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ABSTRACT. The object ofthis paper is to prove the following
THEOREM. Let rn be odd. Then the diophantine equation x + 3" ’, n >_ 3 has only one

solution in positive integers x,t/, rn and the unique solution is given by rn 5 + 6M, x 10.33M,
7.32M and n 3.
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INTRODUCTION
It is well known that there is no general method for determining all integral solutions x and V for a

given diophantine equation ax + bx + c dyn, where a, b, c and d are integers, a - 0, b 4ac :/: 0,
d 0, but we know that it has only a finite number of solutions when n > 3 This was first shown by
Thue

The first result for the title equation for general n is due to Lebesgue [2] who proved that when

rn 0 there is no solution, for rn 1, Nagell [3] has proved that it has no solution and in 1993 Cohn [4]
has given another proof for this case.

The proof of the theorem is divided into two main cases (3, x) 1 and 3Ix. It is sufficient to

consider x a positive integer.

To prove the theorem we need the following
LEMMA (Nagell [5]). The equation 3x + 1 /, where n is an odd integer E 3 has no solution

in integers x and for V odd and E 1.

PROOF OF THEOREM. Suppose rn 2/ + 1. Since the result is known for rn 1 we shall

lassume that k > 0. The case when x is odd, can be easily eliminated since /’ =_ 0 (rood 8), so we

assume that x is even.

CASE 1: Let (3, x) 1. First let n be odd, then there is no loss of generality in considering

n p an odd prime. Thus x + 3k+l /’. Then from [6, Theorem 1] we have only two possibilities
and they are

where y a + 3b and

x+3k= a+b
a=b--l(mod2) (2)

where !/= as3b-- for some rational integers a and b.

In (1) since a + 3b and F is odd so only one of a or b is odd and the other is even. Equating

imaginary pans we get v_t

2r+lr--O
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So b is odd Since 3 does not divide the term inside we get b + 3k Hence

::[::1-----(2r+1I9 ) ap-2r-1(-32k+l)r
r=0

This is equation (1) in [6], and Lemmas 4 and 5 in [6] show that both the signs are impossible. Hence (1)
gives rise to no solutions

Now consider equation (2). By equating imaginary parts we obtain

S.3k b(3a 3b). (3)
If b + 1 in (3) we get

+ 8.3k 3a 3.

The case k 1 can be easily eliminated, so suppose k > 1 then

+ 8.3k-1 a 1.

+a (25 + 3)/4 7. Hence fromThis equation has the only solution a + 5, k 2 and so y 4

(2) z s

If b +/- 3, 0 < A < k, then (3) becomes +/- 8.3-- a2- 32’, and this is not possible

modulo 3 if k A 1 > 0. So k A 1 0, that is + 8 a 32(-I), and we can reject the

positive sign modulo 3. So we have a 32(k-l) 8, which has the only solution a + 1, k 2

ani z 10 Finally ifb -4- 3 then + 8 3a2 32+I, and this is not true modulo 3.

Now if n is even, then from the above it is sufficient to consider n 4, hence (y2 +x) (V2 z) 32+

Since (3, x) I, we get

y2+x=32+ and y2_x=l,

by adding these two equations we get 2V2 32+I + 1, which is impossible modulo 3.

CASE 2. Let 3[z. Then of course 31!/. Suppose that x 3X, y 3Y where u > 0, v > 0 and

(3,X) (3,Y) 1 Then 32X + 32k+1 3"Y" There are three possibilities.

2u min(2u,2k + 1, nv). Then by cancelling 32u we get X + 32(k-u)+l 3"w-2"Y’, and

considering this equation modulo 3 we deduce that nv-2u- O, then z2+ 32(-u)+I yn, with

(3,X) 1. If k- u 0, this equation has no solution [3,4] and if k- u > 0, as proved above this

equation has a solution only if k u 2 and n 3, so nv 3v 2u that is 3[u, let u 3M then

k 2 + 3M and m 5 + 6M. So this equation has a solution only ifm 5 + 6M and the solution is

given by X 10, Y 7. Hence the solution of our title equation is x 10.3 10.3TM and

y 7.3 7.3TM.
2 2k + 1 min(2u, 2k + 1,nv) Then 32u-2-X2 + 1 3"v-2-Y and considering this

equation modulo 3 we get nv 2 1 0, so n is odd and 3(T’--X) + 1 Y", by the lemma this

cquation has no solution.

3. nv min(2u, 2k + 1,nv). Then 32-"X2 + 32+-" Y’ and this is possible modulo 3 only

if 2u nv 0 or 2k + 1 nv 0 and both ofthese cases have already been discussed This concludes

the proof.
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