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ABSTRACT. For a positive integer n, let f(n) be the number of essentially different ways
of writing n as a product of factors greater than 1, where two factorizations of a positive
integer are said to be essentially the same if they differ only in the order of the factors.
This paper gives a recursive formula for the multiplicative partition function f(n).
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A multi-partite number of order j is a j-dimensional vector, the components of
which are nonnegative integers. A partition of (n1,7>,...,71;) is a solution of the vector
equation

Z(Tllk,HZk,...,njk)=(1’l1,n2,...,1’lj) (1)

k
in multi-partition numbers other than (0,0,...,0). Two partitions which differ only
in the order of the multi-partite numbers are regarded as identical. We denote by
p(ni,ny,...,n;) the number of different partitions of (n,n2,...,n;). For example,
p(3) =3since3=2+1=1+1+1 and p(2,1) = 4 since (2,1) = (2,0) + (0,1) =
(1,0) + (1,0) + (1,0) = (1,0) + (1,1). Let f(1) = 1 and for any integer n > 1, let f(n)
be the number of essentially different ways of writing n as a product of factors greater
than 1, where two factorizations of a positive integer are said to be essentially the same
if they differ only in the order of the factors. For example, f(12)p(2,1) = 4 since 12 =
2-6=3-4=2-2-3.In general, if n = p{''py* - -p;lj, then f(n) = p(n1,nz,...,n;).
We find recursive formulas for the multi-partite partition function p(n;,no,...,n;j).
The most useful formula known to this day for actual evaluation of the multi-partite
partition function is presented in Theorem 4.

For convenience, we define some sets used in this paper. For a positive integer v,
let M2 be the set of r-dimensional vectors with nonnegative integer components and
M, be the set of r-dimensional vectors with nonnegative integer components not all
of which are zero. The following three theorems are well known.

THEOREM 1 (Euler [3]; see also [1, p. 2]). Ifn >0, then
pn)= > (-1)m! (p(n—%m(Bm—l))+p(n—%(3m+1))>, (2)
m=1

where we recall that p (k) = 0 for all negative integers k.
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THEOREM 2. Ifn >0, then p(0) =1 and

n

n-pn)=> ok) - -pn-k), 3)
k=1

where o(m) = > d.
dlm

THEOREM 3 ([1, Ch. 12]). Ifg(x1,xo2,...,Xy) is the generating function for p (1) and
|xi| <1 fori<r, then

1
9(X1,X2,..,Xy) ﬂg XXX
(4)
=1+ > pOi)x"xy? .- X,
MmeMy

Similarly, we can extend the equation of Theorem 2 to multi-partite numbers as
follows.

THEOREM 4. For 7 € M,, we have

. o (ged[1]) _—
p(n) = —cdill di-p(ri-1). (5)
ljsnj%rjkr gc d[l]
leMy

PROOF. Llet g(xi1,x2,...,X,) be the function defined in Theorem 3. Taking the ith
partial logarithmic derivative of the product formula for g(x,x2,...,X;) in (4), we get

09 (X1,X2,0-,Xy) Xi Li-TTjox;
. L;
axl g(XIaXZV"!XV) lEMyl Hl li

Taking the ith partial derivative of the right-hand side of (4), we get

_ 09(x1,X2,...,Xy)

> nip(A)X XX ox;
1

NneMy

- Xi

. k
=g(x1,X2,...,Xy) Z ZH'(HX?)
j=1

feM, k=1

, k
=| > pOw)x"xy? - xm Z Z (HX§J> )
eM, k=1 Jj=1

meM?
(7)

Comparing the coefficients of both sides of (7), we get



RECURSIVE FORMULAE FOR THE MULTIPLICATIVE PARTITION FUNCTION 215

ni-p() = >  ti-pm)
i, feM? keM,
w+kt=i
- S pei-h Y b
; ik (8)
leMy klged (1)
o cd[*] L=
- oleedll) iy
Lj=n; for j<r ng[l]
leM,
The theorem is proved. O

COROLLARY 5. For 1 € M,, we have

(ini)-v(ﬁ)— > a(ng[:])(ili)-p(ﬁ—'). 9)

i=1 Lisn;j for j<r i=1
leM,
For positive integers m and n, let
(m,n). = max k. (10)
klm
nl/k is an integer

The following properties of (m,n). are easy to obtain:
1) (m,p" py? - p*) =ged (m,ny,ne,...,ng)
(2) (m,nk)- =ged[(m,n)., (mk)] for gcd (n,k) =1
(3) (mk,n). = (m,n). - (k,n)- for ged(m,k) = 1.

From the point of view of the multiplicative partition function, Theorem 4 can be
restated as the following theorem.

THEOREM 6. let n,t be positive integers and let p be a prime number such that
p + m. Then we get

o) (m
-3 > 7l e () an

i=1llm

In [4], MacMahon presents a table of values of f(n) for those n which divide one of
210.38 210.3.5 29.32.51 28.33.51 26.32.52 25.33.52 1In [2], Canfield, Erdds,
and Pomerance commented that they doubted the correctness of MacMahon’s figures.
Specifically,

p(10,5) = 3804, not 3737, (12)

p(9,8) =13715, not 13748, (13)
p(10,8) = 21893, not 21938, (14)
p(4,1,1) =38, not 28. (15)

From Theorem 4 we can easily be sure that Canfield, Erd6s and Pomerance comment
is true.
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