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Abstract. The authors obtain oscillation results for the even order forced neutral differ-
ence equation

∆m(yn+pnyn−k
)+qnf

(
yn−�

)= hn. (∗)
Examples illustrating the results are included.
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1. Introduction. In this paper, we consider forced even order nonlinear neutral
difference equations of the form

∆m(yn+pnyn−k
)+qnf

(
yn−�

)= hn, (1)

where m ≥ 2 is even, k,� ∈ N = {0,1,2, . . .}, ∆yn = yn+1−yn is the usual forward
difference operator, {pn},{qn}, and {hn} are real sequences, and f : R �→ R is con-
tinuous with uf(u) > 0 for u �= 0.
Let σ = max{k,�} and let N0 ∈ N be fixed. By a solution of (1), we mean a real

sequence {yn} defined for all n ≥ N0−σ and satisfying (1) for all n ≥ N0. Here, we
are concerned only with the nontrivial solutions of (1). Such a solution {yn} of (1)
is said to be oscillatory if, for any N ≥ N0, there exists n > N such that yn+1yn ≤ 0.
Otherwise, the solution is said to be nonoscillatory. Throughout the paper, we assume
that the following conditions hold:
(C1) qn ≥ 0 for all n∈N, and qn is not eventually identically zero;
(C2) f is nondecreasing and there exists K > 0 such that

|f(uv)| ≥K|f(u)||f(v)| for all u,v ∈R, (2)

and ∫ ±c

0

ds
f(s)

<∞ for all c > 0. (3)

In recent years, the oscillation of delay difference equations, especially unforced
equations, has been studied by a variety of authors. For recent contributions to the
literature, see, for example, the papers [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and the references
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contained therein. However, relatively few oscillation results are known for forced
equations (see [5, 6, 7, 8, 9, 10, 11]). In this paper, we give sufficient conditions which
ensure that all solutions of (1) are oscillatory under the influence of certain classes of
forcing terms.
In the sequel, we often make use of the following conditions:
(H1) 0≤ pn < P1 < 1, where P1 is a constant;
(H2) there exists a real sequence {Fn} such that ∆mFn = hn;
(H3)

∑∞
n=N0

qnf
(( n−l

2m−1
)(m−1))=∞;

(H4) {Fn} is oscillatory and limn �→∞Fn = 0;
(H5) {Fn} is k periodic;
(H6)

∑∞
n=N0

qn =∞;
(H7) there exists γ > 0 such that f(u)/u≥ γ > 0 for u �= 0.
We also need the following lemmas whose proof can be found in [1].

Lemma 1 ([1, Thm. 1.7.11]). Let zn > 0 be defined for n≥ a with ∆mzn of constant
sign for n≥ a and not identically zero. Then there exists an integer j, 0≤ j ≤m, with
m+j odd for ∆mzn ≤ 0 and m+j even for ∆mzn ≥ 0, such that for n≥ a

j ≤m−1 implies (−1)j+i∆izn > 0 for j ≤ i≤m−1
j ≥ 1 implies ∆izn > 0 for 1≤ i≤ j−1. (4)

Lemma 2 ([1, Cor. 1.7.12]). Let zn > 0 be defined for n≥ a with ∆mzn ≤ 0 for n≥ a
and not eventually identically zero. Then there exists an integer N1 ≥ a such that

zn ≥ (n−N1)(m−1)

(m−1)! ∆m−1z2m−j−1n (5)

for n≥N1, where j is defined in Lemma 1.

Remark 1. Observe that under the hypotheses of Lemma 1, if zn is increasing,
then

zn ≥ 1
(m−1)!

(
n

2m−1

)(m−1)
∆m−1zn (6)

for n≥ 2m−1N1.

2. Main results. Our first theorem is a new result for unforced equations, but the
technique of proof will be used in subsequent theorems for forced equations.

Theorem 1. Let hn ≡ 0 for all n∈N, and let (H1) and (H3) hold. Then all solutions
of (1) are oscillatory.

Proof. Let {yn} be a solution of (1) with yn > 0, yn−k > 0, and yn−� > 0 for
n≥N1 ≥N0. Setting

zn =yn+pnyn−k, (7)

we obtain zn ≥yn > 0 and

∆mzn =−qnf
(
yn−�

)≤ 0 (8)
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for n≥N1. By Lemma 1, there exists an odd integer j with 0≤ j ≤m such that

∆izn > 0 for i= 1, . . . ,j−1
and

(−1)j+i∆izn > 0 for i= j,j+1, . . . ,m−1
(9)

for n≥N2 for some N2 ≥N1.
Since m is even, ∆zn > 0 and ∆m−1zn > 0 for n≥N2. From (7), we have

zn−pnyn−k =yn, (10)

so zn ≥yn and {zn} increasing imply that

0< (1−P1)zn ≤ (1−pn)zn ≤yn. (11)

Again, since zn is increasing, Remark 1 and (11) imply that there exists N3 ≥N2 such
that

yn ≥ (1−P1)zn ≥ (1−P1)
(m−1)!

