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ABSTRACT. Consider the eigenvalue problem which is given in the interval [0, n by the
differential equation

-y"(x)+ q(x)y(x) :y(x); 0< x_< x

and multi-point conditions

U (y)= ttlY(0)+ (x2y(t) + -(xkY(Xkt)= 0,
k--3
n

U2(Y)= ly((|)- ]2y(x)-I- ’[tkY(Xkt) O,
k=3

(0.2)

where q(x) ix sufficiently smooth function defined in the interval [0, n ]. We assume that the points

X3,X4,...,X n
divide the interval [0,1] to commensurable parts and GtIJ2-fx2[ 0. Let

2
k,s Pk,s be the eigenvalue$ of the problem (0.1)-(0.2) for which we shall assume that they are

simple, where k,s, are positive integers and suppose that Hk,. (x,) are the residue of Green’s

function G(x,, p) for the problem (0.1)-(0.2) at the points Pk.s" The aim of thtsworkisto

calculate the regularized sum which is iven by the firm

(0.3)-,-’, lk,.|].k. (X,)-- R
(k) ()

The above summation can be represented by the coellicie,t_ of the asymptotic expansion of the
(,x,,p) Isfunction G(x, p) in negative powers of k. In series (0.3) c ix an integer, vhile R

s.,

a function of variables x, and defined in the square [0,x ]xl0,t which ensure the convergence

of the series (0.3).

KEY WOREI)S AND I’[1RASES Regularized sum for eienfunctio,s, asymptotic f.rmula,

Green’s function, differential ,perd-r.

1991 AMS SUBJECT CLASSIFICATION (’()DES 47E05

1. INTRODUCTION.
It ix well-known that the sum of the diagonal elements in a S(luare matrix is equal to the

sum of the eigenvalues of its operator in finite dimensional space. In other words the trace of a

matrix is equal t- the spectral trace in n-dimensi,nal spaces.
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It is worth mentioning that this theorem i. .atisfied also in the case of nuclear operators

acting in Hilbert space. Sadovnichii [1 proved this theorem. Thus we might ask the following

question. Is the last theorem applicable to the case of unbounded operators?, especially in the case

of differential operators since in ge.neral case the trace of a matrix and spectral trace do not exist.

Consider, for example, the boundary-value problem:

-y"(x) 4 q(x)y(x)- y(x), 0 _< x < x (1.1)

y(0) y()---0, (1.2)
where q(x) is sufficiently smooth function.

The eigenvalues ,n of problem (1.1), (1.2) has the asymptotic expansion in the form

n~n2- Co + i- Cnl - (1.3)

where c ] q()d (1.4)
0

From Equation (1.3) it is clear that E ?n diverges, while E(.n n2- Co) converges, and is called
n:= n=1

the regular trace for the problem (1.1), (1.2).
The study of regular trace for differential operators plays an important role in several fields

such as mathematical analysis, theoretical physics and quantum mechanics, where the regular
traces give the asyntptotic expansion for the eigenvalues of operators. We can also use the regular
trace in the inverse spectral problems in functional analysis.

A good number of work has been devoted to the deduction of the formulae of regularized

traces of differential operators Geifand, Ivitian [2], Charles, ltalberg and Kramer [3], Lidsky,

Sadovnichii [4, 5, 6], Sadovnichii, l,yubishkin and Belabbasy [7, 8], Saleh [9] and many other

authors

The concept of the regularized trace with a weight for the differential operators was

introduced by Sadovnichii [10].
The main goal now is to derive asymptotic formulae for the solutions of (0.1) when [,]-

and then use them to obtain the asymptotic formulae for the eigenvalues of the problem (0.1),
(0.2). The concluding part of this lmper is devoted to the derivation of the regularized sums of

eigenfunctions of the second order, and we shall give some examples,to illustrate the mentioned

concept of regularized sums of eigenfunctions.

2. ASYMI’TOTIC FORMI,AE FOR ’IIE S()I,UTI()N ()F THE STIRM-LIOUVILLE EQUATION
The solution of the differential equation (0.1) admits asymptotic expansions in powers of

p -z which become more precise the number of derivatives that the function q(x) has increases
Marchenko [11], Naimark [12]. l,et y (x,p) and yz (x,p) be linearly independent solutions of

(0.1), then

o(- -)Y (x,p)--:e ipx :E
t)--I p u

[ N ( I) x’.’ (x) J-) 0(-ff--i-- (2.1)Y2(x’P) e -ipx I-)
u

u=l p X)

where N positive integer depends on the smoothness of the function q(x) and the fmwtions uu(x),

=1,2,...,N admit the representations:
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q()d%,

0

1t, (x);_2 i q(x)--q(O) i(q()d)
0

X

,- 2
{ d2- q()},, (); , I,Z,3 N- 2 (2.2)

0
We note tlmt u (0) 0, for u 1,2 ,N. By means of the asymptotic formulae (2.1) and

Equation (2.2) we can prove that

(x,p): (0,p)-: Wly,y2 r0

q(O) q"’(O)- 4q(O)q’(O)
=--2ip-t -];;--- 4[,3

+... ] (2.3)

3. ASYMPTOTIC FORMUI,AE FOR EIGENVAI,IIES OF "FIIE PROBI,EM (0.1)-(0.2) IN TIlE
COMMENSURABI,E CASE

In Saleh [9] proved that tlne eigenvalues of the problem (0.1)-(0.2) (.=p2) are found from

the condition

^ -P-)- --0, O.)f(P)== (p)

where

Upon using Equations (2.1), (2.2) it is easy to see that
,,,’-o

[ 0,, ’k" ]A(p)=: Ak(p) - +----+...+ -+... O.3)
k

p p2 pN

iktPwhere Ak(p) e 1 =-1’ 2 =-(1 -x3), 2n2_6 =--1 1,

and 3,.(0), I.(J) (j= 1,2,3 are calculated in terms .f the constants ct fl 0,--1,2 n) and the
V V

function q(x), fir example,

o) 1o)

[ll) _q(1),
2n2-6 i- (li1x2 x1[l2 ).[ q{)d

0
(3.4)

Using the results of Saleh [9], we deduce that in connmensurable case the problem (0.1)-(0.2) has

2m series of eigenvalues which have the fi!llowi.g a.ymptofic formula:

where

a (s) a (s) In a

Pk,s"-2mk !! In a (s) -v o
,a o 2a(S)k 4ia(S)a k2

o o

m= -I , .,d; d-:min{1 2,’ 3’’" 2n2--6
- (3.5)

4. TIlE ASYMPTOTIC F()RMIAE FOR "file (IREEN’S FINf’Tlf)N OF TIlE PROBLEM

(0.1)-(0.2) IN COMMENSURABI,E CASE

It is well-know, that the {teen’ hmcti.n of differential equaUo, of the second order is

given by the formula:
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tYl(X’P) yz(x,p) g(x,,p)

G(x,,P)= Ap)llYl(Y1) UI(Y2) Ul(g)

I2(Yl U2(Y2 U2 (g)

where g(x,,p)= _+ 22i(0,) Yl (x’p)Y2 (’P)- Y2 (x’p)Yl (’P)

The positive sign being taken if x >, and the negative sign if x<).

(4.1)

(4.2)

If we divide the p-plane into four regions ; : such that:e’ 1’ 2’ 3

p p>R, 0<argp

1 p p >’R t 0<argp< x
2

3 {p [p[ >R’ 3___n_0<argp<2sl
2

(4.3)

where

we see that the Green’s function of the problem (0.1)-(0.2) in the commensurable case has the

following asymptotic formula:
(1)

G(x,,p)~ei(X_)p ’uj.
u__0 pu peS, <x<xj

(2)
G(x,,p)~e-l(x,)p --;u’Ju P 80 <xjn <x, (4.4)

o=0 p
$= \Q$
0 0 k,s

and,

Qk,s P P- Pk,$ "< $’ AlPk,s 0

Since Hk,s(x,) the residue of Green’s function G(x,,p) for problem (0.1):(0.2) in the points p
k,s

and from the assumption that the eigenvalues p are simple, then

H (x, $) lira (P )G(x, , p)
k,s ’Pk, P- Pk,$ Pk, s

(4.5)
Upon using the ymptotic formulae(4.4) for x,,p) in and Equation (4.5) we have for

