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ABSTRACT. Consider the eigenvalue problem which is given in the interval [0,7t] by the
differential equation

~y"(x)+q(x)y(x)=Ay(x); O0<x<m= ©.1)
and multi-point conditions

U, (y)=a,y(0)+a,y(n)+ D a, y(x,®)=0,
k-3

U,(y)=B,y()+p,y(n)+ D B, y(x, n)=0, 0.2)
k=3

where q(x) is sufficiently smooth function defined in the interval [0, t]. We assume that the points
X45X 500X divide the interval 10,1} to commensurable parts and alﬁz - azﬁl #0. Let
Xk’s = pz,s be the eigenvalues of the problem (0.1)-(0.2) for which we shall assume that they are
simple, where k,s, are positive integ;rs and suppose that Hk,s (x,£) are the residue of Green's
function G(x,E, p) for the problem (0.1)-(0.2) at the points Prs The aim of this work is to

calculate the regularized sum which is given by the form :

-0
T X [Pually, (8- Ry (0.x.8,)| =S, (:8) ©.3)
&) (9)
The above summation can be represented by the coefficients of the asymptotic expansion of the
function G(x, £, p) in negative powers of k. In series (0.3) ¢ is an integer, while R . (0,x,&,p) Is
a function of variables x,E and defined in the square (0,7 ]x[0, %] which ensure the convergence

of the series (0.3).

KEY WOREDS AND PIIRASES : Regularized sum for ecigenfunctions, asymptotic formula,
Green's function, differential operator.
1991 AMS SUBJECT CLASSIFICATION CODES : 47E05

1. INTRODUCTION.
It is well-known that the sum of the diagonal elements in a square matrix is equal to the
sum of the eigenvalues of its operator in finite dimensional space. In other words the trace of a

matrix is equal to the spectral trace in n-dimensional spaces.
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It is worth mentioning that this thcorem is satisfied also in the case of nuclear operators
acting in Hilbert space. Sadovnichii [1] proved this theorem. Thus we might ask the following
question. Is the last theorem applicable to the case of unbounded operators?, especially in the case
of differential operators since in general case the trace of a matrix and spectral trace do not exist.
Consider, for example, the boundary-value problem :

-y"(x)+ q(x)y(x) = Ay(x), 0<x<=n 1.1
¥(0)=y(=n)=0, (¢B))
where q(x) is sufficiently smooth function.
The eigenvalues A, of problem (1.1), (1.2) has the asymptotic expansion in the form :

2 €. 4
Ap~n© ey k-5t —7 -+ . 1.3
n o nz‘ nz ( )
1 n
where c = ﬁ‘lq(g)dg 1.9

a0 - o]
From Equation (1.3) it is clear that 3 l)tn diverges, while Zl( Ap- n? - ¢,) converges, and is called
n= n=

the regular trace for the problem (1.1), (1.2).

The study of regular trace for differential operators plays an important role in several fields
such as mathematical analysis, theoretical physics and quantum mechanics, where the regular
traces give the asymptotic expansion for the cigenvalues of operators. We can also use the regular
trace in the inverse spectral problems in functional analysis.

A good number of works has been devoted to the deduction of the formulae of regularized
traces of differential operators Gelfand, L.evitian [2]» Charles, Halberg and Kramer [3], Lidsky,
Sadovnichii [4, 5, 6], Sadovnichii, Lyubishkin and Belabbasy [7, 8], Saleh [9] and many other
authors

The concept of the regularized trace with a weight for the diffcrential operators was
introduced by Sadovnichii [10].

The main goal now is to derive asymptotic formulae for the solutions of (0.1) when |A| 5
and then use them to obtain the asymptotic formulae for the eigenvalucs of the problem (0.1),
(0.2). The concluding part of this paper is devoted to the derivation of the regularized sums of
eigenfunctions of the second order, and we shall give some exampies to illustrate the mentioned
concept of regularized sums of eigenfunctions.

