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Abstract. Let 
{
Xij

}
be a double sequence of pairwise independent random variables. 

If P
{|Xmn| ≥ t

}≤ P
{|X| ≥ t

}
for all nonnegative real numbers t and E|X|p( log+ |X|)3 <∞,

for 1<p < 2, then we prove that∑m
i=1

∑n
j=1

(
Xij−EXij

)
(mn)1/p

�→ 0 a.s. as m∨n �→∞. (0.1)

Under the weak condition of E|X|p log+ |X| <∞, it converges to 0 in L1. And the results
can be generalized to an r -dimensional array of random variables under the conditions

E|X|p( log+ |X|)r+1 <∞, E|X|p( log+ |X|)r−1 <∞, respectively, thus, extending Choi and
Sung’s result [1] of the one-dimensional case.
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1. Introduction. Etemadi [3] extended the classical law of large numbers for i.i.d.
random variables to the case where the random variables are pairwise i.i.d., i.e., if {Xn}
is a sequence of pairwise i.i.d. random variables with E|X1|<∞, then

∑n
i=1

(
Xi−EXi

)
n

�→ 0 a.s. (1.1)

In 1985, Choi and Sung [1] have shown that if {Xn} are pairwise independent and
are dominated in distribution by a random variable X with E|X|p( log+ |X|)2 <∞, 1<
p < 2, then 

∑n
i=1(Xi−EXi)

n1/p �→ 0 a.s. In addition, if E|X|p <∞, then it converges to 0 in
L1.

For a double sequence 
{
Xij
}

of pairwise i.i.d. random variables, also Etemadi [3]
proved that if E|X11| log+ |X11|<∞, then

∑m
i=1

∑n
j=1

(
Xij−EXij

)
mn

�→ 0 a.s. as m∨n �→∞. (1.2)

Now, we are interested in the extension of Choi and Sung’s result of the one-
dimensional case to a multi-dimensional array of pairwise independent random vari-
ables, which is established in the next section.

2. Main results. Let 
{
Xij
}

be a double sequence of random variables and let X′ij =
XijI

{|Xij| ≤ (ij)1/p}, X′′ij =XijI
{|Xij|> (ij)1/p} for 1<p < 2. Throughout this paper,
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c denotes an unimportant positive constant which is allowed to change and dk the
number of all divisors of integer k.

To prove the main theorem, we need the following lemmas.

Lemma 2.1. Let 
{
Xij
}

be a double sequence of pairwise independent random vari-
ables. If P

{|Xmn| ≥ t
}≤ P

{|X| ≥ t
}

for all nonnegative real numbers t, then

(a)
∞∑
i=1

∞∑
j=1

E
∣∣X′ij∣∣2

(ij)2/p ≤ cE|X|p log+ |X|,

(b)
∞∑
i=1

∞∑
j=1

E
∣∣X′′ij∣∣
(ij)1/p ≤ cE|X|p log+ |X| for 1<p < 2.

(2.1)

Proof. The estimation of E|X′ij|2 is given by

E
∣∣X′ij∣∣2 ≤

∫ (ij)2/p
0

P
(∣∣Xij

∣∣2 ≥ t
)
dt

≤
∫ (ij)2/p

0
P
(
|X|2 ≥ t

)
dt

=
∫ (ij)2/p

0

{
P
(
t ≤ |X|2 < (ij)2/p

)
+P

(
(ij)2/p ≤ |X|2

)}
dt

=
∫ (ij)1/p

0
x2dF(x)+(ij)2/pP

(
(ij)2/p ≤ |X|2

)
,

(2.2)

where F(x) is the distribution of X. If we use the fact that 
∑∞

k=i+1dk/k2/p =O
(
logi/

(i+1)2/p−1
)
, we obtain

∞∑
i=1

∞∑
j=1

1
(ij)2/p

∫ (ij)1/p
0

x2dF(x)≤ c
∞∑
k=1

dk
k2/p

∫ k1/p

0
x2dF(x)

≤ c
∞∑
i=0


 ∞∑
k=i+1

dk
k2/p


∫ (i+1)1/p

i1/p
x2dF(x)

≤ c
∞∑
i=0

logi
(i+1)2/p−1

∫ (i+1)1/p

i1/p
x2dF(x)

≤ cE|X|p log+ |X|<∞.

(2.3)

And

∞∑
i=1

∞∑
j=1

P
(
(ij)2/p ≤ |X|2)= ∞∑

k=1

dkP
(
k≤ |X|p)

=
∞∑
k=1


 k∑
j=1

dj


P(k≤ |X|p < k+1

)

= c
∞∑
k=1

k logkP
(
k≤ |X|p < k+1

)

≤ cE|X|p log+ |X|<∞,

(2.4)
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where we use the fact that
∑n

k=1dk =O(n logn). It follows that

∞∑
i=1

∞∑
j=1

E
∣∣X′ij∣∣2

(ij)2/p <∞, which proves (a). (2.5)

By the fact that 
∑n

k=1dk/k1/p = O
(
n1−(1/p) logn

)
, we can obtain (b) by the same

method.

The following lemma is a two parameter analog of [5, Lem. 3.6.1a].

Lemma 2.2. Let 
{
Xij
}

be a double sequence of pairwise independent random vari-
ables with EXij = 0, and let Smn =

∑m
i=1

∑n
j=1Xij . Then

E


 max

1≤i≤m
1≤j≤n

∣∣Sij∣∣



2

≤ c(logm)2(logn)2
m∑
k=1

n∑
l=1

E
∣∣Xkl

∣∣2. (2.6)

Proof. For m = 1 and n= 1, the inequality is trivial. If m> 1, let s be an integer
such that 2s−1 <m≤ 2s . And if n> 1, let t be an integer such that 2t−1 <n≤ 2t . We
can assume thatm, n> 1. We assign Xij to the point (i,j) of integer in (0,2s]×(0,2t]
(if m< i ≤ 2s or n < j ≤ 2t , set Xij = 0). Divide the interval (0,2s] into (0,2s−1] and
(2s−1,2s], each of these two intervals into two halves, and so on. Then the elements
of the ith partition are of length 2s−i, i = 0, . . . ,s. Also, divide the interval (0,2t] in
the same way. Then we obtain the (i,j)th partition Pij of (0,2s]× (0,2t] by the ith
partition of (0,2s] and the jth partition of (0,2t]. Every rectangle (0, i]× (0,j] is
the sum of at most (s+1)(t+1) disjoint subrectangles each of which belongs to a
different partition. We can write Sij =

∑s
k=0

∑t
l=0Ykl;ij , where Ykl;ij is the sum of all

r.v.’s belonging to the rectangle (a,b]× (c,d], b−a = 2k and d− c = 2l, which may
or may not be a summand of (0, i]× (0,j] so that some Ykl;ij may vanish. Let Tij =∑2i

k=1

∑2j
l=1 |Ykl|2, where Ykl is the sum of all r.v.’s which belong to the (k,l)-element of

Pij . If we put T =∑s
i=0

∑t
j=0Tij , by the elementary Schwarz inequality, we obtain

∣∣Sij∣∣2 ≤ (s+1)(t+1)
s∑

k=0

t∑
l=0

∣∣Ykl;ij∣∣2 ≤ (s+1)(t+1)T . (2.7)

Since ETij ≤
∑m

k=1

∑n
l=1E

∣∣Xkl
∣∣2, ET ≤ (s+1)(t+1)

∑m
k=1

∑n
l=1E

∣∣Xkl
∣∣2

. It follows that

E


 max

1≤i≤m
1≤j≤n

∣∣Sij∣∣2


≤ (s+1)2(t+1)2

m∑
k=1

n∑
l=1

E
∣∣Xkl

∣∣2

≤ c(logm)2(logn)2
m∑
k=1

n∑
l=1

E
∣∣Xkl

∣∣2.

(2.8)

Theorem 2.3. Let 
{
Xij
}

be a double sequence of pairwise independent random vari-
ables. If P

{|Xmn| ≥ t
}≤ P

{|X| ≥ t
}

for all nonnegative real numbers t and E|X|p( log+

|X|)3 <∞, for 1<p < 2, then

lim
m∨n �→∞

∑m
i=1

∑n
j=1

(
Xij−EXij

)
(mn)1/p = 0 a.s. (2.9)
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Proof. We denote by Smn =
∑m

i=1

∑n
j=1Xij, S′mn =

∑m
i=1

∑n
j=1X

′
ij . Then we obtain

the inequalities

∞∑
i=1

∞∑
j=1

P
{
Xij �=X′ij

}= ∞∑
k=1

dkP
{|X11|> k1/p}

≤
∞∑
k=1

dkP
{|X|> k1/p}

=
∞∑
i=1


 i∑
k=1

dk


∫ (i+1)1/p

i1/p
dF(x)

≤ c
∞∑
i=1

i logi
∫ (i+1)1/p

i1/p
dF(x)

≤ cE|X|p log+ |X|<∞,

(2.10)

Hence, by the Borel-Cantelli lemma,

∑m
i=1

∑n
j=1

(
Xij−X′ij

)
(mn)1/p �→ 0 a.s. (2.11)

Now, we use Chebyshev’s inequality and Lemma 2.1 to obtain

∞∑
k=1

∞∑
l=1

P
{∣∣∣∣∣

S′2k2l−ES′2k2l(
2k2l

)1/p

∣∣∣∣∣> ε
}
≤ c

∞∑
k=1

∞∑
l=1

VarS′2k2l(
2k2l

)2/p

= c
∞∑
k=1

∞∑
l=1

1(
2k2l

)2/p

2k∑
i=1

2l∑
j=1

VarX′ij

≤ c
∞∑
i=1

∞∑
j=1

EX′ij
2

(ij)2/p

≤ cE|X|p log+ |X|p <∞,

(2.12)

which follows easily by summation by parts. It follows that

S′2k2l−ES′2k2l(
2k2l

)1/p �→ 0 a.s. (2.13)

And let

Tkl = max
2k≤m<2k+1

2l≤n<2l+1

∣∣∣∣∣
S∗2k2l(

2k2l
)1/p −

S∗mn
(mn)1/p

∣∣∣∣∣

≤
∣∣S∗2k2l

∣∣(
2k2l

)1/p + max
2k≤m<2k+1

2l≤n<2l+1

∣∣S∗mn
∣∣

(mn)1/p ,
(2.14)

where S∗mn = S′mn−ES′mn.
By using Lemma 2.2, we obtain, for any ε > 0,
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∞∑
k=0

∞∑
l=0

P


 max

2k≤m≤2k+1

2l≤n≤2l+1

∣∣S∗mn
∣∣

(mn)1/p ≥
ε
2


≤ c

∞∑
k=0

∞∑
l=0

1(
2k2l

)2/p E


 max

2k≤m≤2k+1

2l≤n≤2l+1

∣∣S∗mn
∣∣



2

≤ c
∞∑
k=0

∞∑
l=0

(k+1)2(l+1)2(
2k+12l+1

)2/p

2k+1∑
i=1

2l+1∑
j=1

E
∣∣X′ij∣∣2

≤ c
∞∑
i=1

∞∑
j=1

(log2 ij)2

(ij)2/p E
∣∣X′ij∣∣2,

(2.15)

where the last inequality follows easily be summation by parts. But

∞∑
i=1

∞∑
j=1

(log2 ij)2

(ij)2/p E
∣∣X′ij∣∣2 ≤

∞∑
k=1

dk(log2k)2

k2/p

∫ k1/p

0
x2dF(x)

≤
∞∑
i=0


 ∞∑
k=i+1

dk(log2k)2

k2/p


∫ (i+1)1/p

i1/p
x2dF(x)

≤ c
∞∑
i=0

i1−(2/p)(logi)3
∫ (i+1)1/p

i1/p
x2dF(x)

≤ cE|X|p( log+ |X|p)3 <∞,

(2.16)

where we use 
∑∞

k=1
dk(log2 k)2

k2/p = O
(
(logi)3

i(2/p)−1

)
which follows by summation by parts. 

Hence, (2.13), (2.15), and (2.16) give us

S′mn−ES′mn
(mn)1/p �→ 0 a.s. (2.17)

Combining (2.11) and (2.17), we get

Smn−ES′mn
(mn)1/p �→ 0 a.s. (2.18)

Since

Smn−ESmn

(mn)1/p = Smn−ES′mn
(mn)1/p −

∑m
i=1

∑n
j=1E

∣∣X′′ij∣∣
(mn)1/p , (2.19)

it remains to prove that the second term of the right-hand side converges to 0 a.s. By
Lemma 2.1(b), we obtain

∞∑
k=1

∞∑
l=1

∑2k
i=1

∑2l
j=1E

∣∣X′′ij∣∣(
2k2l

)1/p ≤ c
∞∑

i,j=1

E
∣∣X′′ij∣∣
(ij)1/p

≤ cE|X|p log+ |x|<∞,
(2.20)

from which, it follows that

lim
k∨l �→∞

∑2k
i=1

∑2l
j=1E

∣∣X′′ij∣∣(
2k2l

)1/p = 0. (2.21)
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But since

T ′kl = max
2k≤m≤2k+1

2l≤n≤2l+1

∣∣∣∣∣∣∣
∑m

i=1

∑n
j=1E

∣∣X′′ij∣∣
(mn)1/p −

∑2k
i=1

∑2l
j=1E

∣∣X′′ij∣∣(
2k2l

)1/p

∣∣∣∣∣∣∣
≤ c(

2k+12l+1
)1/p

2k+1∑
i=1

2l+1∑
j=1

E
∣∣X′′ij∣∣,

(2.22)

T ′kl converges to 0 which implies that, by (2.21),∑m
i=1

∑n
j=1E

∣∣X′′ij∣∣
(mn)1/p �→ 0. (2.23)

This completes the proof.

Corollary 2.4. Let 
{
Xij
}

be a double sequence of pairwise i.i.d. random variables

with E|X11|p
(
log+ |X11|

)3 <∞, for 1<p < 2. Then

lim
m∨n �→∞

∑m
i=1

∑n
j=1

(
Xij−EXij

)
(mn)1/p = 0 a.s. (2.24)

Remark. The generalization to r -dimensional arrays of random variables can be
obtained easily under the condition E|X|p( log+ |X|)r+1 <∞.

Theorem 2.5. Let 
{
Xij
}

be a double sequence of pairwise independent random vari-
ables. If P

{|Xij| ≥ t
} ≤ P

{|X| ≥ t
}

for all nonnegative real numbers t and E|X|p log+

|X|<∞, 1<p < 2, then∑m
i=1

∑n
j=1

(
Xij−EXij

)
(mn)1/p �→ 0 in L1 as m∨n �→∞. (2.25)

Proof. Since 
{
Xij
}

are pairwise independent, 
{
X′ij −EX′ij

}
are orthogonal which

implies that

E

∣∣∣∣∣
∑m

i=1

∑n
j=1

(
X′ij−EX′ij

)
(mn)1/p

∣∣∣∣∣
2

≤
∑m

i=1

∑n
j=1E

∣∣X′ij∣∣2

(mn)2/p . (2.26)

Since

E

∣∣∣∣∣
∑m

i=1

∑n
j=1

(
Xij−EXij

)
(mn)1/p

∣∣∣∣∣≤ E

∣∣∣∣∣
∑m

i=1

∑n
j=1

(
X′ij−EX′ij

)
(mn)1/p

∣∣∣∣∣
+2

∑m
i=1

∑n
j=1E

∣∣X′′ij∣∣
(mn)1/p ,

(2.27)

it suffices to show that 
(∑m

i=1

∑n
j=1E|X′ij|2

)
/(mn)2/p converges to 0 as m∨n �→ 0. 

But this can be shown by a method similar to that used in the proof of (2.23) in
Theorem 2.3.

Corollary 2.6. Let 
{
Xij
}

be a double sequence of pairwise i.i.d. random variable
with E|X11|p log+ |X11|<∞, for 1<p < 2. Then∑m

i=1

∑n
j=1

(
Xij−EXij

)
(mn)1/p �→ 0 in L1 asm∨n �→∞. (2.28)
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Remark. The generalization to r -dimensional arrays of random variables can be
obtained under the condition E|X|p( log+ |X|)r+1 <∞.
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