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ABSTRACT. The natural duality between “topological” and “regular,” both considered as
convergence space properties, extends naturally to p-regular convergence spaces, resulting
in the new concept of a p-topological convergence space. Taking advantage of this duality,
the behavior of p-topological and p-regular convergence spaces is explored, with particular
emphasis on the former, since they have not been previously studied. Their study leads to
the new notion of a neighborhood operator for filters, which in turn leads to an especially
simple characterization of a topology in terms of convergence criteria. Applications include
the topological and regularity series of a convergence space.
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Introduction. In 1990, G. Richardson and one of the authors introduced the notion
of p-regular convergence space, [6], defined as follows: If g and p are convergence
structures on a set X, then the space (X, q) is p-regular if cl, & A, x whenever & - X,
where “cl,” is the p-closure operator. Clearly p-regularity is equivalent to regularity
when p = q. By varying p, one can characterize various convergence properties in
terms of p-regularity (see [6, 7]).

More recently, Kent and Richardson [7] developed some ideas and results due to
Kowalsky [8], Cook and Fischer [1], and Biesterfeldt [2] to give convergence character-
izations of the properties “topological” and “regular” so as to reveal a fundamental
duality between these notions. These characterizations made use of “diagonal” ax-
ioms F and R which are in a natural way dual to each other. (It should be noted that
the axiom called R in this paper was called DF in [7].)

In this paper, we begin by proving the p-regularity of a convergence space (X, q) also
has a “diagonal” characterization in terms of an axiom we call R, 4, which is obtained
by making a minor alteration in the axiom R. We then use the dual axiom F, 4 to define
(and introduce) the dual notion of a “p-topological convergence space.”

Our goal is two-fold. We wish to study and develop this new concept of a p-
topological convergence space, while simultaneously exploring the duality alluded
to in the title of the paper. The approach based on duality is most useful in examining
the structural behavior of p-topological and p-regular spaces as well as their upper
and lower modifications. This approach is adopted in Sections 1 and 4. In Section 2,
we study some aspects of p-topological spaces which do not have obvious analogues
in the setting of p-regular spaces. Section 3 introduces the “neighborhood operator
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for filters” which seems to be “tailor-made” for the study of p-topological spaces and
is used extensively in Section 4. The characterization of p-topological spaces, given
in Theorem 3.2, yields a corollary which gives a simple and elegant characterization
of a topology in terms of convergence criteria.

As is shown in Section 2 of this paper and also in [6, 7], both of the properties
“p-topological” and “p-regular” can be adapted to characterize various convergence
and topological concepts and, thereby, reveal underlying relationships between them.
Other applications of these notions include the regularity and topological series of a
convergence space which are discussed briefly in Section 5.

1. The Axioms F, ; and R, ;. For standard notation and terminology pertaining to
convergence spaces, the reader is referred to [7]. In particular, F(X) denotes the set
of all filters on a set X, U(X) the set of all ultrafilters on X, and C(X) the complete
lattice of all convergence structures on X (with the discrete topology as the greatest
element). Let x denote the fixed ultrafilter on X generated by x € X.

If (X,q) is a convergence space and J an arbitrary set, let # € F(J) andlet o : ] —
F(X) be an arbitrary “selection function.” We define kg% to be the filter Urcs Nxer
o (x) in F(X); ko% is called the compression of ¥ relative to o .

We, next, define two axioms pertaining to two convergence structures p,q on a set X.
F, 4 Let J be any set, ¢: ] — X, and let 0 : J] — F(X) have the property that o () 2,

Y(y) forall y € J.If F € F(J) is such that ¢(%F) A x, then ko%F A x.
Ry Let J be any set, ¢: J] — X and let 0 : ] — F(X) have the property that o (y) LR
Y (y), forall y € J.If ¥ € F(J) is such that ko % 4 x, then Y (%) 2 x.

THEOREM 1.1. Let (X,q) be a convergence space and p € C(X). Then (X,q) is p-
regular if and only if p and q satisfy Ry 4.

PROOF. Recall that (X,q) is p-regular if cl, (%) L x whenever ¥ - x.

(=) Assume that (X,q) and p satisfy R, 4. Let J = {(4,»): 4 € UX), y € X, % LN
v}. Define @: ] — X by ¢p(%,y) = vy and o: ] — F(X) by 0(%,y) = %. Note that
o(z) L Y(z), forallz=(9,y)e].