(
n

2m−1

)(m−1)
∆m−1zn (12)

for n≥ 2m−1N3. Applying (C2) to (12) yields

f(yn−�)≥K2f
(

(1−P1)
(m−1)!

)
f
((

n−�
2m−1

)(m−1))
f
(
∆m−1zn−�

)

≥K1f
((

n−�
2m−1

)(m−1))
f
(
∆m−1zn

) (13)

for n≥N4 ≥ 2m−1N3, where K1 =K2f
(

(1−P1)
(m−1)!

)
> 0. Combining (8) and (13), we obtain

∆mzn+K1qnf
((

n−�
2m−1

)(m−1))
f
(
∆m−1zn

)≤ 0 (14)

for n≥N4 and summing, we get

K1

n−1∑
s=N4

qsf
((

s−�
2m−1

)(m−1))
≤−

n−1∑
s=N4

∆mzs

f
(
∆m−1zs

) ≤
∫ ∆m−1zN4

∆m−1zn

du
f(u)

. (15)

Letting n �→∞ and using (C2), we get

∞∑
n=N4

qnf
((

n−�
2m−1

)(m−1))
<∞, (16)

which contradicts (H3).

Theorem 2. If (H1) and (H2)–(H4) holds, then all the solutions of (1) are oscillatory.
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Proof. Let {yn} be a nonoscillatory solution of (1) with yn > 0, yn−k > 0, and
yn−� > 0 for all n≥N1 ≥N0. For n≥N1, let

xn =yn+pnyn−k−Fn. (17)

Then from (1) and (H2),

∆mxn =−qnf(yn−�)≤ 0. (18)

Hence, xn > 0 or xn < 0 for n ≥ N2 for some N2 ≥ N1. But xn < 0 implies that 0 <
yn < Fn for n≥N2 which is impossible since {Fn} oscillates. Thus, xn > 0 for n≥N2.
From Lemma 1, it follows that there is an odd integer j with 0≤ j ≤m such that

∆ixn > 0, for i= 1, . . . ,j−1
and

(−1)j+i∆ixn > 0, for i= j,j+1, . . . ,m−1
(19)

for n≥N3 ≥N2.
Clearly, ∆xn > 0 for n≥N3. For 0< ε < (1−P1)xN3 , (H4) implies that there exists an

integer N4 > N3 such that |Fn|< ε/2 for n≥N4. From (17), we have yn ≤ xn+Fn. So

xn−pnxn−k ≤yn−Fn+pnFn−k < yn+ ε
2
+ ε
2

pn. (20)

Hence,

0< (1−P1)xN3−ε < (1−P1)xn−ε < yn (21)

for n ≥ N4. Setting rn = (1−P1)xn−ε for n ≥ N4, we get 0 < rn < yn, ∆rn > 0, and
∆mrn = −(1−P1)qnf(yn−�) ≤ 0. Now, proceeding as in the proof of Theorem 1, we
again obtain a contradiction.

We can remove the “oscillatory” part in condition (H4) and obtain the weaker con-
clusion that the solutions either oscillate or converge to zero.

Corollary 3. If (H1), (H2), and (H3) hold and limn �→∞Fn = 0, then all the solutions
of (1) are either oscillatory or converge to zero.

Proof. Proceeding as in the proof of Theorem 2, we again obtain that xn > 0 or
xn < 0 forn≥N2. If xn < 0, then 0< yn < Fn. So, {yn} �→ 0 asn �→∞. The remainder
of the proof is the same as proof of Theorem 2.

Our next result replaces condition (H4) with a periodicity condition on forcing term.

Theorem 4. If (H1)–(H3), and (H5) hold, then every solution of (1) is oscillatory.

Proof. Let {yn} be a nonoscillatory solution of (1) with yn > 0, yn−k > 0, and
yn−� > 0 for all n ≥ N1 ≥ N0. Defining xn as in (17), we have that (18) holds and so
either xn > 0 or xn < 0 for n≥N2 for some N2 ≥N1.
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We claim that {yn} is bounded. If not, then {yn} is unbounded and since 0 <
yn < xn + Fn and {Fn} is bounded, {xn} must be unbounded and eventually posi-
tive. Clearly, ∆xn > 0 for large n since ∆xn < 0 implies that {xn} is bounded. From
(17), we have

xn−pnxn−k =yn−Fn−pnpn−kyn−2k+pnFn−k, (22)

for n≥N3 for some N3 ≥N2. That is,

(1−pn)xn ≤yn−(1−pn)Fn, (23)

or

0< (1−P1)(xn+Fn)≤yn. (24)

Since {Fn} is periodic, there exist real numbers c1 and c2 and two increasing se-
quences {n′i} and {n′′i } ⊂N such that limi �→∞n′i = limi �→∞n′′i =∞, Fn′i = c1, Fn′′i = c2,
and c1 ≤ Fn ≤ c2 for all n≥N0. Hence, for n≥n′i, i≥ 1, we have

xn+c1 ≥ xn′i+c1 = xn′i+Fn′i ≥yn′i > 0. (25)

