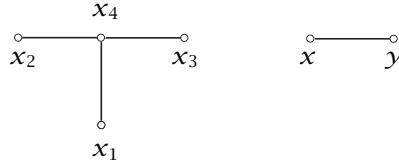

A Schreier transversal for $\ker \theta$ in F_4 is

$$U = \{e, x_1, x_2, x_1x_2, x_2x_1, x_1x_2x_1\}. \quad (4)$$

The process gives us the following partition for $\ker \theta$:


$$\begin{aligned} \ker \theta = \langle a, b, c, d \mid a^2 = b^2 = c^2 = d^2 = (ab)^2 = (bc)^2 \\ = (ad)^3 = (bd)^3 = (cd)^3 = (ac)^2 = e \rangle. \end{aligned} \quad (5)$$

Therefore, $\ker \theta$ is the Coxeter group D_4 whose graph is


This shows that the group F_4 is the split extension of the Coxeter group D_4 by S_3 .

REMARK 1. To identify the structure of D_4 , we consider the map $\theta : D_4 \rightarrow S_4$, where D_4 is defined by the graph above and S_4 is defined by the graph

and $\theta(a) = x$, $\theta(d) = y$, $\theta(b) = z$, and $\theta(c) = y$. Using the Reidemeister-Schreier process, we find that $\ker \theta \cong Z_2^3$. Thus, D_4 is the split extension of Z_2^3 by S_4 . An alternative method is given in [3], where D_n is shown to be the semi-direct product of Z_2^{n-1} by S_n .

REMARK 2. A third method to show that $F \cong D_4 \rtimes S_3$ follows. We consider D_4 and S_3 as having the following graphs:

where $x = (12)$ and $y = (23)$. We consider the natural action of S_3 or D_4 defined as

$$(x_1, x_2, x_3, x_4)^x = (x_2, x_1, x_3, x_4) \quad \text{and} \quad (x_1, x_2, x_3, x_4)^y = (x_1, x_3, x_2, x_4). \quad (6)$$

We let E to be the split extension of D_4 by S_3 with this action. A presentation for E is

$$E = \langle x_1, x_2, x_3, x_4, x, y \mid \text{Relations of } D_4, \text{ Relations of } S_3, \text{ Action of } S_3 \text{ on } D_4 \rangle. \quad (7)$$

(See [2].) Simple Tietze transformations show that $E \cong F_4$. Hence, $F_4 \cong D_4 \rtimes S_3$.

3. The derived series of F_4 . We use the Reidemeister-Schreier process several times to find the derived series of F_4 . Firstly, let F_4 have the presentation in Section 1. $F_4/F'_4 \cong Z_2 \times Z_2$ and we find that $F'_4 = \langle x, y \mid x^3 = y^3 = (x^{-1}y^{-1}xy)^2 = e \rangle$. The group $F'_4/F''_4 \cong Z_3 \times Z_3$ and we get $F''_4 = \langle a, b, c, d \mid a^2 = b^2 = c^2 = d^2 = (ab)^2 = (ac)^2 = (cd)^2 = (bd)^2 = (bdca)^2 = e \rangle$. Finally, $F''_4/F'''_4 \cong Z_2^4$ and we find $F'''_4 = Z_2$. Thus, we have proved that F_4 is solvable of derived length 4.

4. The center and the growth series of F_4 . We have seen in Section 2 that $F_4 \cong D_4 \rtimes S_3$ and that $D_4 \cong Z_2^3 \rtimes S_4$. It is easy to see that the center of D_4 is Z_2 (in general, $Z(D_n) = Z_2$ if n is even and $\{e\}$ if n is odd [3]). Since $Z(S_3) = \{e\}$, we see that $Z(F_4) \subseteq Z(D_4) = Z_2$. Let $Z(D_4)$ be generated by g . From the Reidemeister-Schreier process, we can find g in terms of the generators of F_4 and show that it does not commute with any of them. Hence, $Z(F_4) = \{e\}$.

The growth series (in the sense of Gromov and Milnor) of F_4 is [5]

$$\gamma(F_4) = (1+t)^4(1+t^2)^2(1+t^4)(1-t+t^2)^2(1+t+t^2)^2(1-t^2+t^4). \quad (8)$$

The order of F_4 is obtained here as $\gamma(F_4)(1) = 2^4 \times 2^2 \times 2 \times 3^2 = 1152$.

ACKNOWLEDGEMENT. The first author thanks King Fahd University of Petroleum and Minerals for the support he has got to conduct this research.

REFERENCES

- [1] N. A. Al Saleh, *On the finite Coxeter groups*, Ph.D. thesis, College of Girls, Dammam, Saudi Arabia, 1994.
- [2] M. A. Albar, *On presentation of group extensions*, Comm. Algebra 12 (1984), no. 23-24, 2967-2975. MR 86g:20040. Zbl 551.20017.
- [3] M. A. Albar and N. A. Al Saleh, *The Coxeter group D_n* , submitted.
- [4] ———, *On the affine Weyl group of type B_n* , Math. Japon. 35 (1990), no. 4, 599-602. MR 91d:20030. Zbl 790.20048.
- [5] M. A. Albar, N. A. Al Saleh, and M. A. Al Hamed, *The growth series of Coxeter groups*, 47 (1998), no. 3, 417-428.
- [6] C. T. Benson and L. C. Grove, *Finite reflection groups*, Bogden & Quigley, Inc., Publishers, Tarrytown on Hudson, N.Y., 1971. MR 52 4099. Zbl 579.20045.
- [7] N. Bourbaki, *Elements de mathematique. Groupes et algebres de Lie*, Actualites Scientifiques et Industrielles, no. 1337, Hermann, Paris, 1968 (French), Chapitre IV: Groupes de Coxeter et systemes de Tits. Chapitre V: Groupes engendres par des reflexions. Chapitre VI: systemes de racines. MR 39#1590. Zbl 186.33001.
- [8] N. Broderick and G. Maxwell, *The crystallography of Coxeter groups. II*, J. Algebra 44 (1977), no. 1, 290-318. MR 58 11162b. Zbl 348.20041.
- [9] H. S. M. Coxeter and W. O. J. Moser, *Generators and relations for discrete groups*, fourth ed., *Ergebnisse der Mathematik und ihrer Grenzgebiete* [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin, New York, 1980. MR 81a:20001. Zbl 422.20001.
- [10] J. E. Humphreys, *Reflection groups and Coxeter groups*, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 92h:20002. Zbl 768.20016.
- [11] G. Maxwell, *The crystallography of Coxeter groups*, J. Algebra 35 (1975), 159-177. MR 58 11162a. Zbl 312.20029.
- [12] M. Suzuki, *Group theory. I*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 247, Springer-Verlag, Berlin,

New York, 1982, Translated from the Japanese by the author. MR 82k:20001c.
Zbl 472.20001.

ALBAR: DEPARTMENT OF MATHEMATICAL SCIENCES, KING FAHD UNIVERSITY OF PETROLEUM
AND MINERALS, DHAHHRAN, 31261, SAUDI ARABIA

AL-SALEH: DEPARTMENT OF MATHEMATICS, COLLEGE OF GIRLS, DAMMAM, SAUDI ARABIA

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru