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Abstract
Conditions are investigated for systems of the form Mz’ = N+ Az + f(z), where f is quadratic,
which yield a point dissipative system. Application of the conditions are made to the problem of

ezistence of linear feedback controls u = Kz for systems of the form
Mz' = N + Az + f(z) + Bu

which force the system to be point dissipative. The basic results have eztensions to more general

classes of systems.

1 Introduction

We are concerned with a class of nonlinear n-dimensional systems of the form
Mz' = N + Az + f(=),

where M is a positive definite matrix and the nonlinear term f(z) is quadratic of the form

2TCz

f(=)=

ZTCﬁB

The n x n matrices {C;} are symmetric with the orthogonality property =7 f(z) = 0 for all .
Functions f with the orthogonality property are said to be conservative. We start with an inves-
tigation of relations between the n x n matrix A and the function f that are sufficient to insure
that the system is point dissipative, i.e., which guarantee the existence of a bounded region in R"
which every trajectory of the system eventually enters and remains within. Such conditions would
imply the system has a bounded attractor. As an example of a point dissipative system of the
form given above, we cite the well known Lorenz system in Lorenz [15] and Sparrow [17], see also
Guckenheimer [10] and Wiggins [18], ' = Az + f(z), where

—-a a 0
A= v -1 0 |,a>0,v>0,5>0
0 0 -=b

0 I
(=)= [-wxzs], z= [1‘2]
T1T2 T3
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Note that f has the orthogonality property. Furthermore, if u is a nontrivial member of the zero
set of £, i.e., u = (u1,0,0)7 or u = (0, uz,u3)7 then uTAu < 0. Rotations preserve both of these
properties.

When n = 2 or 3, a sufficient condition for the system to be point dissipative, see Bose [6, 1] is
that uT Au < O for nontrivial u in the zero set of f. The conjecture that this condition is sufficient
for n-dimensional systems is unresolved except for special cases, i.e., systems where the zero set of
f satisfies additional conditions. Theorem 1 extends the n-dimensional result in Bose [1].

Since linear feedback does not disturb the zero set of f, our feeling is that linear control minimally
modifies the structure of the uncontrolled system. Our goal is to produce a linear feedback so the
controlled system either has the origin as an asymptotic stable point or is point dissipative. No use
is made of nonlinear feedback.

The extensions in Section 4 relax the conditions on f(z), i.e., f(x) need not be conservative or
quadratic. Some of the results in this paper were announced in Bose (3] without proof.

2 Basic Results

It can be shown, see Bose [1] that for quadratic f(z) with the orthogonality property the set
VA f= {z | f(z) = 0} contains at least a 1-dimensional subspace of R". For each vector a” =

(a1, az,...,a,), we define the n x n matrix C(a) as follows:
n AT
Cla)=) a.Ci— A+2

i=1

Our first result is the following lemma.

Lemma 1 If there ezists an a so that the matriz C(a) is positive definite then the system z'
Az + f(=) is point dissipative.

This lemma is proven by a standard argument using the Lyapunov function
V(z)= %(z —a)"M(z - a).

For large || || the time derivative of V/((t)) is dominated by —27 (¢)C(a)x(t), see Bose [1]. Vectors
a for which C(a) is positive definite are said to be admissible for the system ' = Az + f(z). A
condition on the matrix A and f(&) which guarantees the existence of admissible a’s is the topic of
our next result. The condition u” Au < 0. for all nontrivial u in Z f is necessary for the existence
of an admissible a. We have shown in Bose [1] the condition is sufficient when n is 2 or 3. We
have also shown in Bose [2, 4] that this condition is sufficient when Z f isan (n — 1)-dimensional
subspace of R". The next result weakens this equality to inclusion. The method of proof presented
here contains some new ideas not found in Bose [4].

Theorem 1 Consider the system Ma' = Az + f(x), where f is conservative. If Z f contains an
(n — 1)-dimensional subspace of R* then uT Au < 0 for all nontrivial u in Z f if and only if there
is an admissible a for the system.

2TCz
We start by considering the conservative quadratic function f(z) = : . If we define
zTChz
:cTCly
zQy = : then @ is a bilinear function and f(z) = Q. The vector space generated or
zTChy

spanned by u;,u,,...,ui is denoted by S(u;,us, ..., uk).
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Lemma 2 If S(uy,ua,...,ux) C Zf, Uy, Uz, ..., Uy are linearly independent, and uTAu < 0 for
all nontrivial w in Z then the matriz B = [-2T Ay), .., is positive definite.

Proof. Let z be an element of S(u;,us,...,ut).. Then =z = Ef;o cu, and, by hypothesis,
uTAu < 0 for all nontrivial u in Z f Therefore

k €
0< —zTAm - (Z(C{".‘)TA(C"‘H,;)) = (C], K ,C)‘)B :
i=1 &
implies B is positive definite.
Lemma 3 The subspace S(u1,us,...,uk), is contained in Zf, if and only if u,Qu, = 0 for all

1,7 =1,2,...,k.

Proof. Suppose that S(u;,us,...,ux) C Zf. Then S(u,,u;) C Zf and u;, u;, and u; + u, €
S(u,,u,). Therefore

0= f(u,+u,) = f(u;) + 2u;Qu, + f(“,) = 2u,Qu,

Conversely suppose that u;Qu; = 0 for all 7,5 = 1,2,...,k. Let # € S(u,uz,...,ui) so that
z=Y% cu,. Now
k kK
f(2) = cuw) =33 acuiQu,
i=1 i=17=1

which implies that S(uy,u2,...,ux) C Zf'

Lemma 4 When Z_f contains an (n — 1)-dimensional subspace then there is a basis vy, uy, ..., u,
OfR" such that Zf = S(ul,’Ilg,. . .,‘ll,n_l) or Zf = S(‘ul,uz, e ,‘ll,,,_l) U S(uk+1,uk+g, N ,‘lln).

Proof. When Z § contains an (n—1)-dimensional subspace then Z f is either an (n — 1)-dimensional
subspace or Z fis the union of an (n —1)-dimensional subspace H and another subspace K Bose [5].
When K is nontrivial, let wg, #g42,...,u -1 be a basis of the intersection of H and K. Then there
is a basis uy,uy,...,u, of R" such that w;,us,...,us_; is a basis of H and %k41, Uks2,- .-, Un iS
a basis of K. )

Proof of Theorem 1. Suppose that S(u;,us,..., %) C Zf- Let u;,u,,...,u, be any basis for
R*. Then for any « in R* we have ¢ = %, p;u; and

zTC(a)z = pTC(a)p =

—ul Ay, e —ul Au,_, aTu,Qu, — ul Au,
—ul Ay, .. —ulAu,, aTu,Qu, — ul Au,
Pr : 5 : : P
—ul_ Ay, ... —ul_ Au,, oTu,1Qu, — ul_ Au,
aTu,Qu, —ulTAu, ... aTu,,Qu, —ul_Au, aTu,Qu,—ulAu,
where pT = (p1,pz,...,pa). This last quadratic function of p can be written as

;[ B b
Pl aTu,Qu, — ul Au, L
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where
b = (arulQu,. - quun, oyl un_1Qu, — ul_ Au,)

and B is the (n — 1) x (n — 1) matrix of Lemma 2 and is therefore positive definite. Hence C(a)
is positive definite for some a if and only if C(a) is positive definite for some a. In order to show
that C(a) is positive definite we need only show further that det(C(e)) > 0.

Case 1. Suppose that S(uj,uz,...,up-1) = Zf' A different proof appears in [4]. In this
case u,Qu, # 0 and u,Qu, can not belong to S(u;Qun, U2QUn, ..., Us_1QU,). For u,Qu, =

n-1
=1

d,u,Qu, implies that

n-1

f(u, - Z %“t) = UnQun — Ed‘u‘Qu” =0

=1 1=1

which in turn implies that u, — ¥07} %u; isin Z f= S(uy,uz,...,us—1) contradicting our hy-
pothesis.

Let dim S(u1Qun,...,un—1Qu,) = k,k < n — 1. Without loss of generality, suppose that
u;QUn, ..., urQu, are linearly independent. Then S(u;Qun,. .., Un-1QU.)

= S(u1Quy, . .., urQu,) and

k
Uy, Qu, = Ed,;u,Qun, ji=l,...,n—k-1

=1

Hence S(u1Qun,...,usQun, unQu,) has dimension k + 1 and so, for each 7 > 0, there exists

a vector a, such that afu;Qu, — uTAu, =0, i=1,...,k and afu.Qu, — ulAu, = 7.
For such an a, the last row of C‘(a,) becomes (0,...,0,bkt1,--.,bno1,7), where byy,, for j =
1,...,n—k—1, does not depend on a, but rather on ul Au,,...,ul_jAu, and d,,, i=1,...,k.

Let br = (0,...,0,be41,- - -, bacr). Now det(C(a,)) = (7 — bT B-'b)det B see Horn [11]. We can
choose T large enough to make 7 > bT B='b and, for such an T, é(a,) is positive definite. Hence
C(a,) is positive definite, i.e., &, is admissible.

Case 2. Suppose Z fis the union of an (n — 1)-dimensional subspace H and another subspace
K neither of which is trivial. Let u;,us,...,u, be the basis given in Lemma 4, in particular
H =5(uy,...,u,) and K = S(%ky1,. .., un). As in Case 1, the matrix C(a) in this case is of the
form

r| B b
p [ b7 —quu,. ] p
where

T_ (T T T T T T
b' = (" uQup — U Aty ..., 0" URQUp — Uf Atn, —Ujy Aln,y .o =, AUy)

and B is the same as in Case 1. Also the (n — k) x (n — k) matrix

T T
—Ujpyy Auk+‘ —'u§+1Auk+2 e —u,;:,,l Au,.
D= U AUy, —up AUy ... —UpAu,
—ul Au, —ul,Au, ... —ulAu,

is positive definite by hypothesis and Lemma 2. We can write

o-[ ]

a? —ulAu,

where a = (—ul,, Au,,...,—ul_ Au,) and the (n — k — 1) x (n — k — 1) matrix Bj is positive
definite. Also det(D) = det(—uT Au, — a” Bl a)det(Bs) > 0. Since det(B3) > 0, this implies that

(~uT Au, — a" BT a)det(Bs) > 0
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The vectors u;Qun, ..., urQu, are linearly independent. Otherwise, vk piu,Qu, = 0 with
PT = (p1,...,px) # O implies that

k k
f(uﬂ + % Zp'“') = ZPW»;Qun =0.

=1 1=1
This in turn implies that u, + Tk puw.€Z f and so u, € H, a contradiction. Hence for each k-
vector (wy,. .., wx) = w7, there exists an a(w) so that a(w)Tu,Qu, —ul Au, =w,, i=1,... k.
Let y7 = (wy,. - -, Wi, —ul,; Athy, ..., —uT_ Au,) = (w7, a7). Then det(C(a(w)) = (—ul Au, —

B, B,
Bl B

E, E;

y7 B~'y)det(B). In block form B = [ ET E,

]andB”:[ }whereBlandElarekxk

positive definite matrices and Bz and Ej are positive definite (n — 1 — k) x (n — 1 — k) matrices.
Note that B; was defined as a submatrix of D.

In order to show that wy = —Ej!E,a is a choice of w so that det(C(a(w)) > 0 we would like
to show that E3 — ETE{'E, = B3'. In block form

10 _ B,E, + BQEZ. B\E; + B\ F3
0 1|~ | BIE, + BsET BIE,+ B3Es

This gives us two equations in which we are interested, BT E; + BsE; = I and BIE;, + B;E] = 0.
The first implies that E; = By BIE; and the second implies Ef E;' = —B;'BY. Hence

Es— ETE\E, = B;' — (B;'BY + ETE{")E, = B — (B;'BY + B;'BY)E, = B;'.
Moreover, for ¥, = (wo,a’),
¥l B 'y, = wl Eywo + 2wl Eza + a"Esa = a7 (Es — ETE{'E;)a = a” B 'a.
Since by (2.1) —ul Au, — a"B3'a > 0,
det(C(a(wo)) = (—~ul Au, — yI B;'y,) det(B) = (—ul Au, — a”B;'a)det B > 0.

Therefore C(a(wo)) is positive definite, i.e., a(wg) is admissible, and Theorem 1 follows from
Lemma 1.

3 Control Results

For our next result we consider nonlinear control systems of the form
Mz' = N + Az + f(z)+Bu,
where B is an n X m matrix and u is an m-vector. Two types of general behavior are investigated:

1. Existence of a linear feedback control v = K so that the system Ma' = N +
(A+ BR)x + f(x)+Bu has the origin as a global asymptotic stable point.

2. Existence of a linear feedback control u = Kz so that the system Mz’ = N +
(A + BK)z + f(x)+Bu is point dissipative.

Let S(B) be the column space of B and B* be the orthogonal complement of S(B).

Lemma 5 If M is a nonempty closed subset of {z | z € B* and ||  ||= 1 and 2T Az < 0} and
N is a nonempty closed subset of {z | € S(B) and || z ||= 1} then there is a negative number T
such that vT(A+ 7BBT)v < 0 for v € S(M) @ S(N).
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Proof. M x N is compact in R* x R™. Since the function

(BTAB) (VT Av) — (BTv)

(87 AB) || BTv |2
is continuous on M x N, there exists (Bq,0) € M x N, such that ¢(8,v) < ¢(By,vq) for
all (B,#) € M x N. Choose a negative number 7 such that ¢(B,,v0) + 7 < 0. For such an
7, ¢(B,v) + 7 < &(Bg, o) + T <0, for all (B,v) € M x N. That is

= BTAB) (T Av) - (BTv)?
Bv) = 5T gy || BTw |

for all (3,v) € M x N. Since BT AB < 0, by hypothesis, we have (BT AB)(vT Av) — 7(BT AB)-
|| BTv ||> =(BTAv)? > 0 for all (B,v) € M x N.
If z = a8 + bv, where (3,v) € M x N and a and b are scalars, then

#(B,v) =

+7<0

zT(A+ BB )z

(aB +bv)T(A+ 7BBT)(af + bv)
a?BTAB + 2abBT Av + b*(WTAv + 7 || BTv ||?)

BTAB BT Av al _ a
[a, 8] BTAv vTAv+1| BTv ”2] [b}—[a,bll’[b]

I

Now consider the matrix — L. Since —3TAB > 0 and the det(—L) = (BTAB)(vTAv) + 7 || BTv ||?
BTAB—- (BT Av)? > 0 for all (8,v) € M x N, —L is positive definite. Hence zT(A+7BBT)Tz < 0.

Theorem 2 There ezists a matriz K such that the system Mz’ = (A+BK)x + f(z) has the origin
as a global asymptotic stable point if uT Au < 0 for each nontrivial vector u which is orthogonal to

the column space of B.

Proof. Note that R* = B* @ S(B). Let dimS(B) = k, 1 < k < n, then dimS* = n — k.
If k = n then the result is immediate. Assume k < n. Let M = {z | = € B, | = ||= 1}
and N = {z | z € S(B), || = ||= 1}. By Lemma 5 there is a negative number 7 such that
zT(A+ 7BBT)z < 0 for all nontrival z € R*. Let K = 7BT.

Consider the Lyapunov function V(z) = 12T Mz, then

V(z) =T MM{(A+ BB )z + f(z)}] = =2T(A+ 7BBT)z < 0

where Mz’ = (A + BK)z + f(z) and z(t) # 0. Hence by Lyapunov’s Theorem in LaSalle [14] or
Brauer (7] the system M’ = (A+ BK)z + f(=) has the origin as a global asymptotic stable point.
Compare with standard results for linear feedback control of linear systems in Cruz [9] or Russell [16].

Example for Theorem 2. Consider the control system ' = Az + f(z) + Bu, where

3 1 —4 0 1
A=[ 2 -1 0 }, f(z):[—zz] and B=[ 0 ]
-4 0 1 zy -1

e HAH A BRI TR H|

Here
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Note that u € B* and u # 0 implies uT Au < 0. Take K = 7BT. Then

3+71 1 —4-71
A+BK=A+71BBT = 2 -1 0
—4-7 0 147

The Hermitian part of A + TBBT is given by

347 2 —4-1
3 -1 0
—4-7 0 147
which is negative definite when 7 = —7. Hence the system @' = (A — 7BBT)z + f(z) is globally
asymptotically stable. When 7 = —4 the system is point dissipative since z7(A —4BBT)z < 0 for

all nontrival zeros of f.

Five trajectories of the controlled system

i 3 1 -4 1 0
==l 2 -1 0 (47| 0 [[10-1|z+]| -2z
w123 Tl 5

are shown in Figure 1. The initial point of all of the trajectories is (—10,10,10). One trajectory is
when there is no control, that is, 7 = 0. This is the long trajectory that is at (—329, —4,7) when
t = 1.2. This trajectory seems to be moving right along at that time. The other trajectories are when
the control parameter 7 = —4,—5, —6,and — 7. These trajectories seem to reach a limit point of
the controlled system, namely, (-1.7,-1.7,1.0), (-0.5,-1.0,0.0), (0.0,0.0,0.0) and (0.0,0.0,0.0),
respectively. These trajectories have slowed down and have been terminated when ¢ = 600. The
first trajectory uses 74723 calculations while the last four trajectories only use about 7500 each.
The adaptive numerical method used to calculate the the trajctories takes larger time steps as the

-
<0
39

N T
dx _
dt

31-4 1 0
2-10 +1{0][10-1] x+[-xz]
[[-4 01 -1 Xy

Figure 1:

trajectory slows down.

Theorem 3 Consider the system Mz’ = N +(A+ BK)z + f(x) with M, N, A, B and f fized. If
z §f contains an (n — 1)-dimensional subspace of R™ and either
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1. Zfﬂ Bt = {0} or
2. Zgn B # 0 and u* Au < 0 for all nontrivial u € Zgn B+
then there exists a matriz K such that the system is point dissipative.

Proof. Under the hypothesis, we would like to show that there exists a negative number 7 such that
2T(A+7BBT)xz < Oforallz € Zf' The result follows from Theorem 1 with K = rB7.
Case 1. Suppose that ZfﬂB" ={0}. Let N={z |z € va” z ||=1}. M is a compact set in R™.

Since the function ¢(z) = "—f;—fl%, x € N is continuous on N there exists £o € N such that ¢(z) <

P(x0) = I;T::(?, ,for all z € V. Let 7 be a negative number such that ¢(zo)+7 = “—f;%% +7<0.

For such an 7, ¢(z)+r=%%%+r_<_¢(zo)+f<0forall:c€R". Nowzerandm;éO

implies that  =|| || u, where u € N. Then 7(A 4+ rBBT)z =| = ||? [uT(A + TBBT)u] < 0 for
alla:er, z#0.

Case 2. Suppose that Zg N B* # {0} and uTAu < 0 for all nontrival u € ZgN B*. Let
M={z|zeZsnB*, |z |=1} and N={z |z € ZgnS(B), || = ll=1}. By Lemma 5 there
is 'a negative number 7 such that #7(A4 + 7BBT)z < 0 for nontrival z € Z.

Example for Theorem 3. Consider the control system ¢’ = Az + f(z) + Bu, where

-1 0 4 0 0
3 1 4|, f(2)=| -2z | and B=| 1
2 -1 1 Ty 1

A=

1
Note that A is not positive a definite matrix, [1 0 0]A [ 0
0

0
=-1<0and 01 l]A[1]=5>0.
1

Here

(-10,-10,2)

Figure 2:
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0 0
Bt = -1 1,11
1 0
uj 0 0 1
fueBtthenu=| u |, Zf=S 1(,10 uS{iol]y. Ifuer then either
—Ug 1 1 0
U 0
u=| 0 |oru=| up; |. Thus
0 Uus
(731 0
ZfﬂBl= 0 5 —U2z |u1;60,u29£0
0 Uz

Uy 0
Now [u; 0 OIA[O} =-u<0and [0 —u U2]A[—U2} = ul-3ul+ul <0ie,

0 2]
2
if w is a nontrivial element of Z f N BY then uTAu < 0. Since | -1 is in Z f N B* and
1
2 0 0
[2 =1 1JA| =1 | =1> 0, Theorem 2 does not apply. Again | 1 | € Z5 and p11Al1]|=
1 1 1

5 > 0 and so Theorem 1 does not apply.
If we choose k = 2B7 then

-1 0 4
A+BK=A-2BBT=| 3 -1 2
2 -3 -1

The Hermitian part of A — 2BBT is not negative definite, but

Uy
[u; O 0](A+BBT){ 0 ]=—u3<0
0

0
[0 — Uy uz](A + BBT) —-Uug | = —ug <0
Uz
Therefore if u € Zf then uT(A + BBT)u < O. Hence Mz' = (A — 2BBT) + f(z) is point
dissipative. In Figure 2 two trajectories are given. One when the system is uncontrolled, 7 = 0, and

one when the system is controlled, r = —2. For both trajectories (-2, —2,2) is the initial point.
4 Extension of previous results

The sufficient condition for a quadratic dynamical system to be point dissipative discussed above
uses a relation between the quadratic and linear parts of the system when f is conservative. The

following lemma allows us to extend the condition to the case where there exists a positive definite
matrix S such that SM = MS and Sf is conservative. See Bose [5].