Thus,

0< (1−P1)(xn+c1)≤ (1−P1)(xn+Fn)≤yn (26)

for n≥n′i. Setting rn = (1−P1)(xn+c1) for n≥n′i, and i≥ 1, we obtain 0< rn ≤yn,
∆rn > 0, and

∆mrn =−(1−P1)qnf(yn−�)≤ 0. (27)

Now, applying Lemma 1 and proceeding as in the proof of Theorem 1, we arrive at a
contradiction. Thus, our claim holds, that is, {yn} is bounded.
The boundedness of {yn} implies that {xn} is bounded. Since m is even, j is odd.

So (19) implies that ∆xn > 0 for n≥N2. Again, proceeding as the proof of Theorem 1,
we arrive at a contradiction. Hence, {yn} is oscillatory.

Remark 2. With appropriate modifications in condition (C1), (C2), and (H3), Theo-
rems 1, 2, and 4 and Corollary 3 also hold for the more general equation

∆m(yn+pnyn−k
)+ m∑

j=1
qj,nfj

(
yn−�j

)= hn. (28)

Our final result, in this paper, is for the case pn ≡ 1.

Theorem 5. If pn ≡ 1 and the conditions (H2) and (H5)–(H7) hold, then all the solu-
tions of (1) are oscillatory.

Proof. Let {yn} be a nonoscillatory solution of (1) with yn > 0, yn−k > 0, and
yn−� > 0 for all n ≥ N1 ≥ N0. Since {Fn} is periodic, there is a real number ω such
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that the sequence {Fn−ω} is oscillatory. For n ≥ N1, let wn = yn+yn−k−(Fn−ω).
Then

∆mwn =−qnf(yn−�)≤ 0, (29)

and so {wn} is monotonic. Ifwn < 0 eventually, then 0< yn < Fn−ω for largenwhich
is impossible since {Fn−ω} oscillates. Thus, wn > 0 for n ≥ N2 for some N2 ≥ N1.
By Lemma 1, we have ∆m−1wn > 0 for n ≥ N2. Summing (29) from N2 to n−1 and
applying (H7), we obtain

∆m−1wN2 =
n−1∑
s=N2

qsf (ys−�)+∆m−1wn >
n−1∑
s=N2

qsf (ys−�) > γ
n−1∑
s=N2

qsys−�, (30)

which yields

∞∑
s=N2

qsys−� <∞. (31)

From Lemma 1, we see that j is odd, and, hence, ∆wn > 0 for n≥N2. This means that
for n≥N2,

wn−wn−k =yn−yn−2k−(Fn−Fn−k), (32)

which, in view of (H5), yields

wn−wn−k =yn−yn−2k > 0, (33)

or yn > yn−2k for n ≥ N2. Therefore, liminfn �→∞yn > 0 and so
∑∞

s=N2
qs <∞, which

contradicts (H6).

It should be pointed out that whether results analogous to Theorems 1, 2, 4, and
5 and Corollary 3 hold when m is odd remains an open question. We conclude this
paper with some examples of the above theorems.

Example 1. Consider the difference equation

∆m(yn+ 1
2yn−k

)+3(2)m−1yα
n−� = 0, (E1)

where α∈ (0,1) is a ratio of odd positive integers, k is any positive even integer, and
� is any nonnegative integer such that α� is an odd integer. It is easy to see that all
the conditions of Theorem 1 are satisfied. In fact, {yn} = {(−1)n} is an oscillatory
solution of (E1).

Example 2. In the equation

∆m(yn+ 1
2yn−k

)+(3(2)m−1− 3m

2n+m

)
yα

n−� =
(−1)n3m

2n+m , (E2)

let α∈ (0,1) be the ratio of odd positive integer, k an even positive integer, and � any
nonnegative integer such that α� is an odd integer. If we let {Fn} = {(−1)n/2n}, then
all the conditions of Theorem 2 are satisfied and, in fact, {yn} = {(−1)n} is oscillatory
solution of (E2).
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Example 3. Consider the difference equation

∆m(yn+ 1
4yn−k

)+2m−2yα
n−� = 3(2)m−1(−1)n, (E3)

where α ∈ (0,1) is a ratio of odd positive integer, k is an even positive integer, and
� is any nonnegative integer such that α� is an even integer. Here, we take {Fn} =
{3/2(−1)n}. Then all the conditions of Theorem 4 are satisfied and {yn} = {(−1)n}
is an oscillatory solution of (E3).

Example 4. The difference equation

∆m(yn+yn−k)+2m+1yn−� = 2m+2(−1)n = 0, (E4)

where k and � are positive even integers and {Fn} = {4(−1)n}, satisfies all the condi-
tions of Theorem 5. Here, {yn} = {(−1)n} is an oscillatory solution of (E4).
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