2. ASYMPTOTIC FORMLAE FOR THE SOLUTION OF THE STURM-LIOUVILLE EQUATION
The solution of the differential equation (0.1) admits asymptotic expansions in powers of

p~! which become more precise as the number of derivatives that the function q(x) has increases "

Marchenko [11], Naimark [12]. Tet yl(x,p) and Y, (x,p) be linearly independent solutions of

(0.1), then

y ("P)“' ipx 1 g 'u'P—('x')_ 4 O("_l"" ) I
1 v-1 p? pN-fl

y (x,p):ze -ipx[ 14 g ,(_.1).1‘{5’.(_:.).+ o(- _.l_-) ] 2.1
2" vt pv p N+t ‘

where N positive integer depends on the smoothness of the function (x) and the functions uy,(x),

v=1,2,...,N admit the representations:
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X
-1
u (0= L [qee)a,
0
T 2
w, () = a0 - 3¢ { ag)de)” |

(8)dE; v=123,..,N-2 (2.2)

42 vl

T2
uyy2 0= 295 4 a@
i 2
0 &
We note that u v (0)=0, for v:: L,2,...,N. By means of the asymptotic formulae (2.1) and
Equation (2.2) we can prove that
8(x,0) = 8(0,0) = Wly,¥,11 x=0

C e a(0) ¢"'(0)- 4q(0)q'(0) 2.3
= 2|ptl[ 2 403 t... ] 23

3. ASYMPTOTIC FORMULAE FOR EIGENVALUES OF THE PROBLEM (0.1)-(0.2) IN THE
COMMENSURABLE CASE
In Saleh [9] proved that the eigenvalues of the problem (0.1)-(0.2) (A=p2) are found from
the condition :

f(p)= 28:; -0, G.1)
2
where Ap) = det”!Ji(yk)"i’k:] 3.2)
Upon using Equations (2.1), (2.2) it is easy to see that
2n2-¢ ) B:(I) ﬂ;(Z) pf(N)
A(p) = Z Ak(p)[ T d o +-ﬁ—-+...+ N +... ], 3.3)
k=1
i5, P

where Ak(p) e ’ él = "lo §2 = —(1 - X3 )v €2n2—6 = ‘gl = lr

and 7}(0), p&i), (i=1,2,3,...) arc calculated in terms of the constants & _,B _(v=1,2,...,n) and the

function q(x), for example,

0) (0)
vﬁ =(oyfy ~Pay) = “Vonlog’
n
W__ 1
n =00y = ke gy [ G4

0
Using the results of Saleh [9], we deduce that in commensurable case the problem (0.1)-(0.2) has
2m series of eigenvalues which have the following asymptotic formula:

2® 2 na®
my. . (s) 1 1 0
Pry~-2mk -Mna®y Lo L0, 3.5)
im0 a0 4ia W k2
0 0
1 .
where m==; d=min{;,&, ,Eq,...,
d {&1>52,-83> §2n2——6}

4. THE ASYMPTOTIC FORMUAE FOR ‘THE GREEN'S FUNCTION OF THE PROBLEM
(0.1)-(0.2) IN COMMENSURABLE CASE

It is well-known that the Green's function of differential cquation of the second order is

given by the formula:
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(x,p) )’ (x,p) 8(x,E,p)

JE, —-—-—U U U , 4.
G(x,E,p)= ) 1(y) (y ) \® @“.n
Iz(yl) Uz(’z’ Uz(g)

where BNEP)=t oo, )[ (xp)y, (&:P) - ¥, (x:P)Y (§,p)] “2)
( The positive sign being taken if x >£, and the negative sign if x<t).

If we divide the p-plane into four regions S., S, Sz, §3 such that:

S ={p : |p|>R, 0<argp 5%—9},

s ={p : |p|>‘R, %-0<argps n},

Sz={p : lp[>R, n< argps-‘%"—e},

S ={p . pl> R, 37“—9<argp52u}. 4.3)

3
we see that the Green's function of the problem (0.1)-(0.2) in the commensurable case has the

following asymptotic formula:

¢(1)
G(x,E,p) .. (i(x-E)p 2 pesﬁ §<x<xj1t
i had Q(Z) 5
G(x&,p)~e DP y b 5es? Eexomex, @4
oo pu 0 1]

S8 -§ 8
where S0 90 \Qk,s
and,

3}
R PR SN PERNPSISYY
Since Hk s(x,g) the residue of Green's function G(x,E,p) for problem (0.1)-(0.2) in the points pk
y

.S

and from the assumption that the eigenvalues pk, are simple, then
S

Hk s(xogvpk,s) = _’Iim (P - P s)G(xv §»P)
' 7 Piys ' 4.5

Upon using the asymptotic formulae(4.4) for G(x,&,p) in §.8 and Equation (4.5) we have for
Hk s(x,!;) the following asymptotic formulae

. ¢
— @ -
H (x,g,p )~el(x é)pkys b _22’ p esg’ §<x<xj1(
s

o o@

-i(x-&)p %
~ k,s vJ o8 '
Hk,s(x'g'pk,s) e E > PES, E,<x x<x, (4.6)

i (1) 4(2),43) (4) i 8
where the functions ’o.j’¢o ,j"u.j and ¢u i are defined in terms of the constants
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uk,ﬁk, (k=1,2,...,n) and the function q(x), j =3,4,5,...,n. We note that for the functions A(p),

A'(p) have asymptotic formulae:

( )
A(P)~e-ipx Z —, peég X))
w(z) .
A'(P)oe-ipn 5 O 5 ,
e uz='0 Pt peS0 4.8)

5. REGLARIZED SUM FOR EIGENFUNCTIONS OF THE PROBLEM (0.1)«0.2) IN THE
COMMENSURABLE CASE

Now we wish to evaluate the functions R ks (o,x,E) which ensure the convergence of the

series(0.3). We must first estimate the functions pl::Hk s (x,€) in §o°. From Equation (3.5), we

have

ps8  © Q) (o)

kos~u=0 ———k';) 5 G.1)

In the asymptotic formula (5.1)
Q) (0) = (-2m)=, Q¥ (0) = (-1)~0+1 (2m)~0-1nal®),

al® (Ina(®))2
s 1 Le] (1]

Q) (o) = (-2m)" o[( )za(s)( = ( 5 )———“2 } G2)
From Equation (3.5) we get

; _ . 5) w w®(x,

oHPp s (x §)~¢-(x—§)(—2mk-?:|nag) 3 v k(n" 3] ' 53
where the functions ws“) (x,& ) are polynomials of (x-£).
Upon using Equations(4.5), (5.1) and (5.2), we have

PRaHKs(xE) i(x-E)(-2mk-Zina ) = = n P Vn v ("ﬁ)Q(s)(c”P Ny, 64

n-0p-0! 0 ko

For large number t, we consider the function

i(x-&) (~2mk - Ghrar po (x.l",)Q"’(0+p-l)¢"’
° (@=3 Z[ poi, ()= DI 3 3 e ] &9
) (s) T n=ty=0r=0
It is clear that the function ®t(c) may be extended to analytic function in the half plane

Rec >t

THEOREM 5.1 If Re o>t then
v x2)QY (c+p-ne®

Jog)- ~2mk-Bmnal®) ¥ " P Tn-p I p-1
%(Z'):[P;?Hu(x,é) n n=op§o|§o R ]
T R R
where

F(z,0)= ¥ > ——!(—

1k°
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THEOREM 5.2 If o - -2, we have

I(x—§)(‘2mk-Elna$))é % E: WS—)p(x’C) Q:S)(‘2+p_l)¢::?l

> A Hy  mB)-e

(kX3) =0 p=0 (=0 kn-2
3 n oi(x—E)-Mnal®
¢ -3 ¥ ze'(x Dty F(el(X-E)(-2m) ;,_2)y,(%) Q§3)¢(s) ) 5.7
31 (s;m=0p=0 n-p p-t

REMARK. From the definition of F(z,6) it is clear that this function satisfies the
following properties '
1. F(z,0)=2%(z,0,1), where
1 e (v-1)t

t
e -1

o«
© _ c -
®(z,0,v)= Y (v+n) cln= 1 It dt,
n=0 r(c)o

Re v>0 and either |z/<1, z#1, Rec>0 or z=1, Reo>l
2. F(z,—m):(—l)"”lF(i,—m), m=1,2,3,..

logz

isnpcl gy M insize g 1087
3. F(z,8)+e F(z,s) l"(s)e .C(l s, 2ﬂi)

a0
4. Equations (0.2), (0.3) furnish the analytical continuation of the series Z 7: beyond the
n=1"
circle of convergence ]z] =1
If Fo (z) denotes the principal branch of F(z) in the cut z-plane [0 <arg(z-1) < 21!], the

cut being imposed from 1 to OOalong the real axis, the difference of the values of F0 (z). between

a point on the upper edge of the cut and a point on the lower edge, according to (0.3),