Lemma 6 Let
Mz' = N + Az + f(z) 1)
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be a quadratic dynamical system for which there ezists a positive definite matriz S such that SM =
MS and Sf is conservative. Then there exists matriz H for which the change of variables y = Hzx
transforms the dynamical system (1) into (HMH™')y’ = HN+By + g(y) which has a conservative
quadratic term. Furthermore, €TSAz = yT By.

When Sf is conservative then we say that a vector a is admissible for the dynamical system

Mz' = N + Az + f(z) if —2TSAz 4+ aTH f(z) is a positive definite function where S = HTH.

When f is conservative then the condition for an admissible & reduces to —xT Az + aT f(z) is
positive definite. The proofs of the gs when the quadratic part of the system is conservative entail
demonstrating the existence of an admissible a for the system. These results can be restated as

follows:

Theorem 4 A quadratic dynamical system
Mz' = N + Az + f(z)

is point dissipative when there ezists a positive definite matriz S such that SM = MS and Sf is

.
conservative and there ezists an admissible a.

Another direction of generalizing the past results is to consider nonlinear dynamical systems which
have nonquadratic nonlinear terms as well as quadratic terms. Relative to the nonlinear terms there
again must exist a positive definite matrix S such that the nonlinear terms premultiplied by S are

conservative. See Bose [5].

Theorem 5 When there ezists a positive definite matriz S such that SM = MS,Sg and the
quadratic function Sf are conservative, and for S = HTH

Condition (A) For some admissible o for Ma' = N + Az + f(x) there exists an ordered triple
of numbers (¢,C,m) such that —aTHg(z) < C || = ||*=¢ for all = with || z ||> m.

then Mz’ = N + Az + f(x) + g(c) is point dissipative.

Note that condition (A) can be replaced by either of the stronger conditions (B) or (C).
Condition (B) There is an admissible a for Mz’ = N + Az + f(z) and || g ||=0 | = ||%

Condition (C) There is an admissible a for Mz’ = N + Az + f(z) and g is bounded.

Theorem 6 A quadratic dynamical system Mz' = N+ Az + f(x), A a matriz and f a quadratic
function, is point dissipative when

1. there ezists a positive definite matriz S such that SM = MS and Sf is conservative,
2. the zeros of f contains an (n — 1)-dimensional subspace, and

3. 2TSAz < 0 for any z which is a nontrivial zero of f.

This result can be generalized by adding to the differential equation any conservative function
g(x) whose growth is restricted. The corollary states this condition.
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Corollary 1 Let g and the quadratic function f be conservative. If Z §f contains an (n-1)-
dimensional subspace and « # 0 in Zf implies T Az < 0 and

Condition (A) For some admissible a there exists an ordered triple of numbers (¢,C,m) such
that —aTg(z) <|| z ||>~¢ for all z with || = || m. then Ma' = N + Az + f(z) + g(z) is point
dissipative.

Note that condition (A) can be replaced by either of the stronger conditions (B) or (C).
Condition (B) There is an admissible a for M@’ = N + Az + f(z) and || g ||=o || = ||%.

Condition (C) There is an admissible & for Mz’ = N + Az + f(z) and g is bounded.

5 Conclusions

Quadratic and “almost” quadratic nonlinear systems can exhibit a wide range of qualitative
behavior. Even the subclass of such systems with compact attractors contains systems with point
attractors, limit cycles and strange attractors, see Sparrow [17]. Linear feedback control problems
with system objectives of steering to desired limit points or of minimizing the diameter of a compact
attractor have yet to be formulated and solved. This paper represents only a first step, i.e., using
linear feedback to produce a controlled system with a compact attractor. An alternate approach
might be constructed along the lines of Chow [8] and Kokotovic {13, 12]. Such an approach does
not seem to be as closely related to the linear theory as the approach outlined here.

References
(1] A. K. BOSE, A. S. COVER, AND J. A. RENEKE, On point dissipative systems of differential
equations with quadratic nonlinearity, Internat. J. Math. and Math. Sci., 14 (1990), pp. 99-110.

[2] —, A class of point dissipative n-dimensional nonlinear dynamical systems, Proceedings of
the Twenty-fourth Southeastern Symposium on System Theory, (1992), pp. 2-6.

[3] —, Sufficient conditions for point dissipative quadratic nonlinear dynamical systems, Pro-
ceedings of the Third International Symposium on Differential Equations, Bulgaria, (1992).

[4] ——, On point dissipative n-dimensional systems of differential equations with quadratic non-
linearity, Internat. J. Math. and Math. Sci., 16 (1993), pp. 139-148.

[5] ——, Linear feedback control of nonlinear systems with a dominating conservative quadratic
term. submitted, 1994.

[6] A. K. Bose AND J. A. RENEKE, Sufficient conditions for two-dimensional point dissipative
nonlinear systems, Internat. J. Math. and Math. Sci., 12 (1989), pp. 693-696.

[7] F. BRAUER AND J. NOHEL, Qualitative Theory of Ordinary Differential Equations, W. A.
Benjamin, Inc., New York, 1969.

[8] S.-N. CHOW, Methods of bifurcation theory, Springer-Verlag, Berlin and New York, 1982.
[9] J. B. Cruz aND P. V. KOKOTOVIC, eds., Feedback systems, McGraw-Hill, New York, 1971.

[10] J. GUCKENHEIMER AND P. HOLMES, Nonlinear oscillations, dynamical systems and bifurca-
tions, Springer-Verlag, Berlin and New York, 1983.



518 A. BOSE, A. COVER AND J. RENEKE

(11} R. A. HORN AND C. R. JOHNSON, Matriz Analysis, Cambridge University Press, Cambridge,
1985.

[12] P. V. KOKOTOVIC, ed., Foundations of adaptive control, Springer-Verlag, Berlin and New
York, 1991.

[13] P. V. KokOTOVIC, A. BENSOUSSAN, AND G. BLANKENSHIP, eds., Singular perturbations
and asymptotic analysis in control, Springer-Verlag, Berlin and New York, 1987.

[14] J. LASALLE AND S. LEFSCHETZ, Stability by Liapunov’s direct method with applications,
Academic Press, New York, 1961.

[15] E. LORENZ, Deterministic non-periodic flow, J. Atmos. Sci., 20 (1963), pp. 130-141.

[16] D. L. RUSSELL, Mathematics of Finite-Dimensional Control Systems; Theory and Design,
Marcel Dekker, Inc., New York and Basel, 1979.

[17] C. SPARROW, The Lorenz equations: Bifurcations, chaos and strange attractors, Springer-
Verlag, Berlin and New York, 1982.

[18] S. WIGGINS, Global bifurcations and chaos, Springer-Verlag, Berlin and New York, 1988.



Journal of Applied Mathematics and Decision Sciences

Special Issue on

Intelligent Computational Methods for

Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)

This special issue will include (but not be limited to) the
following topics:

e Computational methods: artificial intelligence, neu-
ral networks, evolutionary algorithms, fuzzy inference,
hybrid learning, ensemble learning, cooperative learn-
ing, multiagent learning

o Application fields: asset valuation and prediction, as-
set allocation and portfolio selection, bankruptcy pre-
diction, fraud detection, credit risk management

e Implementation aspects: decision support systems,

expert systems, information systems, intelligent
agents, web service, monitoring, deployment, imple-
mentation

Authors should follow the Journal of Applied Mathemat-
ics and Decision Sciences manuscript format described at
the journal site http://www.hindawi.com/journals/jamds/.
Prospective authors should submit an electronic copy of their
complete manuscript through the journal Manuscript Track-
ing System at http://mts.hindawi.com/, according to the fol-
lowing timetable:

December 1, 2008
March 1, 2009

Manuscript Due

First Round of Reviews

Publication Date June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China;
Department of Management Sciences, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190,
China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City
University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong; mskklai@cityu.edu.hk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/jamds/
http://mts.hindawi.com/

	1Call for Papers
	Guest Editors

