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ABSTRACT. We will prove an existence result of positive solutions for an asymptotically planar system
of two elliptic equations. It will be used as main tools for a Maximum Principle and a result on
Bifurcation Theory.
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1. INTRODUCTION
In this paper we will prove the existence of positive solutions for the elliptic system
— AU = A(z)U + F(z,U) in Q, U =0 on 99 1)

where Q C RY is a bounded smooth domain, A(z) = (:((;)) 38 ) whose entries are continuous in 2,

() -ar=(30 2)(2)=(E) w0 re=(f523) o
£,9: 8 x (R*)?> — R locally lipschitzian continuous satisfying.
f(z,0,0) >0 or g(z,0,0) >0 forall zeQ Q@)
and there is a positive constant C so that
0 < f(z,u,v),9(z,u,v) < C forall (z,u,v)eQ x (IR*)Q. ?3)
Condition (3) says that the function

= a(z)u + b(z)v+ f(z,u,v)
F(z,0)= (c(x): +d(z)v+g(z,u, v))

is of asymptotically planar type. Since we are concerned with the existence of positive solutions we will
suppose through this work that system (1) is cooperative, i.e., b(z) and c(z) are both nonnegative for all
z € Q. This cooperativeness is imposed in order we may use a Maximum Principle (MP n short) In
particular we will deal with the one due to the author of this paper in collaboration with M A S
Souto [1]. Using this (MP) and a result on Bifurcation Theory we prove the following:

THEOREM 1. Ifa(z) < Ay, d(z) < A and if either
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2)\;

i al  <l|d and 1<
@ loles < fdles 2l + Pl 1l

or

2)\;
2lale + [blo + leloo

(i2) ld|le < lal and 1<

then problem (1) possesses a positive (classical) solution

Here |- |, denotes the usual sup norm, that is, ju|, = sup |u(z)| and ), is the first eigenvalue of

9]
— A in © under Dirichlet boundary condition. =

To tackle this theorem we proceed as follows: Since f and g are both defined only for u,v > 0 we
ought to consider the extensions of f and g, respectiveley

fl(I,‘U.,'U) = f(x) Iul) Ivl) and 91(33, u,'v) = g(I, Iulr Ivl)
now defined for all (z,u,v) € @ x R? We now carry on by setting
_( —A—a(2) 0 = _ | filz,u,v) _ 0 (=)
L= ( 0 -—A—d(:c))'F(z’U)_ (gl(z,u,v) » B(@) = cz) 0 )
 Fixing these notations we are going to pay attention to the following nonlinear eigenvalue problem
LU = A[B(z)U + F(z,U)] in Q, U =0 on 99 )
where A > 0 is a real parameter and it will be proved the existence of a continuum £ C R* x [C()]*
of solutions (A, U) of (4) that begins at (0,0) and extends beyond the line {1} x [C (ﬁ)]2 arising a
solution of (1) which in view of the (MP), should be positive.

As we will show after proving Theorem 1 the motivation in studying problem (1) came of the scalar
one

— Au = f(z,u) in Q,u=0 on 99, ®)
where f has a sublinear behavior.

2. PRELIMINARY RESULTS
In order to establish the (MP) we begin by fixing some notations. Let X be a Banach space ordered
by the positive cone K C X and L : X — X a linear operator. By a (MP) to problem

U=LU+F,UEeX, (6)

we mean the statement F > 0 (i.e. F € K) imply U > 0 whenever that U is a solution of (6).
PROPOSITION 2 (Maximum Principle). Let L:X — X be a positive linear compact operator
(positive means f(K) C K). Then (6) satisfies the (MP) if the condition below holds true

{UeXx,te0,1),U=tLU}=>U=0. )
Now we shall focus our attention on the problem
LU = B(z)U +F(z,U) in Q,U =0 on 89, 8)

to prove the following:
THEOREM 3. Ifa(z) < A1, d(z) < A, and if either

2\
2|d|g + Bloo + Ieloo

(@) lal, < Id],, and 1<

or
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2\

it dl < nd 1<
(‘l.‘l) | Ico = |a'|oo a 2'a'|oo+|b|co+|c'oo

then every solution of (8) is positive and so is a solution of (1).
PROOF. We first observe that the extension F(z,U) is also nonnegative. Second we

—-Aga(z:) —AEd(:z:)> has an inverse

notice that the operator L = (
L ((—A—a(z))“
0 (-A- d( )™

of a(z),d(z) < A\; in @ So we will analyze uniqueness for the problem

) [C(9))? — [C()]? which is compact and positive in view

U =tL"'B@)U,U € [c(®)]*, t€0,1]

that is equivalent to

—Av—d(z)v=te(z)u in Q )

—Au—a(z)u=th(z)v in Q
u=v=0 on 09

By multiplying both sides of the first equation in (9) by u and both sides of the second one by v and

integrating by parts we obtain
/ |Vu)? = / a(z)u® +t / b(z)uv

/lV'uI2 = /c(:c)uv+ /d(:z:)v2

Since a, b, c and d belong to C () one gets, thanks to both Holder's and Pioncare's inequalities,

[rout < B [+ Blo ([ wup + vupy)
Jroo < e ([ ioup +iwit)) + = [ivor.

Summing up these two inequalities and assuming that |a|, < |d|,, one has

/quI2 + / Vol < ;—1 [w—&] [/ (1Vuf® + IVvlz)].

B 2\
Since 1 < g7

assumption (ii). Thus system (8) enjoys the (MP) and in view of F(z,U) > 0 we have U > 0 and so it
isasolutionof (1). O

and

and

we conclude that U = 0. We arrive at the same conclusion by assuming

We now enunciate a proposition, due to Rabinowitz [S], which is another tool in proving Theorem 1.

PROPOSITION 4. Let X be a Banach space and suppose that T : R* x X — X is a continuous
map. Then the nonlinear eigenvalue problem u = T(\,u) possesses an unbounded continuum of
solutions meeting (0,0) € R x X, if in addition, we suppose T'(0,u) = 0 for all u € X.
3. MAIN RESULTS AND REMARKS

We start this section proving Theorem 1.

PROOF OF THEOREM 1. Set X = [C(%)]® endowed with the usual norm U], = |uly, +vl,.
Hence X is a Banach space and, as we said before, L~ : X — X is linear, compact and positive. So
problem (4) is equivalent to the following functional equation in R* x X:
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U=XL"A@@)U+L'F(z,U)],A>0,U €X, (10)

where F(z,U) is the Nemytskii operator associated with the function F, i.e., for each U € X one has
F(-,U(-)(@)=F(z,U(x)).

Since L™'A and L~ 'F are compact operators we are able to conclude the existence of an
unbounded continuum X of solutions of (10) beginning at (0,0) € R* x X. If (A\,0) € £ then A =0
because f(z,0,0) >0 or ¢g(z,0,0) >0 Plainly (0,U)€ X implies U =0. Thus ¥ meets
{0} x [C @]2 and R* x {0} only at (0,0). Note that bootstraping these solutions, that at first sight
belong only to [C ()] ? we obtain classical solutions.

It is worthy to say that hitherto we cannot affirm that X contains positive solutions. In spite of this
we can say that a piece (or perhaps pieces) of ¥ contains only positive solutions. Indeed, if A < 1 we
may prove, reasoning as in the proof of Theorem 3, that every solution U of problem (10) is positive. It
rests to show that in fact = reaches A = 1

Since ¥ is unbounded it may be unbounded with respect to A, or with respect to U or with respect to
both A and U. If ¥ is unbounded in A then it crosses the line {1} x X and so we find a solution U of the
problem (4) and in view of assumptions (i) and (ii) of Theorem 3 is positive and so is a solution of (1).
We now suppose that if (A\,U) € £ then A < 1. Hence there is a sequence (\,,U,) € £ with A, < 1
and |[Un|lw — 00 Thus

LU, = A[B(z)U, + F(z,U,)] in Q, U, =0 on 39.
Setting W, = ﬁ: we obtain

F(z,U,)
[Unloo

LW, = A | B(z)W, + ] in Q, W, =0 on 9Q.

Passing to a subsequence if necessary we obtain A, — Xg € [0,1], W,, = W in [C@]2 and
LW, = XB@W As L:D(L) - [C(@]’, where D(L) = {U € [c@)]"; LU € [C(@)]" and
U=0on aa}, is closed one has that W € D(L) and

LW = XA(@)W in Q, W = 0 on 09.