F_(x,9)- Fo(xeliﬁ,s) =2 mi(logx)S~1/T(s)
Hence, if we cross the cut, from the upper half-plane to the lower half-plane, we obtain for the
continuation F1(2)of Fo(2)

Fi(z) = Fo(z) + 2xi(logz)* 1 /T (s)
The analogous formula for the inverse process of continuation is

Fy(z)= Fo(z)- 2rilogz)* 1/T(s)

5. F(e“,-—m):(i(—;'i)“' e_-—i%:—l; m=1,2,3...

The previous properties of ¥(Z:5) are proved in A. Eredelyi, W. Magnus, F.
Oberhettinger and F. G. Tricomi [13]

6. D. Klusch [14] considered the generalized zeta function in the from
L(x,a,s)= Z e(2xinx)(n+a)~s
nzo
(aeR*; x isnotinteger, Res>0; and if x is an integer, Re s>1)

and studied some further properties of the function L(x,a,s) resulting from the taylor expansion
of the function W(¢ ) = L(x,a +&,s) in the neighbourhood & =0
Now, we consider the following examples:

6. EXAMPLES

1. Consider the problem
—-y"(x) =X y(x) 0<x<m, 6.1)

¥(0) = y(x)=0 6.2)
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Its clear that the eigenvalues of problem (6.1), (6.2) are An = n2 and the corresponding
eigenfunctions are yn(x)=sin nx, so the regularized trace of problem (6.1), (6.2) is

2, (A - nz) = 0, and the regularized sum of eigenfunctions of problem (6.1)-(6.2) is given by the
n=1

following formula

Z[lnﬂn(x,§)+ssinnxsinn§]= 0. (6.3)
(n)

2. Consider the Sturm Liouville problem
-y"(x)+q(x)y(x)=2Ay, A= pz, 0<x<m 6.9
y(0)=y(n)=0, (6.5)

where q(x) is a sufficiently smooth function defined in the interval [0,n].
Let yl(x,p), Y, (x,p) are two independant solutions of Equation (6.4) such that

(k 1) k=j

(0.p)= {0 k#

Then from Equations (2.1), (2.2) and (2.3), we have

N A (xp)

v, e = 3 =+ O (6.6)
v=0 [ o)
N B (x,p)

y,(xp) = Z > + 0 Nl“) 6.7
v=1 P

where
A0 (x,p) =cosp x

Al(x,p) = iul(x)sinp X,
A, (x,p) = uy(x)cosp x,
.1 .

Ajz(x,p)= i[u3 (x) +iuy (0)]smp b S
Bl (x,p) = sinp x
BZ (x,p) = —iul (x)cosp x,

1
B3 (x,p) = —l(luz(x) - ul (0))sinpx,...
B4 (x,p) = [Zul(x)u'l(O) - iuJ(x)]cospx,... 6.8)

and N is a positive integer depending on the smoothness of the function q(x).

Since A(p) = det

2
t
U i % )“j’k, hen

NB (n,p)
A(p) =y, (m,p) = Z o O
P p N

From the last formula, we can obtain the roots of the function A(p) which are eigenvalues

of the problem (6.4)-(6.5). Upon using the successive approximation, we get the following
asymptotic formula for the zeros of the function A(p) :

c-1 :_3!
Rl 4 ,,3 e (6.9)

where

i 3
€ 4= iul(x), € 5= i:‘—i[li{ul(ﬂ)uz(n)--iul(a)u'1 0)- us(n)}- uj (a)],... (6.10)
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Then
c c
Apnen? 2,4
n~n te 4 35 gt 6.11)
n n
_1 . - 2
where €= “i’;q(t)dt, c2 = (c_l) + 2c__3,...

In the paper [2] I. M. Gelfand B. M. Levitan have proved that
Z(A ~n’ -e )= -c ——[q(0)+q(n)1 (6.12)

Upon using the results in H.F. Weinberger{14], we deduce that the Green's function of the
problem (6.4)-(6.5) is given by the following formula:

y2(§,p)

. ] yz(u’p)[yl(x,p)yz(n,p)-yz(x,p)yl(n,p)] x2§ s
(196’0) - yz(x’p) ( . )

;—z(u,p)[y,(é.p)yz(n,p% yz(i,p)yl(n.p)] x<§

From the definitions of Hk(x,g, pk),. we deduce that
yz(é,pk)[yl(x,pk)yz(n,pk)-yz(x,pk)yl(n.pk )} ‘e
- X2

Hy (x5, )= Y (%P ©6.14)

v, (0, )7, 6P, )3, (Rep )=, (B )Y, (3p )] cer

Yy (%0, ) '

where y'z(l,pk)=a%[y2(ﬂ~9)] ’p:pk

Substituting Equations (6.6), (6.7) and (6.8) in (6.13), (6.14), we get the following asymptotic
formulae:

(iP(x-8) 9 (x8)

x>¢& .
G(x,&,p) ~ oo pv (6.15)
X,
e (%) ZO (v é), xs<g
v= p
and
3)
. ¢ "' (x,E)
elp(x—§) ;0 Y v ’ x>§
v=
H, (x,&p, )~ Pk (6.16)
k k : o0 o“”(x,é)
eip(x-8) 5 Ty . xst

v=0 p v
k
In formulae (6.15) and (6.16), the functions q)}k) x,£) (k=1,23,4. j=0,1,2,3,...) can be
expressed in terms of the potential g(x) and its dorimlivu For example:

® =@ =0, «pg"—cp"’—g; <p§"=—(u (x)-u, ) <=>_-(.. ©-u, (x),

o= <p§"— [uz(x)+\| (B, () +u,(E)+iuy(0)]....
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-1 1 1
05 =95" =0, ¢ =0 =", o= [u,0-u,®)} 01" == [u, &)~ u, 0}
o0 = 51;[‘.,(;)+ u, (€)= u, (1w, (8) + i (0)+ £ (u, (x)+ u, (1) - u, (€~ 2u] (0)) - ﬁ] ©6.17)

Using the asymptotic formula (6.9) we have

@ Qv
P: =2 =% (6.18)
v=0k
where Q,=1 Q,=0 Q,=2C_, Q,=0, Q,=2C_,
When we deal with the problem (6.1)-(6.2), the formula (5.3) takes the form :
- ) S X,
e PKED _ Ka-b) Z-——-——-—w"( Y;)., (6.19)
n=0 kn
where WO(X’§)=1 W] (x$§)=ic_] (X—' g)
1.2 2 . (iC_, (x-&))°
wz(x,§)=—§(,_l(x—§) W, =i(._3(x—§)+-—————6———,... (6.20)
From the formulae (6.18), (6.19), we have
- » W, Q0%
™D 5 3 'k_i vt x>E
n=0p=0 p_
AH (x,£)~ =0 v. O o® 6.21)
LS 30 3 Al T 4 x<E
K2 ’ -
n=0p=0 lJ:o

Using formulae (6.17), (6.18), (6.20) and (6.21), we have the following theorem.

THEOREM 6.1 For the problem (6.1)-(6.2), the regularized sum.for the eigenfunctions is

given by the following formulae :
(DIf x>&, then:

L]
kzl[ A.(Hk(x,m%e"““”{ k+uy (8) - uy (x) - 2a(x- )uy () + L[ u, (x)uy(8) - 0y (x)-

—u,(§)-iug(0)+ ;li-(ul(g)— Uy (x)-ug(m)++2u3(0))+ an+ 2n(x - &)uy (x)-
—ug &y (n)+ 202 (x-5) 2wl () ]}— %[uz(x) b up(B)uy () + ug(8) + uj (0)]+
*51;{ F(ei(x_g)r'l)-F(ul(C) -ug(x) -2m(x - g)ul(n)p(ei(x—é)'o),’
+Hug (g E)- vy (x)-uy ()~ iug(0) ++ %("1(5)' up(X) - uy (1) + 2uy (0))+
+ S 2R - )y (0 - ug @iy () + 207 (x- ) uf (m) ]F(e"‘”é) ] } 6.22)
(2)""‘ x<E, then:

é[xknk (x’g)'*#_k(x-g){k"'“,(x)"lll(f;)-21t(x—E_,)u1(1:)+

+%[ul(x)u1 &)- uz(x)—nz(l’;)— ill;(o)-l- ;i‘—(ul(x)— nl(g)—— u (n)+
20, (0)+ L+ 22(x-£)(u, (B) - uw, (), (m)+22% (x-§) u? (x) ]}
n

