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ABSTRACT. We consider in this paper the algebraic structure and some properties of the
finite Coxeter group Fi.
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1. Introduction. The group F; is one of the irreducible Coxeter groups [9] defined
by the presentation

F, = <x1,xz,X3,X4\xf:e, 1<i<4
] . . ) (1)
3 2 2

(x1x2)3 = (x3x4)" = (x;qu,)4 = (x1x3)" = (x1X4)Z = (x2x4)" = e>.

It has the graph

is a subgroup of F,4. The order of Bz is known to be 48 [4]. It is easy to see that the
index of B3 in F, is 24 and hence the order of F; is 1152.

2. The structure of F;. We define F; by the presentation given in Section 1. We
consider the symmetric group of degree 3 with the presentation

S3={(x,y|x*=y%=(xy)’ =e). )
We define the map 0 : F;, — S3, where
O(x1) =x, 0(x2)=y, 0(x3)=0(x4)=e. 3)

It is easy to see that 6 is an epimorphism and so F;/ker 6 = S3. We use the Reidemei-
ster-Schreier process to find a partition for ker 6.
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A Schreier transversal for ker 0 in Fy is
U = {e,x1,X2,X1X2,X2X1,X1X2X1}. 4)
The process gives us the following partition for ker 9:
ker 8 = {(a,b,c,d | a®> = b* = ¢* = d*> = (ab)? = (bc)?
= (ad)’ = (bd)? = (cd)® = (ac)®’ =e). (5)

Therefore, ker 0 is the Coxeter group D4 whose graph is

a d b
o—O0——0
(0]

a

This shows that the group F4 is the split extension of the Coxeter group D4 by S3.

REMARK 1. To identify the structure of D4, we consider the map 0 : D4 — S4, where
D, is defined by the graph above and S, is defined by the graph

Oo—
X Y% z

and 6(a) =x, 0(d) =y, 0(b) =z,and 0(c) = y. Using the Reidemeister-Schreier pro-
cess, we find that ker 6 = Zf Thus, D, is the split extension of Z f by S4. An alternative
method is given in [3], where D, is shown to be the semi-direct product of Z?‘l by
Sh.

REMARK 2. A third method to show that F = D4 % S3 follows. We consider D4 and
S3 as having the following graphs:

X4

—_—0 o
X2 X3 X y

o

X1
where x = (12) and y = (23). We consider the natural action of S3 or D4 defined as
(x1,%2,x3,X4)" = (x2,X1,Xx3,x4) and (x1,X2,x3,X1)” = (x1,X3,X2,X%4). (6)
We let E to be the split extension of D4 by S3 with this action. A presentation for E is
E = (x1,x2,Xx3,X4,x,7y | Relations of Dy, Relations of S3, Action of S3 on D4). (7)

(See [2].) Simple Tietze transformations show that E = F4. Hence, F; = D4 X S3.
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3. The derived series of F;. We use the Reidemeister-Schreier process several times
to find the derived series of F,. Firstly, let F, have the presentation in Section 1.
F4/F} = Z» X Z» and we find that F; = (x,y | x3 =y3 = (x’ly’lxy)2 =e). The group
F,/F} = Z3x Z3 and we get Fy = (a,b,c,d | a*> = b*> = ¢?* = d*> = (ab)? = (ac)® =
(cd)? = (bd)? = (bdca)? = e). Finally, F;' /F;" = Z3 and we find F;’ = Z,. Thus, we
have proved that F4 is solvable of derived length 4.

4. The center and the growth series of F,. We have seen in Section 2 that F; =
D4 xS3 and that Dy = Z§ X S4. It is easy to see that the center of D, is Z» (in general,
Z(Dy) = Z, if nis even and {e} if n is odd [3]). Since Z(S3) = {e}, we see that Z(Fy) ¢
Z(D4) = Z>.Let Z(Dy4) be generated by g. From the Reidemeister-Schreier process, we
can find g in terms of the generators of F4; and show that it does not commute with
any of them. Hence, Z (Fy) = {e}.

The growth series (in the sense of Gromov and Milnor) of F; is [5]

Y(E) =1+ A+t (14t (1 -t +t)° (1 +t+12)2(1—t2 +t4). 8)
The order of F; is obtained here as y(F;) (1) = 24 x22x2x 3% = 1152.
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