H (x,) the following asptotic formulae
k,s

i(x-)Pk,s
(3

II (x,,p )-e o0-G-- p e <x<x X
k,s k,s Pk.x k,s

(4)
-i(x- )Pk,s *o,j - (4.6)H (x,,p )-e ---, pS <x.a<x,

k k,s px} .I
v 0 k,s

where the run,ions (1),(2)ff(3 and (4) are defined in terms of the consn
u,j u,j’ u,j
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’k’ (k 1,2,...,n) and the function q(x), =3,4,5 n. %Ve note that for ti,e functions A(p),

have asymptotic formulae:

yL1)(P)~e-iP Pu=0"’ 0

o (u2)
=0--’ 0

(4.7)

5. REGLARIZED SUM FOR EIGENFUNCTIONS OF THE PROBLEM (0.1)-(0.2)IN THE
COMMENSURABLE CASE

Now we wish to evaluate the functions Rk,s(o,x,) which ensure the convergence of the

series(0.3). We must first estimate the functions -op H (x,) in o. From Equation (3.5), we
k,s k,s o

have
-o oo Q,S(o)

Pk,s~ Z
u:0 u+o (5.1)

In the asymptotic formula (5.1)

Q(oS)(o) (-2m)- Q’)(o, (-I)-+I(2m)-O-I m---Ina(J)’m.

[ "’" ]Q(2S’ (, (-2m)- (-1) 2a (0s, +(-20)(-2m) i,{

From Equation 0.5) we get

eiPk,s(x-)~ei(x-)(-2mk-lxIna(oS) (nS) (x,)
n=0 kn

where the functions is) (x, are polynomials of (x-).

Upon using Equations(4.5), (5.1) and (5.2), we have

(5.2)

(5.3)

-o i(x_)(_2mk_lna(oS)) Y. Y.
(S)n_p (o/p-l)j(pS._Pk,Hk’s(x’j )~e oo n P (x’)Q_s) )1

n=0p:0f:0 kn+o
(5.4)

For large number x, we consider the function

i(x_,(_2mk_mlna(_S,, xp’" (x,,Q:"(o+p-l,,’,, ] (5.5)(o)= p-lt (x.)-e i,

(k) (,)
k,s k,s n::O=0

It is clear that the function q>x(o) may be extended to analytic function in the half plane

Re o >-

where

zkF(z,o) i-.

(5.6)
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THEOREM 5.2 If o -2, we have

(s) x, )QIS)(-2+p )Wp_l 1
3 n p Vn_p -(s)

ZZ Xk,sHk,s(x,)-el(x-)(-2mk-lna(S)) Z Z Z kn_2(kXs) n=0 17=0 e=0
3 n i(x_)(-n_lna(s)

=(1)_ : .e i 0 F(ei(x-)(-2m),n-2)W(s) Q($)(s)
3,1 (s)n=0p 0 n- p t p-

(5.7)

REMARK. From the definition of F(z,o) it is clear that this function satisfies the

following properties

1. F(z,o)=z(z,o,1), where

oo -o n fto-le-(u-l)t(D(z,o,u)= Y.(u+n) z j dt,
n=0 [’(o) "t-

O -z

Reu>0 and either [z[ < l, z-l, Reck>0 or z:l, Reo>l.

2. F(z,-m) (-I)m+lF(l,-m), m 1,2,3,...
Z

3. F(z,s)+eisxF(1 s)
(2x)’ ix s/2 Iogz,, T; (-,-)

4. Equations (0.2), (0.3) furnixh the analytical continuation of the .erle. Te- beyond the
n= l

circle of convergence [z[
If F (z) denotes the principal branch of F(z) in the cut z-plane I0 < arg(z- 1) < 2g], the

O

cut being imposed from to alon the real axis, the dilTerence of the values of F
0
(z). between

a point on the upper edge of the cut and a point on the lower edge, according to (0.3),

Fo (x,s)- F (xe2i s) 2 t i(Iogx) s-1 T(s)

Hence, if we cross the cut, from the upper half-plane to the lower half-plane, we obtain for the

continuation F1 (z) of Fo (z)
Fl(z) Fo(z) + 2 i(Iogz)s-I I’(.)