= %[“2(X)+ul(§)ul(x)+ u (§)+ u;(0)]+ i11;{1«‘((‘"“5’,-1)ﬂu(l..l(,‘)_
e (§)—2n(x-§)u‘('u)).F(e“"§),0)+[u|(x)n1(§)_u2(x)_uz(g)_iu;mh

* (0, 0= 8, @) -, (1) 20,0 1K 2a(x- £, ) -w, (), (1) + 20 (x- 8wl () ] } (6.23)
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3. Consider the Sturm-Louville problem

2

-y"(x) +q(x)y(x) = Ay, A=p’, 0<x<m
T
y(0)= y(E-)+y(n)=0,

where q(x) is a sufficiently smooth function defined on the interval [0,n].
Upon using the definition of A(p) and the formulae (6.6), (6.7), (6.8}, we have:

. n n
sinpn + sinp% "[“, (m)cospr +u, (5)cosp E}
L+

A(p)= +—
() o o
+—i[(iuz(1t)—ui(O))sinpn+(iul(-’25)—ul(0))sinp§]+
3
1]
[Zul('n)u'l(O)—ius(n)]cospn+[2ul(12‘-)u'l(0)-—lu3(12'-)]cosp12‘-
+ p4 +...
To find the cigenvalues of problem (6.24)-(6.25), we put
e
\ ry ”, A(p)=0 then
V"-—L iu (1:)+1[m (1:) u (0) _1_ “l( ) ‘[“‘z( )-u (0)]

2'lp 2p2 2P2 3iPJ

~

s {( - u<0> g iy ujo)
+V —_ le +...1=0,

2ip ZPZ 2 3ip3

and

i 2 3
v=0P Zp 3t 3ip? v=0 2 3ip

I
. 2‘:3 _l_lul(3)+l[lul( )-u (0) . 4[ 0 ml(n) l{mz(n) ul(O)] ~ }:0
Sejl 2 2% 3ip* Ap 5l 3ip°

Equating the coefTicients of p'k (k=1,2,3,...) to zero, we have
—a: "‘3 +a +1=0

Solving the Equation (6.29), we have _ _
-1+iy3 -1-iy3
i e

4 on
a iuy () i[-u ™-u; (0) @ iuy () -[mz(—) u,(O)]
1 2! 1 2’
{ E —v} l——-< AT *‘ 2 p 2|p ST A - Sa—

(6.24)
6.25)

6.26)

+... |+

627

-

(6.28)

(6.29)

(6.30)

Upon using the result in [9], we have for the eigenvalu'es of the problem (6.24)-(6.25), the following

asymptotic formula

) (*) (s)
P —dk-Zna® 1 ina,
ks in 0 2aOkn 4.a("nk’
where s=1,2,3,4, and .
al -1 Luyx), o (2’=--"1("% RCOM um o @ um

1 1

4(a(3))3+3( (3))2 r

4(8(3)) N 3(,,(3))2 l’

(6.31)

6.32)
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Using the formula (6.31), we have
®
Pre = Z Q. (6.33)

T
vt.k

where

Q(” 16, Q4 =- 16ilna®, Q(”—— S @nal’)? - Q(’)-‘z'(u 0a{?na,.. (6.39)

(!)

According to (4.1), we see that the Green's function G(x,g,p) of the problem (6.24)-(6.25) has the
following asymptotic formulae:

(1))
P
i) ¥ W, LA
e —Q\Eo > 5 §<x<2, pég
@ '1’(2)
iP(Y) 5 . x&Z; peSS
=0 pV 2 0
G5 P~ ® 635
¢ -
P9 g —=; o peSy
w0 pV 2
(2)
eip(x-B) 2 v,2 2ox<t; peSS

where
sn=ef=el=0l-0  oll=of=0(=02-1
P =05 =95 =) = 1(y, (x)-u,(6)
90 =02 =00 =00 =1[u,(0+u,B)u, () +u, &) +iu)(0)] ©36)

Upon using the asymptotic formulae (6.35) for G(x,£,p) in S: and the definition of the function
Hk !(x,);), we have

1 - 0 -
R pk,;(x §) __‘ §<x<%; pk's ng,

Opk”
o, 08 © 48! -
e x z "—‘VJ H §<x<12!; Prs ES::

v=0p"
p"’; (6.37)

Hy ((x,5)=1 0(
eIp.‘,.(x—é) Z v,2

n . QO
op E<§<x, Pi.s eSo,

Iu
gy a8 @ 4 :
e K T +’2; -;—.<x<§; pk,ses:’
v=0pk~s

where

O _g@ _g® _g@ @ _g@_¢® _g@__ 1
B =00 =40 =00 =0, §0 =40 =40 =40 =L,

2n
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3 _ 4 _ @ _ 2@ _ 1 _
9, =0, =-9"= ¢, =3 €)-u ()
40 =40 =-02=-4* = Llu 0+, E)-u @ E)+
+iw'(0) + %(u.(x) +u (%)~ u (§) - 2u'(0) - %] (6.38)

From formulae (6.33) and (6.37), we get

]
Ae-H-tmal) 2 2 P v Qe .
0 22— Ex<g
n=0p=0{=0 k
vy L2 (8) © 0 p y® Q(s)¢(4)
e2|(x E)(2k. nlnao ZZ n-p ot x<§<!
Pi Hy s EN aopoizo K" 2 639
k,s Kk, ()« n P (s) Q(s)‘(s) 3
—21(1—§)(2k——lna v bt x
Z —ﬁ—— E<§<x
n=0p=0{=0 k
_ _1ina® nopy® (3) @
k"‘ 2
n=0p=0{=0
where,...
. (%) )
ja, " (x-&)
(’)(X,E) l lpis)(x,g): _1_,; (S) l(x EJ) (
2a%x (s)
0
,(ai’)(x—g) 3
i(———
@ o —@ maP)x-8&)  2aPn N
W: (xsg)_ m(s) + 3 yoee ( . 0)

0
Upon using formulae (6.36), (6.38), (6.39) and (6.40), we have the following theorem :

THEOREM 6.2
DIfE<x< %, then the regularized sum of the first order for eigenfunctions of the problem

(6 24)-(6.25) are given by the followig formulae
(!) Q(s)¢(s) .

1-E)(- sk-Zmna @) & & y-on
ZZ ®E-e RiE53)3) JpEERIETY)

k=1s=1 n=0p=0,_,

i , 430 l(x-:)(—i%;lna:")
= L0, +u,Eu, @ +u,E +iu0)]- T T3 e

s=1n=0p-0{=0

F(e* P n- 2)\pf:_)pQ<;’¢;‘1 01 (6.41)

@ If x<E< %, then the regularized sum of the first order for eigenfunctions of the problem

(6.24)-(6.25) are given by the followig formulae

g EY—dk— 2 Inal® (s) _(s) (4)
1(x-E)(-4k inlnao ) v Q ¢

g 3 2 Ya e Ypota
2.2 M Hy  (,E) e 2.2 ; Ez__

k=1s=1 n=0p=0y

. , 4 3 —I(X-g)(—i%lmf;) )
= 3 [m @+, @n 0 +0,E) +inO)]- 353 e
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.F(e*™® n- 2)\pf“_’pQ§’¢;‘_’ o1 (6.42)

Q) Ir 12'- <& <x, then the regularized sum of the first order for eigenfunctions of the problem

(6.24)-(6.25) are given by the followig formulae.
s () (3)

v 2 inal®)
Ix-8) -k Ina )3 n i w"_pQ[ OP_(,Z

o 4
ZZ )‘k,sHk,s (x,8)-e

Kk=1s=1 n=0p=0y — @ W2
i , 430 p l(x-é)(-ﬁ;lnaf)")
-1 uz(x)+u2(E_,)+ul(x)ul(§)+iul(0)]— 33 Se )
s=1n=0p-0{=0
.F(e**® n- 2)yY QP ;:l 02 (6.43)
@ Ir 12!- <x<§&, then the regularized sum of the first order for eigenfunctions of the problem
(6.24)-(6.25) are given by the followig formulae
4
o 4 —I(x-g)(—dk—-&lna( s)) 3 n p ll‘(‘_)_ :‘) ¢ )l 2
22 Ml (xE) e ’ > =2 —
k=13=1 n=0p=0y — ¢ W2
2 1na(®
. , 4 3 a p la-t-frlna™)
=4[, ®+0,®+u,0u,E+inO]-T 3 Fe T
s=1n=0p=0{=0
P - 248,004 40
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