

WEAK CONVERGENCE THEOREM FOR PASSTY TYPE ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

B. K. SHARMA, B. S. THAKUR, and Y. J. CHO

(Received 14 March 1996 and in revised form 18 August 1997)

ABSTRACT. In this paper, we prove a convergence theorem for Passty type asymptotically nonexpansive mappings in a uniformly convex Banach space with Fréchet-differentiable norm.

Keywords and phrases. Iteration process, asymptotically nonexpansive mapping, uniformly convex Banach space, Fréchet-differentiable norm, fixed point.

1991 Mathematics Subject Classification. 47H09, 47H10.

1. Introduction. In 1972, Goebel and Kirk [3] introduced the class of asymptotically nonexpansive mappings and proved that every asymptotically nonexpansive self-mapping of a nonempty closed, bounded, and convex subset of a uniformly convex Banach space has a fixed point. After the existence theorem of Goebel and Kirk [3] several authors ([4, 8]) have shown interest in iterative construction of a fixed point of asymptotically nonexpansive mappings in uniformly convex Banach space. In these papers, Opial's condition [5] was a common tool for such construction.

Now, if we consider a space of type L_p , $p \neq 2$, then we find that Opial's condition fails to operate in it. Obviously, new techniques are needed for this more general case. These techniques were provided by Baillon [1] and simplified by Bruck [2], when the norm is Fréchet-differentiable, a property which is shared by both l_p and L_p spaces for $p \in (1, +\infty)$.

On the other hand, the concept of asymptotically nonexpansive mapping was further extended by Passty [6] to the sequence of mappings which are not necessarily the powers of a given mapping. He has shown that if E has a Fréchet-differentiable norm and if T_n is weakly continuous, then a fixed point of T_n can be obtained by iterating T_n starting at a point of asymptotic regularity.

In this paper, we prove that the sequence

$$x_{n+1} = \alpha_n T_n(x_n) + (1 - \alpha_n)x_n \quad (1)$$

of Mann type iteration process converges weakly to some fixed point of T_n . Here T_n is a Passty type asymptotically nonexpansive mapping defined in a uniformly convex Banach space equipped with Fréchet-differentiable norm. We emphasize that no asymptotic regularity condition is posed on T_n . Our result extends and generalizes the results of Passty [6], Xu [8], and others.

2. Preliminaries. Before presenting our main results of this section, we need the following:

DEFINITION 1. A normed space $(E, \|\cdot\|)$ is said to be *uniformly convex* if for each $\epsilon > 0$, there exists a $\delta > 0$ such that if $x, y \in E$ with $\|x\|, \|y\| < 1$ and $\|x - y\| \geq \epsilon$, it follows that $\|x + y\| \leq 2(1 - \delta)$.

DEFINITION 2 ([6]). The sequence $\{T_n\}_{n=1}^{\infty}$ of self-mapping of a nonempty subset K of a normed space $(E, \|\cdot\|)$ is said to be *asymptotically nonexpansive* if

$$\|T_n x - T_n y\| \leq k_n \|x - y\| \quad (2)$$

for all x, y in K with $\lim_{n \rightarrow \infty} k_n = 1$, where $\{k_n\} \in [1, +\infty)^N$.

For abbreviation, we denote the set of fixed points of T by $\text{Fix}(T)$, the strong convergence by \rightarrow , and the weak convergence by \xrightarrow{w} , respectively.

We use the following lemmas to prove our main result.

LEMMA 1 ([7, Lem. 1.1]). *Let $(E, \|\cdot\|)$ be a normed space. Let K be a nonempty and bounded subset of E , $\{k_n\} \in [1, +\infty)^N$ with $\sum_{n=1}^{\infty} (k_n - 1) < +\infty$ and $T_n : K \rightarrow K$ be Lipschitzian with respect to k_n for each $n \in N$. Then $\lim_{n \rightarrow \infty} \|x_n - x\|$ exists for each $x \in \bigcap_{n \in N} \text{Fix}(T_n)$.*

LEMMA 2 ([7, Lem. 1.3]). *Let $(E, \|\cdot\|)$ be a uniformly convex Banach space with Fréchet-differentiable norm. Let K be a nonempty, bounded, closed and convex subset of E , $\{k_n\} \in [1, +\infty)^N$ with $\sum_{n=1}^{\infty} (k_n - 1) < +\infty$ and $T_n : K \rightarrow K$ be Lipschitzian with respect to k_n for each $n \in N$. Suppose that $\{x_n\}$ is given by $x_1 \in K$ and $x_{n+1} = T_n x_n$ for all $n \in N$. Then $\lim_{n \rightarrow \infty} J_E(y_1 - y_2)(x_n)$ exists for all $y_1, y_2 \in \bigcap_{n \in N} \text{Fix}(T_n)$, where $J_E : E \rightarrow 2^{E^*}$ denotes the normalized duality mapping, i.e.,*

$$J_E(x) := \{u \in E^* \mid u(x) = \|u\| \|x\| \text{ and } \|u\| = \|x\|\} \quad (3)$$

for all $x \in E$ and, also, $(J_E u, u) = \|u\|^2 = \|J_E u\|^2$ for all $u \in E$.