The analogous formula for the inverse process of continuation is

F2(z)= Fo(z)- 2xi(iogz)s-I/F(s)
5. F(e it -m)=(id)m I m= 1,2,3...

The previous properties of F(z,) are proved in A. Eredelyi, W. Magnus, F.
Oberhettinger and F. G. Tricomi [13]

6. D. Klusch [14] considered the generalized zeta function in the from

L(x,a,s) .. (2ainx)(n/a)-S
n_>o

(aeR+; x is not integer, Res>0; and if x is anlneger, Re s>l)
and studied some further properties of the function L(x,a,s) resulting from the taylor expansion

of the function W( L(x,a / ,s) in the neighbourhood 0

Now, we consider the following examples:

6. EXAMPI,ES

1. Consider the problem
-y"(x) y(x) 0 < x < , (6.1)
y(0) y(n 0 (6.2)
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2Its clear that the eige,values of problem (6.1), (6.2)are 7. n anti the corresponding

elgenfunctions are Yn (x)=sin nx, so the regularized trace of problem (6.1), (6.2) Is
o

n2(Z 0, and the regularized sum of eitlenfunclions of problem (6. I)-(6.2) is given by the
n=l n

following formula

E[nlln (x,) + n sinnxsin,,] O. (6.3)
(n)

x

2. Consider the Sturm Liouviile problem
2

-y"(x)+q(x)y(x)=Zy, .=p 0_<x_<

y(0) y() 0,
where q(x) is a sufficiently smooth func.tion defined in the interval [0, ].

Let Yl (x,p), Y2 (x,p) are two independant solutions of Equation (6.4) such that

(6.4)
(6.S)

(k-l) {1 k=j
yj (0,p)---

0 k ; j

Then from Equations (2.1), (2.2) and (2.3), we have

N A

Yl(X,p,
v , +0( NI+I

u=0 P p

(6.6)

N B (x,p)

Y2tx’p):
u +O(

N+I
u:l P p

(6.7)

where
Ao (x,p) cosp x

A (x,p) iu (x)sinp x,

A2 (x,p) u2 (x) cosp x,

A3(x,p) u3(x)+tu2(0) sinp x

Bl(x,p) sinp x

B2 (x,p) -iu (x) co.,p x,

B
3
(x,p) -i(iu

2
(x)- u (0)) sinpx

B
4
(x,p)= [2u (x),, (O)- iu

3 (x)]cospx,...
and N is a positive integer depending on the smoothness of the function q(x).

Since A (p) det (Yk) then
j,k

N B (,p)
A(p) Y2 (’ p) E / 0(---]-)

:1 P p

Front the last formula, we can obtain the root of the function A (p) which are eigenvalues

of the problem (6.4)-(6.5). lJpon using the successive approxinmtion, we get the following
asymptotic formula for the zeros of the function A(p)

where

Pn n
n

(6.10)
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Then

2 c
2

c
4’n~n /c + -- (6.11)

II !!

where c
O q(t)dt; c

2 (c_1 / 2c--3
0

In the paper [2] I. M. Geifand, B. M. Levitan have proved that

2 1Z (x
n

n Co c
o -[q(0) + q( a )] (6.12)

n=l

Upon using the results in H.F. Weinberger[14], we deduce that the Green’s function ofthe

problem (6.4)-(6.5) is given by the following formula:

2(a’-p) YI(X’p)Y2 (x’P)- Y2 (x’p)YI(a’P)
G(x,,p)=

Y2 (x,p)

iZrom the definitions of H
k (x,, Pk )’" we deduce that

Y2 (’Pk)[Yl (x’Pk)Y2 (x’Pk)- Y2 (X’Pk)Yl

H
k (x,,Pk )= Y’2 (x’Pk)

Y2 (x’Pk)[Yl (’Pk)Y2 (n’Pk)- Y2 (’Pk)Yl (a’Pk)]
Y(,Pk

d[y (a p)] [p:where y(a,pk)=pp 2 Pk

Substituting

formulae:

and

(6.13)

(6.14)

Equations (6.6), (6.7) and (6.8) in (6.13), (6.14), we get the following asymptotic

G(x,,p)

(t) (x,)
e’plx-) Z v;

v=0 p

_12)(x )e--ip(x--) ’v
vv=0 p

x>
(6.15)

eip(x-g)
q(3)(x’)
V X>

v=0 Ok (6.16)Hk(X’’Pk )~ .._(4) (X, )o,% x<e-iplx- )
vv=O Pk

In formulae (6.15) and (6.16), the functions plk)(x,) (k= 1,2,3,4. j=0,1,2,3,...) can be

expressed in terms of the potential q(x) and its dertwdives. For example:

m<t m) O, m<,) m<) 1 ) (,, (x)-,, ()), 2)--’ --0 --I --I i’ =(UI()--HI(X))’
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=" tl,(X)+U,()-U,(X)Ul()+iUl(0)4 -(lll(X)+Ut(t)-U,()-2Ul(0))---T
Using the asymptotic formula (6.9) we have

2 Q
Pk 2

where Q0 =1 Ql =0 Q2 =2C_1 Q3=0, Q4 =2C_3
When we deal with the problem (6.1)-(6.2), the formula (5.3) takes the form

where

e’k f*-) elk (x-) -,q’n(x,)
n=O kn

q,o(X,D 1 q, (x,)= iC_ (x-
I (iC_ (x- ))’2(x’U=-c:- (x-) q’ =’c-3(x-)+ 6

From the formulae (6.18), (6.19), we have

,-
Z,H, (x,)- ,- x<

(6.17)

Using formulae (6.17), (6.18), (6.20)and (6.21), we have the following theorem.

(6.18)

(6.19)

(6.20)

(6.21)

THEOREM 6.1 For the problem (6.1)-(6.2), the regularized sum. for the eigenfunctions is

given by the following formulae"

(1) If x>, then"

Z kkHk(X’)+2-ik(x-’{ k+Ul’’-Ul(X’-2(x-’Ul’’’+[ Ul’X’Ul’’-u2’x’-
k=l

-u2()-iui(O)+i(un l()-Ul(X)-Ul(a)++2ui(O))+ -+2a(x )Ul(X )-

/.1 F(el(-{) --I) + (u ({) u() -2n( {) () F(e |(-{) ,0)

+[Ul(X)Ul()- u2(x)- u2 ()- iui(O) + +

(2) If x < F, then"

k=l- 2/g

+_.1 Ulk
(x)u ()-u (x)-. ()-i,,(O)+ (,, (x)-,,i()-. ()+

+2u1 (0))+--12 + 2n(x- %)(un()-u (x))u () + 22 (x )2 u2() ]}
-!In2 2 :_1{ ,--2 (x)+ul()u,(x)+u (%)+u’(0) + F(e-Ifx-) l)+(u,(x)-
-U ()- 2t(x- )u (t)). F(el(x-) 0)4-[01 (X)ll ()- tl

2
(x)- u2()- iu’l (0)+

+ 7-(ui(x)-u, (,)-u,(,l)-i. 2u’, (0)),--li.i. 2,l(x_ )(ui()_ u, (x))u, (,,)+ 2,’ (x_ )’ u’ (a,, ]} (6.23)
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3. Consider the Sturm-Louville problem

-y"(x) + q(x)y(x)--- Xy, X p:, 0 _< x _< x

y(0)= y(-)+ y()= 0,

where q(x) is a sufficiently smooth function defined on the interval [0,x].
Upon using the delinition of A(p) and the formulae (6.6), (6.7), (6.8), we have:

sinp + sinp -i u (n)cospn +ul ()cosp
A(p) ,

p p2- O,()-u,())sO+(|,( )-,())sio
+

(6.24)

(6.2S)

... (6.26)

To find the eigenvalues of problem (6.24)-(6.25), we put

V--,-’7 o

V4[ 2ipl iu,(n)2p2

then

I-
i[iu2 (x)-3ipu.l’(0)] ]t....+ V3 2ipl iul()2p2

i-

1 iul() iu2(-)-ul(0)
+ +

3ip 3

iulOX)2p2
+

i[iu 20x)-ui(0)]3ip3+’"] =0, (6.27)

and

2432 3ip3

2ip 2p2

Equating the coefficients of p-k (k=1,2,3,...) to zero, we have
3 +a +1=0-a0 -a0 0 (6.29)