Assume that F -% x. We define a filter % € F(J) as follows: for each F € F, let
Hr = {(9,y) € J: F € 4}, and let ¥ be the filter on J generated by {Hg: F € F}.
Since F € o (%,y) for every (4,y) € Hg, F € ko¥, so ko¥# > F. Thus, ko ¥ A x.
But observe that @ (Hf) = cl, (F), so clp (F) = ¢ (#). By Ry 4, @ (%) A x, which then
implies that cl, (%) A x. Thus, (X,q) is p-regular.

(=) Assume that (X, q) is p-regular. Let J, o, ¢ be as in R, 4 and let ¥ € F(J) such
that k% - x. We claim that cly(koF) < w(F). Let F € F and choose A, € o(y),
for every y € F. Then o (y) Z, Y (y), for every y € F, which implies that ¢/(y) €
cly (UyerAy) holds for every v € F, and so @(F) < clp (U, erAy). Since U, crAy is a
basic set in ko %, the claim is verified. By p-regularity, cl, (ko %) R x, which implies
that ¢/(F) - x. O

If (X,q) is a convergence space and p € C(X), then (X,q) is defined to be p-
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topological if (X,q) and p satisfy the axiom F, ;. Note that, by Theorem 1.1, (X,q)
is p-regular if and only if (X,q) and p satisfy R, 4. Since F,, ; and R, 4 are dual to each
other, “p-topological” and “p-regular” are likewise dual properties. In the special case
where p = q, F;; and R, ; are denoted by F and R, respectively.

THEOREM 1.2. Let (X,q) be a convergence space.
(i) (X,q) is topological if and only if (X,q) satisfies F.
(ii) (X,q) is regular if and only if (X, q) satisfies R.

PROOF. The first assertion is proved in [6], the second by combining results from
[2, 1]. O

It follows from Theorem 1.2 that “p-topological” generalizes “topological” in the
same way that “p-regular” generalizes “regular”. In the next theorem, F, ; and Ry 4
are applied directly to determine the behavior of these properties relative to initial
constructs.

THEOREM 1.3. Initial structures.

(i) Let{(Xi,qi):i €I} be a setof spaces together with a set of convergence structures
pi which satisfies ¥, 4, for all i € I. Let X be a set and let f;: X — X; be a mapping,
for each i € 1. If q is the initial structure on X relative to the families {(X;,q;): i € I}
and {f;: i € I}, and p is the initial structure on X relative to {p;:i €I} and {f;:i € I},
then (X,q) and p satisfy Fp 4.

(i) Statement (i) remains valid if F,, 4, is replaced by Ry, 4. and ¥, ;4 is replaced
by Ry 4.

PRrROOF. (i) It is well known that g-convergence is characterized by: % 2 x if and
only if f;(%) i, £(x), for all i € I. Let J be a set and W:J] — X and 0: J — F(X)
have the property that o (j) 2, W(j) for all j € J. Define o;(j) and y;(j) so that
oi(j) = fi(o(j)) and @;(j) = fi(w(j)) for all j € J and i € I, respectively. Thus,
oi(j) LA wi(j) for all j € J. Also, fi(ko%F) = k(fio0)F = ko;%F. Now, let F € F(J)
have the property that (%) 4. x which then implies that f; (@ (%)) A& fi(x) for all
i € I, by the property of g being the initial structure of all the g;. Thus, f;(ko%) =
KOF £, fi(x) for all i €I by the property F,, ;.. Hence, ko % Lx by the definition
of q and this implies that (X,q) and p satisfy F, ;.

(i) This proof is essentially the same as that of (i). O

COROLLARY 1.4. A subspace of a p-topological (respectively, p-regular) space is p'-
topological (respectively, p’-regsular), where p’ denotes the restriction of p to the sub-
space.

COROLLARY 1.5. Let (X,q) =1li¢;(Xi,qi) and (X,p) = ie; (Xi, pi) be product con-
vergence spaces. If each (Xi,q;) is pi-topological (respectively, p;-regular), then (X,q)
is p-topological (respectively, p -regular).

COROLLARY 1.6. LetX beasetandletA = {q;:i € I} andT = {p;:i € I} be subsets of
C(X). Let q = supA and p = supl. If (Xi,q;) is pi-topological (respectively, p;-regular)
for eachi €I, then (X, q) is p-topological (respectively, p -regular).
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Before proving the analogue of Theorem 1.3 for final structures, we give a simpler
characterization for p-topological spaces which makes use of the p-interior operator
Ip.

THEOREM 1.7. Let (X,q) be a convergence space and p € C(X). Then (X,q) is p-
topological if and only if, whenever ¥ LN x, there exists % 2. x such that F > Ipb.

PROOF. Assume that (X,q) and p satisfy F, 4. Let & 4. x and J={(%x),:%e
U(X),% LN x}. Let ¢: J — X be defined by ¢((%,x)) = x and o: J — F(X) by
o ((%4,x)) = 4. Note that y is onto X (since x € X = (x,x) € J). If #¥ = ¢~1(%F), then
HeF(J) and y(H) =F A x. By Fp 4, KOH A x. Thus, to show that (X, q) satisfies
the given condition, it suffices to show that & = $, (ko).

Let F € &; then y~1(F) is a basic set in ¥. Note that ¥ € U(X) and ¢ Y. xeF
imply that (9,x) € ¢~ (F). Since o ((9,x)) =%, for each pair (4,x) € ¢~ (F), choose
Gsx) €% Then A = U{Gx): (4,x) € ¢~1(F)} is a basic set in ko¥. For a given
Yy eF, Ay =U{Gu,y):9cUX),%9 LR ¥y} eV, (y) (since ¥, () is the intersection of
all ultrafilters which p-converge to y). Since Ay € A, for all x € F, A € ¥, (x), for all
x € F. Thus, F < $,(A) and we obtain the desired conclusion that & = $, (ko ¥).

Conversely, let J, @, 0, and & be as in F, ; and let (%) 4, x. Since (X,q) satisfies
the specified condition, there exists a filter 4 4. x such that Y(F) = 9$,%. To show
that kKo F L x, it suffices to show that ko % > 9. Let G € G and choose F € ¥ such that
Y(F) € $,(G).Foreach y € F, ¢y (y) € $,(G) implies that G € o(y). Thus, G € kKO,
which yields the desired result that ko % > 4. O

Let f: (X,q) — (Y,p) be a function between convergence spaces. We define f to
be an interior map if f(9,(A)) € $,(f(A)) holds for all A < X, and a closure map if
cly (f(A)) € f(clz(A)) holds for all A < X. Closure maps were introduced in [6], where
they were found to be useful in the study of p-regularity.

THEOREM 1.8. Let X be a set, {(Xi,qi): i € I} a set of convergence spaces, and { fi:
i € I} a set of functions mapping X; to X such that X = Uic; f(X;). Let q be the final
convergence structure on X induced by {fi:i € I} and {(X;,q;):i € 1}.

(i) If each (Xj,q;) is pi-topological for some p; € C(X;) and p is a convergence
structure on X such that each fi: (X;,pi;) — (X,p) is an interior map, then (X,q) is
p-topological.

(ii) Ifeach (Xi,qi) is pi-regular for some p; € C(X;) and p is a convergence structure
on X such that each fi: (X;,pi) — (X,p) is a closure map, then (X,q) is p-regular.

PROOF. (i) Let F L x. Then there exists j € I, x; € X; such that f;(x;) = x and
Fj A x; such that f;(%;) < &. Since (Xj,q;) is pj-topological, there exists 4; 2, X;j
such that #; > $,,(%;). Since f; is an interior map, f;($,;(94;)) = 9, (f;(4;)). By
continuity of f;: (X;,q;) — (X,q), fj(4;) = x,and F > £;(F,) = 9, (f(4j)),s0 (X,q)
is p-topological by Theorem 1.7.

The proof of (ii) is similar. O

COROLLARY 1.9. Let f: (X',q') — (X,q) be a convergence quotient map.
i) If f:(X',p") — (X,p) is an interior map and (X',q") is p-topological, then (X, q)
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is p-topological.
@) If f: (X',p") — (X,p) is a closure map and (X',q’) is p-regular, then (X,q) is
p-regular.

COROLLARY 1.10. Let (X,q) = >.;c;(Xi,q:) be a disjoint sum of convergence spaces
and p € C(X). Let g;: X; — X be the canonical injection.
(i) If for each i € I,(Xj,q;) is pi-topological and g;: (Xi,pi) — (X,p) is an interior
map, then (X, q) is p-topological.
(ii) If for eachi e I,(Xi,q;) is pi-regular and g;: (X;,pi) — (X,p) is a closure map,
then (X,q) is p-regular.

COROLLARY 1.11. Let A ={g;:iel} cC(X), let p € C(X), and assume that (X, q;)
is pi-topological (respectively, pi-regular), for alli € 1. If p; < p for eachi €I and q =
inf A, then (X, q) is p-topological (vespectively, p-regular).

The final result of this section, which follows immediately from Corollaries 1.6 and
1.11, asserts that for a fixed convergence structure p on X, both of the properties
“p-topological” and “p-regular” are preserved under arbitrary infima and suprema in
the lattice C(X).

COROLLARY 1.12. Let A ={gi:i€l} < C(X) and let p € C(X) be such that (X;,q;)
is p-topological (respectively, p-regular), for alli € I. Let q = inf A and v = supA. Then
both (X,q) and (X,r) are p-topological (respectively, p-regular).

2. More on p-topological spaces. In Section 1, we observed that p-topological and
p-regular properties exhibit essentially the same structural behavior. Now, we gain
some additional insight into the behavior of p-topological spaces by making use of
Theorem 1.7. The first result of this section gives a simple characterization of pre-
topological spaces which are p-topological.

THEOREM 2.1. Let (X,q) be a pretopological space and p € C(X).
(i) (X,q) is p-topological if and only if V4 (x) = $,V4(x).
(ii) If (X,q) is p-topological, then q < Tp, where Tp denotes the topological modifi-
cation of p.

PROOF. (i) Assume that (X,q) is p-topological. Since ¥';(x) L x, it follows by
Theorem 1.7 that ¥, (x) = $,74(x), and, hence, V4 (x) = $,74(x). Conversely, if the
given equality holds, then % A x implies # = V4 (x) = $,74(x), and since (X, q) is
pretopological, V4 (x) A, X, s0 (X,q) is p-topological by Theorem 1.7.

(i) If (X,q) is p-topological, then by (i) ¥4 (x) = 9,7 4(x), and it follows that V', (x)
has a filter base of p-open sets (which are the same as Tp-open sets). Thus, 1 ;(x) <
V+p(x), and since g is a pretopology, g < Tp. O

EXAMPLE 2.2. Converse of Theorem 2.1(ii) is generally false.

Let X = R be the set of real numbers, and let T denote the usual topology on R. Note
that T U {0} is a base for a topology p on R, where T < p and 7, (x) = V- (x), for all
x # 0, whereas ¥, (0) = 0. Let g be the pretopology on R defined by Va(x) =V7(x)
for x # 0 and V4(0) = ¥+ (0) v Q (where Q is the filter of oversets of the set Q of
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rational numbers). Note that T < g < p. Then ¥4 (x) L x, but $pV'q(0) =0+ V4(0),
so by Theorem 2.1(i), (X,q) is not p-topological.

COROLLARY 2.3. If p and q are topological, then (X, q) is p-topological if and only
ifg<p.

PrROOF. If (X,q) is p-topological, then p < g follows from Theorem 2.1(ii). Con-
versely, if g < p, then $,V4(x) = ¥ 4(x) follows because g is a topology, and so, the
conclusion follows from Theorem 2.1(i). O

The preceding example shows that Corollary 2.3 does not hold under the weaker
condition that g is pretopological.

Note that if (X,q) is p-topological, then (X,q) is obviously p’-topological for any
p’ = p. Clearly, every convergence space is §-topological, where § denotes the discrete
topology.

COROLLARY 2.4. If(X,q) is p-topological, then (X,1tq) and (X,Tq) are p-topological,
and Tq < 1tq < Tp (Where 11q denotes the pretopological modification of q).

PROOF. LetF -~ x; then, by Theorem 1.7, there exists 4 A x suchthat & > 9,4 =
9,V 4(x). This holds for every & L x, 50 Virg(x) =V4(x) 2 $pVrq(x). Thus, 1q is
p-topological from Theorem 2.1(i). Tq < g < Tp follows from Theorem 2.1(ii), and
(X,Tq) is Tp-topological from Corollary 2.3, (X, Tq) is p-topological from the remark
preceding the corollary, since Tp < p. O

COROLLARY 2.5. Lett denote the indiscrete topology on X. Then (X ,t) is p-topological,
for every p € C(X).

PROOF. By Corollary 2.3, (X,t) is t-topological, and, hence, p-topological for all
p € C(X) by the remark preceding Corollary 2.4. O

Given a convergence space (X,q), let pg denote the finest completely regular topol-
ogy on X coarser than g, and let wq be the finest completely regular topology on X
coarser than q.

THEOREM 2.6. A convergence space (X,q) is a regular (respectively, completely
regular) topological space if and only if (X,q) is pq-topological (respectively, wq-
topological).

PrOOF. If (X,q) is a regular topological space, then g = pq and (X,q) is obvi-
ously g-topological. Hence, pg-topological. Conversely, if (X, q) is pg-topological, then
(X,q) is clearly g-topological, and, hence, topological. By Corollary 2.4, q < pq, and,
hence, q = pq. Thus, (X, q) is regular and topological. O

Let (X,q) be a topological space, and let q" be the topology on X generated by
By ={X}u{U < X:U €qand U <K for some g-compact subset K of X}.

THEOREM 2.7. A T, topological space (X,q) is locally compact if and only if (X,q)
is q' -topological.

PROOF. Let (X,q) be locally compact and x € X. Let U € ¥,(x) be g-open. By
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local compactness, there is a compact set A € ¥;(x). Let V be a g-open set such that
V 2 UnA. Then V is q’-open. So, $4 V4 (x) = V4 (x), which implies, by Theorem 2.1(i),
that (X, q) is q’-topological.

Conversely, let (X,q) be g-topological and x € X. Since q is Ty, there exists U €
V4(x) such that U # X. Since $4V4(x) =V 4(x), by Theorem 2.1(i), $4 (U) € V4(x),
and ¢4 (U) = U c A, which implies that A € V;(x). Thus, (X, q) is locally compact. O

A related theorem characterizing local compactness in terms of p-regularity is the
following result, which is a direct corollary of [6, Thm. 3.1].

THEOREM 2.8. Let (X,q) be a T, convergence space. Let p be the topology on X
having as a base of closed sets all the nonempty subsets of q-compact sets. Then (X,q)
is locally compact if and only if (X,q) is p-regular.

3. The neighborhood operator for a filter. In this section, we introduce a new
filter notion which is essentially dual to the “closure of a filter,” thereby obtaining
another characterization of “p-topological” which further illustrates its duality with
“p-regular”.

Let (X,q) be a convergence space, & € F(X). Then V;¥ = {A € F: $,(A) € F} is
called the g-neighborhood filter of %.

PROPOSITION 3.1. If (X,q) is a convergence space and & € F(X), then V ;% is the
finest filter on X such that & = $,(V4%).

PROOF. It is clear that ;% is a filter on X such that $,7 ;% < %. If 4 is any filter
on X such that $;% < %, then G € G implies $,G € ¥, and, hence, G € V;%. O

If &% = x, it is obvious from the definition that ¥ ;x = ¥';(x) is the g-neighborhood
filter at x.

Recall that (X,q) is p-regular if ¥ Lx implies cl, & . x. The corresponding dual
characterization for a p-topological space is the following.

THEOREM 3.2. A convergence space (X,q) is p-topological if and only if F L x
implies V', & L x.

PROOF. Let(X,q)be p-topological and & 2 x. By Theorem 1.7, there is§ . x such
that & = $,%. By Proposition 2.1, ¥V, % =4, and so V', ¥ A x. Conversely if the con-
dition holds, we can set ¢ = V¥, % in Theorem 1.7, and, thus, (X,q) is p-topological.

O

COROLLARY 3.3. A convergence space (X,q) is topological if and only if F L x
implies V' ;& L x.

The g-neighborhood filter of a filter can also be described by means of the compres-
sion operator for filters defined in Section 1.

PROPOSITION 3.4. Let (X,p) be a convergence space and let o: X — F(X) be
defined by o (x) =V, (x) for all x € X. Then for any F € F(X), kKOF =V, (F).

PROOF. Let A € ¥V, (%). Then $,(A) € F.If F = $,(A), then for each x € F, A €



8 SCOTT A. WILDE AND D. C. KENT

Vp(x), and so A = Uycr Vx, Where each Vi = A, is a basic set in ko%. Conversely,
let A € ko%. Then A contains a basic set of the form B = |, cfV,, where F € &
and V), € ¥, (y), for all y € F. To show that A € ¥, (%), it suffices to show that
F < $,(B). x € F implies that x € Vi < B. Thus, B € ¥, (x) and so, x € $,(B). O

Let (X,q) be a convergence space and % € F(X). For any n € N, the set of natural
numbers, the nth iterations of the closure and neighborhood operators for a filter ¥
are given inductively by:

),

g 1)

~

n
a

The next two propositions summarize (without proof) some additional elementary
properties of the neighborhood operator for filters.

PROPOSITION 3.5. Let (X,q) be a convergence space,n € N, and {F;:i €I} < F(X).
Then:
@ Vy(nierFi) = NierVpFi;
(i) If\/l’e[gl’ exists, then Vg(vigg?i) > VieIOVg@i;
(iii) Equality holds in (ii) under the additional assumption that {%;:i € I} is an upward
directed set of filters.

PROPOSITION 3.6. Let f:(X,q) — (Y,p) be a function between convergence spaces.
Let ¥ e F(X) and n € N.
(i) If f is continuous, then f (Vi F) =V f(F).
(ii) If f is an interior map, then f (Vi F) <V f(F).

4. Lower and upper modifications. It was established in Corollary 1.12 that each
of the properties p-topological and p-regular is preserved under both infima and
suprema in the lattice C(X). Since an indiscrete space is both p-topological and p-
regular for any choice of p, we immediately obtain the following.

PROPOSITION 4.1. Let (X,q) be a convergence space and p € C(X).
(i) There is a finest p-topological convergence structure T,q on X coarser than q.
(ii) There is a finest p-regular convergence structure v, q on X coarser than q.

The structures T, q and 7}, q are called the lower p-topological and lower p-regular
modifications of q, respectively. The dual relationship between these concepts is evi-
dent in the next theorem.

THEOREM 4.2. Let(X,q) be a convergence space and p € C(X).
) 7 2 x if and only if there exists 6 -~ x such that F > V5, for somen € N.

(ii) LY if and only if there exists 2. x such that F > clz 4, for some n € N.

PROOF. (i) Let @’ be defined by ¥ 2, x if and only if there is ¢ . x such that
F > °V"(<§) for some n € N. One may easily verify that q’ is a convergence structure.
IfF-L x, then & > V(%) for any n € N, and so F 2. x. Thus, q’' < q. To show that
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q’ is p-topological, let F L. x and let 4 L x be such that F > V5 (9) for some n € N.
Then V', (¥) = V”“(‘Q) S0 Vp (%) 4, x, and by Theorem 3. 2 q’ is p-topological.
Finally, assume that » is p-topological and » < gq. Let & 2. x. Then there is G = x
such that ¥ > ﬂ/g(‘@) for some n € N. 4 L x implies 4 L. x, and since 7 is p-
topological, V'};(4) L x,forallm € N. But ¥ > V5 (9) for some n € N, and, hence,
F = x. Thus, 7 < q’ and the proof is complete.
(ii) See [6, Thm. 2.2]. O

Since the discrete topology 6 on a set X is generally neither p-topological nor p-
regular for an arbitrary p € C(X), the existence of an upper p-topological (or upper
p-regular) modification for some g € C(X) depends on the existence of a p-topological
(or p-regular) convergence structure on X finer than q. Clearly, 1,6 is the finest p-
topological structure in C(X) and 6 is the finest p-regular member of C(X). Thus, a
coarsest p-topological (respectively, p-regular) convergence structure on X finer than
q exists if and only if g < 7,6 (respectively, q < 1, 6). Using Theorem 4.2, this result
may be restated as follows.

THEOREM 4.3. Let (X,q) be a convergence space and p € C(X).
(i) There is a coarsest p-topological convergence structure % q on X finer than q if
and only if V' (x) N x, for all x € X and for alln € N.
(ii) There is a coarsest p-regular convergence structure v?q on X finer than q if and
only ifclz,‘()'c) LN x, for all x € X and for alln € N.

When they exist, T” q and v” q are called the upper p-topological and upper p-regular
modifications of q, respectively. Note that for T7g to exist, it is necessary that g < p,
and that 77 q will exist whenever p is T;.

THEOREM 4.4. Let (X,q) be a convergence space and p e C(X).
(i) If TP q exists, then F i» x if and only if Vi (F N x) L x, foralln € N.

(ii) IfrPq exists, then F I x if and only lfCln(J*’ nx) L x, forallm € N.

PROOF. (i) Let g* be defined by & 2. xifand only if V' (J’ nx) L x, forallm € N.
It is easily shown that g* is a convergence structure. If F L. x, then F > V3 (FNx),
and °V"(JP nx) L x implies & . x. Thus, q=< q* To show that g* is p-topological,
gL x implies °V"*1(J> Nx) =YV p(Fnx)) L xforalne N, which implies
V’;(V (x)Nx) N x, for all n € N. Thus, ¥, (x) a x and so, g* is p-topological
by Theorem 3.2.

Finally, assume that v is p-topological and q < v. Then, by Theorem 3.2, & L x
implies VE(Fnx) L x, for each n € N, and, hence, VE(Fnx) A, x, for each n € N.
But this implies g* < v. Thus, g* = T7q.

The proof of (ii) is similar. O

THEOREM 4.5. Let (X,q) and (X',q’) be convergence spaces and let f: (X,q) —
(X',q’) be continuous. Assume that p € C(X) and p’' € C(X').
@ If f: (X,p) — (X',p’) is continuous, then both of the mappings f: (X,Tp,q) —
(X', Tprq’) and f: (X,vpq) — (X', q’) are continuous.
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(ii) If both of TPq and T7'q' exist and f: (X,p) — (X',p’) is an interior map, then
f:(X,TPq) — (X, TP q') is continuous.

(iii) If both of ¥*?q and r?' q’ exist and f: (X,p) — (X', p’) is a closure map, then f:
(X,vPq) — (X,r?'q’) is continuous.

PROOF. Those results pertaining to p-regular structures have been proved in [6].
Those pertaining to p-topological structures can be proved analogously using Theo-
rems 4.2(i) and 4.4(i), along with Proposition 3.6. O

The next two theorems show that the lower modifications behave reasonably well
relative to final structures, whereas the upper modifications exhibit comparable be-
havior relative to initial structures.

THEOREM 4.6. Let X be a set and let {(X;,q;): i €I} and {(X;i,p;): i € I} be collec-
tions of convergence spaces, and for all i € I, fi: X; — X. Let q be the final structure
on X induced by {f;:i €I} and {(Xi,q;):1 € I} and let p € C(X). Furthermore, assume
that X = Ujer fi (X;).

(@) If each fi: (Xi,pi) — (X,p) is a continuous interior map, then T,q is the final
structure on X induced by {fi:i €I} and {(X;,Tp,qi): i €I}.

(ii) If each fi: (Xi,pi) — (X,p) is a continuous closure map, then v, q is the final
structure on X induced by {f;:i €1} and {(Xi,vp,q;): 1 € 1}.

PROOF. (i) Let s denote the final structure on X induced by { f;:ieI} and {(X;,Tp,4:)
:iel}. Let F = x. Then there is i € I, x; € X;, and ; Pl xi such that F > f;(%;).
Thus, there is #; 4 x; and n € N such that %; > Vgi%i by Theorem 4.2. Hence,
F£i(9) L x and F = £,(%) = f; (V. %:) =V} fi(%:), where the last inequality follows
by Proposition 3.6. Thus, % ML

Conversely, let & i x. Then there is 9 -~ x and n € N such that ¥ > W:}S’é. gL x
implies thereis i € I, x; € X;, and %; i, ., such that ¢ > fi(%:). Note that F > VG >
VI fi(96:) = fi (VR 9;). Since %; R Vi (3:) rill . and, thus, F =~ x.

The proof of (ii) is the similar. O

To avoid needless repetition, we state the next three corollaries to Theorem 4.6 only

for the lower p-topological modifications. Analogous results obviously hold for the
lower p-regular modifications as well.

COROLLARY 4.7. Let f: (X',q") — (X,q) be a convergence quotient map and f:
(X',p’") — (X,p) an interior-preserving map. Then f: (X', T, q") — (X,Tpq) is a con-
vergence quotient map.

COROLLARY 4.8. Let (X,q) = >.;c;(Xi,q:) be a disjoint sum of convergence spaces,
and let p € C(X) be such that each g;: (Xi,pi) — (X, p) is an interior-preserving map,
where g;: X; — X is the canonical injection. Then (X, T,q) = > ic;(Xi, Tp,ai)-

COROLLARY 4.9. Let A = {q;:i €I} = C(X) and let p € C(X). If g = inf A, then
Tpq = inf {Tpqi:i€I}.