Now, we give our main result:

THEOREM 3. *Let $(E, \|\cdot\|)$ be a uniformly convex Banach space with Fréchet-differentiable norm and K be a nonempty, closed, and convex subset of E . Let F be a subset of K and $S = \{T_n\}_{n=1}^{\infty}$ be an asymptotically nonexpansive sequence of self-mappings of K such that*

$$F \subset \bigcap_{n \in N} \text{Fix}(T_n) \text{ for a sequence } \{k_n\} \in [1, +\infty)^N \text{ with } \sum_{n=1}^{\infty} (k_n - 1) < +\infty. \quad (4)$$

Suppose that $\{\alpha_n\} \in [0, 1]$ and $\epsilon \leq \alpha_n \leq 1 - \epsilon$ for all $n \in N$ and some $\epsilon > 0$. Assume, also, that there exists a sequence $\{x_n\}$ in K given by $x_1 \in K$ and

$$x_{n+1} = \alpha_n T_n(x_n) + (1 - \alpha_n)x_n \quad (5)$$

for all $n \in N$, for which

$$x_{n_i} \xrightarrow{w} z \text{ implies } z \in F. \quad (6)$$

Then either

- (i) $F = \emptyset$ and $\|x_n\| \rightarrow +\infty$ or
- (ii) $F \neq \emptyset$ and $x_n \xrightarrow{w} \text{an element of } F$.

PROOF. Suppose that some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ defined by (5) is bounded. Since E is reflexive (every uniformly convex Banach space is reflexive), the subsequence $\{x_{n_i}\}$ must converge weakly to an element $z \in E$ and, hence, $z \in F$ by (6). Thus, $F = \emptyset$ implies $\|x_n\| \rightarrow +\infty$.

On the other hand, if $F \neq \emptyset$, then there is some $y_0 \in F$ and, by Lemma 1, $\{\|x_n - y_0\|\}$ is bounded, say, by R . Let $C = \{x \in K \mid \|x - y_0\| \leq R\}$. Then C is closed, convex, bounded, and nonempty. Furthermore, $x_n \in C$ for all $n \in N$. In order to apply Lemma 2, we define

$$U_n = \alpha_n T_n + (1 - \alpha_n)I \quad (7)$$

for all $n \in N$ where I denotes the identity mapping. Then $U_n(C) \subset C$ for all $n \in N$ because C is convex and $T_n(C) \subset C$. Additionally, we have

$$\begin{aligned} \|U_n x - U_n y\| &\leq \alpha_n \|T_n x - T_n y\| + (1 - \alpha_n) \|x - y\| \\ &\leq [\alpha_n k_n + (1 - \alpha_n)] \|x - y\| \\ &\leq k_n \|x - y\| \end{aligned} \quad (8)$$

for all $n \in N$ and $x, y \in C$. Furthermore,

$$x_{n+1} = U_n x_n \quad (9)$$

for all $n \in N$ and

$$\bigcap_{n \in N} \text{Fix}(T_n) = \bigcap_{n \in N} \text{Fix}(U_n) \quad (10)$$

because $\text{Fix}(U_n) = \text{Fix}(T_n)$ for all $n \in N$. Lemma 2 shows that

$$\lim_{n \rightarrow \infty} J_E(y_1 - y_2)(x_n) \quad (11)$$

exists for all $y_1, y_2 \in F$ and so, if z_1 and z_2 are two weak subsequential limits of $\{x_n\}$, then $J_E(y_1 - y_2)(z_1 - z_2) = 0$. By (6), z_1 and z_2 are in F . Thus, we may take $y_i = z_i$ for $i = 1, 2$ and so

$$0 = J_E(z_1 - z_2)(z_1 - z_2) = \|z_1 - z_2\|^2. \quad (12)$$

Since all weak subsequential limits of bounded sequence $\{x_n\}$ are, thus, equal, $\{x_n\}$ must converge weakly to an element of F . This completes the proof. \square

REFERENCES

- [1] J. B. Baillon, Ph.D. thesis, Université de Paris.
- [2] R. E. Bruck, *A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces*, Israel J. Math. 32 (1979), no. 2-3, 107-116. MR 80j:47066. Zbl 423.47024.

- [3] K. Goebel and W. A. Kirk, *A fixed point theorem for asymptotically nonexpansive mappings*, Proc. Amer. Math. Soc. **35** (1972), 171–174. MR 45 7552. Zbl 256.47045.
- [4] J. Gornicki, *Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces*, Comment. Math. Univ. Carolin. **30** (1989), no. 2, 249–252. MR 90g:47097. Zbl 686.47045.
- [5] Z. Opial, *Weak convergence of the sequence of successive approximations for nonexpansive mappings*, Bull. Amer. Math. Soc. **73** (1967), 591–597. MR 35#2183. Zbl 179.19902.
- [6] G. B. Passty, *Construction of fixed points for asymptotically nonexpansive mappings*, Proc. Amer. Math. Soc. **84** (1982), no. 2, 212–216. MR 83a:47065. Zbl 489.47035.
- [7] J. Schu, *Weak convergence to fixed point of asymptotically nonexpansive mappings in uniformly convex Banach spaces with a Fréchet-differentiable norm*, RWTH Aachen, Preprint in Lehrstuhl C für mathematik no.21,1990.
- [8] H. K. Xu, *Existence and convergence for fixed points of mappings of asymptotically nonexpansive type*, Nonlinear Anal. **16** (1991), no. 12, 1139–1146. MR 92h:47089. Zbl 747.47041.

SHARMA AND THAKUR: SCHOOL OF STUDIES IN MATHEMATICS, PT. RAVISHANKAR SHUKLA UNIVERSITY, RAIPUR 492010, INDIA

CHO: DEPARTMENT OF MATHEMATICS, GYEONGSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk