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ABSTRACT. The object of this paper is to prove the following

THEOREM. Let m be odd. Then the diophantine equation z2 + 3™ = y",n > 3 has only one
solution in positive integers z,y,m and the unique solution is given by m = 5+ 6M, z = 10.33,
y=73Mandn =3.
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INTRODUCTION

It is well known that there is no general method for determining all integral solutions = and y for a
given diophantine equation az? + bz + ¢ = dy", where a,b, ¢ and d are integers, a # 0, b? — 4ac # 0,
d # 0, but we know that it has only a finite number of solutions when n > 3 This was first shown by
Thue [1]

The first result for the title equation for general n is due to Lebesgue [2] who proved that when
m = 0 there is no solution, for m = 1, Nagell [3] has proved that it has no solution and in 1993 Cohn [4]
has given another proof for this case.

The proof of the theorem is divided into two main cases (3,z) =1 and 3|z. It is sufficient to
consider z a positive integer.

To prove the theorem we need the following

LEMMA (Nagell [5]). The equation 3z? + 1 = y*, where n is an odd integer > 3 has no solution
in integers = and y for y odd and > 1.

PROOF OF THEOREM. Suppose m = 2k 4+ 1. Since the result is known for m =1 we shall
lassume that k > 0. The case when z is odd, can be easily eliminated since y™ = 0(mod8), so we
assume that z is even.

CASE 1: Let (3,x) = 1. First let n be odd, then there is no loss of generality in considering
n = p an odd prime. Thus z2 + 3%+! = y». Then from [6, Theorem 1] we have only two possibilitics

and they are )
z+3/=3=(a+bv/=3) o))

where y = a? + 3b% and .
z+3/-3= (%—— °—3) , a=b=1(mod2) )
a?+3b?

where y = =, for some rational integers a and b.

In (1) since y = a® + 3b% and y is odd so only one of a or b is odd and the other is even. Equating

imaginary parts we get .
k __ p p=2r=1( __ a12\"
3 —br§=o:(2r+1)a (—38%)".
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So bis odd Since 3 does not divide the term inside }~ we get b = +3¥ Hence

28

< p —2r— r
i1=z<2r+1 ap? 1(_32k+l) .

r=0
This is equation (1) in [6], and Lemmas 4 and 5 in [6] show that both the signs are impossible. Hence (1)
gives rise to no solutions
Now consider equation (2). By equating imaginary parts we obtain
8.3 = b(3a® — 3b%). )
Ifb= £1in(3) we get
+8.3% =3a% - 3.
The case k = 1 can be easily eliminated, so suppose k > 1 then
+831=02-1
This equation has the only solutiona = +5, k =2and soy = “%353 = (25+ 3)/4 = 7. Hence from
@)z = 2= | =10
If b= +£3» 0< A<k, then (3) becomes +8.3* -1 =qa?—3%" and this is not possible
modulo 3if k—A—1>0 So k—A—1=0, that is +8 = a® — 32*~1)| and we can reject the
positive sign modulo 3. So we have a? — 32*~1) = — 8, which has the only solutiona = +1,k =2
andz = 10 Finallyifb = =+ 3* then +8 = 3a% — 32+, and this is not true modulo 3.
Now if 7o is even, then from the above it is sufficient to consider n =4, hence (y*+1)(y? —z) = 3%+
Since (3,z) = 1, we get

P +z=3%" and yP-z=1,

by adding these two equations we get 2y? = 3%+ + 1, which is impossible modulo 3.

CASE 2. Let 3|z. Then of course 3|y. Suppose that z = 3*X, y = 3"Y where v > 0, v > 0 and
(3,X)=(3,Y) =1 Then3?X? +3%+! = 3"Y™ There are three possibilities.

1 2u =min(2u,2k + 1,nv). Then by cancelling 3** we get X2 + 32(k—w)+1 = gmv-2uy™ and
considering this equation modulo 3 we deduce that nv — 2u = 0, then z2 + 32~¥+1 = Y™, with
(3,X)=1. If k—u =0, this equation has no solution [3,4] and if k —u > 0, as proved above this
equation has a solution only if k —u =2 and n =3, so nv = 3v = 2u that is 3|u, let u = 3M then
k=2+3M and m =5+ 6M. So this equation has a solution only if m = 5 + 6 M and the solution is
given by X =10,Y =7. Hence the solution of our title equation is z =10.3* =10.3** and
y=7173"=73M ‘

2 2k+1=min(2u,2k +1,nv) Then 3%~2%-1X2 +1 =3"-2-1y" and considering this
equation modulo 3 we get nv — 2k — 1 =0, so n is odd and 3(3*~¥~1X)2 + 1 = Y™, by the lemma this
equation has no solution.

3. nv = min(2u,2k + 1,nv). Then 3%~ X? 4 32+1-" = Y™ and this is possible modulo 3 only
if 2u — nv = 0 or 2k + 1 — nv = 0 and both of these cases have already been discussed This concludes
the proof.
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