Solving the Equation (6.29), we have

O) 1, az) -1, a3)--1+i43 a(0)--1-i43 (6.30)a
0 ---’ 2

Upon using the result in [9], we have for the eigenvalues of the problem (6.24)-(6.25), the following
asymptotic formula

a --(’) lna(o
Pk,s-4k- "2 h’as)+ (2k 4ia (2k "" (’)

where s=1,2,3,4, and

Ul(n)a1, -1-u6 l(x)’ a2): l-ulOx)’ al(3’ (_3 Ut()(3 ’a4) (03))3 3(a(03,)2 1’4(ao))3 + 3(ao))2-1 4(a

(6.32)
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Using the formula (6.31), we have

P., -ci, (6.33)

where

Q(os) 16’ QIS’ -16ilna’o Q2S)=-2(lnas))2 4as) Q(3s’ :-2l(n- l)aS’ ’na(os)’’’" (6.34)

According to (4.1), we see that the Green’s function G(x,{,p) of the problem (6.24)-(6.25) has the

following asymptotic formulae:

v=O

v=O pV

where

pO) ...(2) ..0) (2) 0 O) t) O) ...(2) I
0,1 W 0,1 NJ 0,2 p 0,2 q) 1,1 p

,J p 1,2 TM 1,2 i
o) :po) _o) _o) (x)-u())P2, ,2 2, (u

w3,-0) v3,-2) m0).3,2 w,2-(2)= u, (x) + u, ()u, (x) + u()+ iu, (0) (6.30
o and the definition of the funlonUn using the ymptotic formulae (6.35) for G(x,,p) in o

Hk,,(x,g), we have

Hk,s(x,)=

where

O,l 0,1 0,2 0,2
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+ . -+’>., -+". l(u ( u, (x))

+i(0) + -(,() + ,() ,({) ’(0)

From formulae (6.33) and (6.37), we get

(6.39)

where,...
(s) (s)

,a] (x- ) ,) 1 (x-) ( " )2,’)(,) , +(,+)(,)
2aO) (,i

0
It ao /t

a(’)(x- )
i( )

2a(S)n-(a (s) In a())(x )
’3"(’)(x,i)=

o + o
eta(S) 6

o
Upon using formulae (6.36), (6.38), (6.39)’and (6.40), we have the following theorem

(6.40)

THEOREM 6.2
n then the regularized sum of the first order for eigenfunctions of the problem1) If < X < ,

(6.24)-(6.25) are given by the foilowig formulae

ZZ k,sH k,* (x’)- e Ill

k=ls=l n=Op=O+ k"

__+ 3 . ,(,-)(-.-lna(’)),:

s=l n=0p=0/=0
(s) l,-i(s)& (3).F(e-41(x-’),n- 2)Wn_p., "rp-.,l

(2) If x<<’,
(6.41)

then the regularized sum of the first order for eigenfunctions of the problem

(6.24)-(6.25) are given by the followig formulae

-’<’-’,><-"<- ,,,,, ,,), " ,,,
Z llik,sHk. (X,g)-- e Z Z n- p p- ,1

k=l s=l .=Op=O 0 k
n Z

-I(x-)(-i-InaS))=i u2(x)+ u ()ul(x)+u:()+iu,(0)2
s=1 op=of-=O
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(,) (,). (4) (6.42)

(3) If < < X, then the regularized sum of the first order for eigenfunctions of the problem

(6.24)-(6.25) are given by the followig formulae.

k=l s=l n=0p=0 0

(s)

n-p

n-2
k

3 n P i(x_)(__.ina(s))
lt 0

--2----[[u2 (X)-I-U2 ()+ U (X)U ()+ in (O)]--
1 n=Op=0=0e

(s) ()& (3) (6.43)F(e*fX-),n 2)Wn_p
(4) If < x < , then the regularized sum of the first order fr elgenfnctions of the problem

(6.24)-(6.25) are given by the followig formulae

"- - (s) Q(s),(4)
k,sHk,s(X,)_ e n--p p-,2

,k:l I n=Op:O 0 k
n 2

3 n p l(x-)(-’as)

[u2(x)+u2()+u’(x)n’()+iu’ (0)]-2
)

1n=0p=0

F(e*X-),n 2)" o) (6.44)
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