THEOREM 4.10. Let X be a set and let {(X;,q;):i €1} and {(X;,p;):1 €I} be collec-
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tions of convergence spaces and, for alli € I, let f;: X — Xj. Let q be the initial structure
on X induced by {f;:i € I} and {(X;.q;): i € I}, and assume that p is a structure such
that fi: (X,p) — (Xi, pi) is continuous, for all i € I.
(i) IfTPiq; exists for alli € I and each fi: (X,p) — (X;,pi) is an interior map, then
TP q exists and is the initial structure on X induced by { f;:i € I} and {(X;,T?iq;):i € I}.
(ii) IfrPiq; exists for all i € I and each f;: (X,p) — (Xi,p;) is a closure map, then
P q exists and is the initial structure on X induced by { f;:i € I} and {(X;,r?iq;):i € I}.

PROOF. (i) To show T7q exists, it suffices, by Theorem 4.3, to show that if & >
Vg(x) for some x € X and n € N, then & 4, x. Since f:(X,p) — (Xi,pi) is continu-
ous for all i € I, f; (Vg(x)) > Vgi (fi(x)), and since each TPig; exists by assumption,
V’gi (fi(x)) i fi(x) for each i € I. Since q is the initial structure, Vi (x) 4, x, and,

hence, ¥ L. x. The remainder of the proof of (i) is straight-forward and is omitted.
The proof of (i) exactly parallels that of (i). O

The corollaries of Theorem 4.10, like those of Theorem 4.6, are stated only for
the upper p-topological modifications. The corresponding results involving upper p-
regular modifications can be supplied by the reader.

COROLLARY 4.11. Let (X,q) be a subspace of (X',q") and let p’ € C(X'). Also let
(X,p) be a subspace of (X',p’) and assume that TP’ q' exists. If X is p’-open, then
(X,T?q) is a subspace of (X’,T"’/q’).

PROOF. Since X is p’-open in (X', p’), the identity map from (X, p) into (X', p’) is
a continuous interior map, and so, the conclusion follows from Theorem 4.10Gi). 0O

COROLLARY 4.12. Let (X,q) = ;1 (Xi,qi), let p; € C(X;) be such that TPiq; exists
for each i € I, and let p € C(X) be such that the ith projection map m;: (X,p) —
(Xi,pi) is continuous interior map for alli € 1. Then T q exists, and (X, T?q) = ;e (X,
TPiq;).

COROLLARY 4.13. Let X be a set, A = {q;: i € I} < C(X), and let p € C(X) be such
that T¥ q; exists for alli € 1. If @ = sup A, then T7q exists and TP q = sup{t”q;: i €I}.

5. The topological series of a convergence space. If (X,g) is a convergence space,
it is well known that there is a finest topology Tq coarser than g and a finest regular
convergence structure vq coarser than gq. These are the topological and regular modi-
fications of q. However, neither Tg-convergence nor v g-convergence can be described
directly in terms of g-convergence. Consequently, descending ordinal series have been
devised to “bridge the gap” between g and these two lower modifications.

The regularity series (v«q), introduced in [4] and studied also in [5], can be easily
characterized by means of the lower p-regular modification for an arbitrary ordinal
number « as follows: ¥oq = ¥p«q, Wwhere pg = 6,p1 = q,p« = Y«-14 if x—1 exists, and
p« = inf {rgq: B < o} if x is a limit ordinal. The least ordinal « for which r«q = 7«+19
is called the length of the regularity series and is denoted by frq. It is easy to verify
that r4q = rq if and only if « > frq.

The decomposition series (TT4q), introduced in [3], is a descending ordinal sequence
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of pretopologies terminating in T4q. Just as the regularity series gives an ordinal
measure of how “non-regular” a given convergence space is, so likewise does the
decomposition series measure how “non-topological” the given space is. However,
the construction of the regularity and decomposition series are fundamentally so dif-
ferent that interactions or comparisons between them are difficult to find or interpret.
The existence of the lower p-topological modification and its dual relationship to
the lower p-regular modification provide means for constructing a new descending
ordinal sequence called the topological series (T«q) of (X,q) which, like the decom-
position series, stretches between g and Tq. Following the preceding description of
the regularity series, we define: Toq = Tpag, where pg = 8,p1 = q,pa = Ta-1q if x—1
exists, and py = inf {7p4: B < «} if « is a limit ordinal.The resulting topological se-
ries is the exact dual of the regularity series. It can be shown that the length of the
topological series cannot exceed that of the decomposition series. Additional results
pertaining to these and other related ordinal series will be published later.
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