Because W, — W in [C@]2 and |W,|,, = 1then |W|_ = 1, ie., W is a nontrivial solution of the
above problem. But, in view of (MP) and A\g < 1, W = 0 which is absurd. Thus X crosses {1} x X
and, by Theorem 3, such solution is positive and the proof of Theorem 1 is over. O

REMARK 1. The proof of Theorem 1 rests heavily on the existence of a (MP) like the one
contained in [1] We must observe that this (MP) is valid for a more general elliptic operator. Indeed, if
we consider uniformly elliptic operators in the divergence form

Ly = — D,(af D,u) + D, (aku), k= 1,2
(the symbols of summation are implicit in the expressions) where coefficients are regular enough,
a¥ = af; and setting A, (L) as being the first eigenvalue of (Lx, H}(R2)), the system

LU = A(z)U + F(z) in Q, U =0 on 82

where £ = (L‘ 0 ) enjoys the (MP) if

0 L,
(B(2)6,€) < M(Lp) (&2 + &)
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for all £ = (¢1,£;) and z € @ Here (., .) is the usual inner product in R? and B(z) = (c&) b(oz))

Note that the above condition provides the uniqueness required by the (AMP) in [1]. So Theorems 1 and 3
remain valid, with slight modifications, if system (1) is considered with — A substituted by the
nonselfadjoint operators L; and Lo.

REMARK 2. At the outset of our motivations in studying problem (1) we had considered the
following

N N
Lu= - a,(x)Dyu+ Y a(z)Du= f(z,u) in Q, u=0on dQ an
1,7=1 1,7=1
where L is a second order uniformly elliptic operator in  with real smooth coefficients satisfying
a;=a;inQ, forall 1<4, j< N, and f:Q x R* - R* is a sublinear nonlinearity. It is to say,
setting
f(z,t)
t

= lim
a(e) =i,

f(-';, t) 12)

y aoo(z) = llmsup
t—oo

one must have
M(a0) < 1< Ai(aw) (13)

where A (a,), i = 0, oo, is the first eigenvalue of the linear eigenvalue problem
Lu = Aa,(z)u in Q, u =0 on 30.

Condition (13) says that we are working with a sublinear problem, i.e, in case, for instance, aq and
a are constants the nonlinearity f begins, above the straight line A\;¢ and at the end it remains below the
same line.

In Brezis-Oswald [2] the authors consider L = — A and use Variational Methods by exploring the
selfadjointness of — A and f is not necessarily a smooth function. In fact ag(z) and an (z) may take
values + 0o and — oo, respectively, so we address the reader to Section 3 of [2] for the precise meaning
of (13).

In de Figueiredo [3] problem (11) is studied under condition (13) where L is a selfadjoint operator
more general than — A but f is a C*-function, 0 < a < 1, and f(z,t) + Kt is nondecreasing in ¢ for
some K > 0. In this case the sub and supersolution method is used.

If L is not necessarily selfadjoint problem (11) was studied by Costa-Gongalves [4] under condition
(13), still using the sub and supersolution technique. In the works quoted above the authors always show
existence of a positive solution as well as give sufficient condition for uniqueness.

This scalar problem arises a very natural question: How can we formulate a sublinear problem like
before when we take a system into account?

We think that the best motivation towards a more general situation is to consider the biharmonic
problem because it brings up for attention a very simple system and from it we would deal a more general
sublinear problem. More precisely we first analyze the simplest biharmonic problem

A%y =mu+g(u)in Q, u = Au =0 on 3Q, (14)
that is, the biharmonic equation under the so called Navier boundary conditions. Here m is a positive

. 01 0
constant. Settingv = — Au, A= (m 0), GU) = (g(u)) we get the system

— AU = AU +G(U) in Q, U = 0 on 89. (15)
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Taking g a bounded function then f(u) = mu + g(u) would be sublinear if it begins at ¢t = 0 zero
above A2t and remains below A%t for ¢ large enough. Note that this is the counterpart of condition (13)
when we are dealing with A2  Observe that A? is the first eigenvalue of A? in Q2 under Navier boundary
conditions and the situation described above occurs, for instance, if g(0) > 0 and m < A%

REMARK 3. Now we are going to analyze the condition given in Theorem 1 for the system (15)
In this case one has that -1%"- < ) is a sufficient condition in order system (15) enjoys the (MP).

Next we will show that this condition leads to a sublinear problem related to (14). Let us suppose
that 47 < X,

a) If m#1 one has (m— 1)2 > 0 which implies g“—;"ﬁ >m and since \; > 1% we get

A2 > Q?ﬁ > m and so we have a sublinear problem.

b) If m=1 then A\; > 33™ =1 and hence A2 > A; >1=m. In this case we still have a

sublinear problem.

Therefore we believe that conditions (i) and (ii) are two kinds of sublinearity conditions when we deal
with a system of two equations.
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