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ABSTRACT. In this paper we study the convergence of the approximate solutions for the following
first order problem

u'(t) = f(t,u(t));t € [0,T], au(0) — bu(tp) = ¢,a,b > 0,a+b > 0,%y € (0, 7.

Here f : I x R — R is such that ‘;u—k{ exists and is a continuous function for some k > 1. Under some
additional conditions on %é, we prove that it is possible to construct two sequences of approximate
solutions converging to a solution with rate of convergence of order k.
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1. INTRODUCTION

The method of upper and lower solutions is a well-known theoretical procedure to prove the
existence of a solution for a given nonlinear problem. Under additional conditions, it is possible to apply
the monotone iterative technique that provides a constructive scheme for the solutions. Moreover one
can use the monotone iterates to give error bounds. For practical purpose it would be interesting to
know the order of convergence of those monotone sequences of approximate solutions.

We recall that for a given Banach space (E, ||||), and a convergent sequence {z,} — z in E, it is
said that the order of convergence is k = 1,2, ... if there exist A > 0 and ng € N such that

Iza41 = 2l < Allza = 2| Vn 2nq.

When k = 1(k = 2) we say that the convergence is linear (quadratic).

It is not difficult to see [1], [2] that the convergence of the sequence of the approximate solutions
given by the monotone iterative technique is very slow. Indeed, that convergence is linear but in general,
not quadratic. Under some convexity conditions, the method of quasilinearization [3], [4], [5] provides a
monotone increasing sequence converging uniformly and quadratically to the solution.

It would be important to have some general methods leading to monotone sequences converging to a
solution with order of convergence k > 2.

To be specific, let us consider the following boundary value problem

u'(t) = f(t,u(t)), au(0)-bu(ty)=c, teI=[0,T), T>0, (D
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where f : I x R — R is a continuous function, ¢y € (0,7, and a,b > 0, witha +b >0
As usual, we say that « € C1(I) is a lower solution for the problem (1.1) if

d'(t) < f(t,a(t), tel, aa(0)—balty) <c.
Similarly, 8 € C(I) is an upper solution for the problem (1.1) if
B'(t) > f(t.B(t)), tel, af(0)—bB(te)>c.

Ifto = T, it is proved in [6] that @ < (5 on I implies that there exists at least one solution u of (1 1),
withu € [a, 8] = {v e C(I);a(t) < v(t) < B(t),t € I}
Moreover, if there exists M; > 0 such that a — be=*:% > 0 and

f(t,u) + Myju is nondecreasing in u € [a(t), B(t)], te€l, (12)

then it is possible to construct two monotone sequences {a,} and {8,}, which start in o and 8
respectively, and converge uniformly to the extremal solutions ¢ and 1) of (1.1) on [, 8]. We insist that,
in general, the order of convergence of the monotone sequences is at most k = 1 in the space E = C(I)
with the usual uniform norm.

Now we obtain an extension of this result to the problem (1.1) as follows. First, we prove that for
some m > 0(a,b>0,a+b>0,a—be ™ >0) if v'+mu >0 in I and au(0) — bu(ty) > 0 then
u 2> 0inI. To prove this, we use Lemma 2.3 in [6] and we obtain that u > 01in [0, £,]). Thus, u(t) >0
which implies, using again Lemma 2.3 in [6], that u > O in [to, T] and, in consequence, u > 0in I. Now,
we define ap = a, fp = B, and for n > 1, o, and G, are given as the unique solution of the following
linear problem:

u' + Myu = f(t,n) + Myn, au(0) — bu(to) =c (13)
with 7 = a,_ and n = (,_; respectively. Condition (1.2) implies that a < a; < .., < ... Bn < ...

B < B and the two sequences converge uniformly to the extremal solutions of (1.1)
On the other hand, note that if gﬁ exists and it is continuous in

Q= {(t,u) €I xR;a(t) <u < B2)},

then condition on f in (1.2) is equivalent to the following requirement:
%(t,u) 2 -M, (tu)e (1.4)

Recently [7] the method of quasilinearization was generalized for the initial value problem (b = 0) by
not demanding f(%,u) to be convex in u for ¢ € I but imposing the following less restrictive condition’
there exists My > 0 such that

f(t,u) + Mpu® is convex inu for any ¢ € I. (1.5)

If ‘3—:4 exists and it is continuous for every (t,u) € , then (1.5) holds and it is equivalent to
g—i{' (t’u) 2 - 2M2) (tv u) EN. (1 6)

If this last condition is satisfied, then there exists a nondecreasing sequence starting at the lower
solution and converging uniformly and quadratically to the unique solution of the initial value problem
(7.

These results are extended in [1], where two monotone sequences of approximate solutions are
constructed, one nondecreasing starting at the lower solution and the other one nonincreasing starting at
the upper solution, that converge uniformly to the unique solution of the initial value problem and the
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order of convergence is k provided that there exists ‘;—:{, and it is continuous in 2 Note that in this case
there exists My > 0 such that

'z%(t,U)Z = ()M, (t,u)eQ. a7

The periodic boundary value problem (u(0) = u(T)) is considered in [2]. There the authors
construct a sequence {a,} which converges quadratically to a solution u € [a, 5] of the periodic
problem. In this case, they suppose that f satisfies (1.6) and o(T) < 6§ < 0, where

t
o0 = [ 3 ts.etees, )

and € € (o, B].

In this paper we study problem (1.1) and we construct two monotone sequences which converge to
the extremal solutions in [a, 8] of (1.1) provided that there exists ‘;‘{ and it is a continuous function in ,
and that for each ¢ € [a, (]

a—be’™ > §5>0. (1.9)

The following result from [8] is the basic tool to prove our main result.

THEOREM 1.1. If there exist a < (3 lower and upper solutions respectively for the problem (1.1),
then there exists a solution u € [a, 5] of (1.1).

We finally note that we generalize previous known results.

2. MAIN RESULT

Now, we obtain, in the following result, that if there exists g—:{ a continuous function in Q and
condition (1.9) is verified, then it is possible to construct two sequences which converge to the extremal
solutions 9 and ¢ of (1.1) rapidly, that is, the order of convergence is k.

THEOREM 2.1. Suppose that there exist a < 8 lower and upper solutions respectively for the
problem (1.1).

If there exists k > 1 such that g*—u{ is continuous in £, and if condition (1.9) is verified, then there
exist two monotone sequences {a,} and {G,} with ap = a and B = 8, which converge uniformly to
the extremal solutions ¥ and ¢ of (1.1) in [a, B]. This convergence is of order k.

PROOF. We first note that problem (1.1) has, by Theorem 1.1, a solution in {a, 5]. Let us denote
~ such a solution. ,

To construct the sequence {a,}, let £ € I and a(t) < v < u < B(t). We first note that for a given
tel:

k=1 o 3 k k
_S s, - (u=v)
f(tl u) - — au“ (t’ ‘U) i! auk (t (t)) k! ) (2‘1)
where x(t) € [v,u].
Now, since %{ exists and is continuous in £, (1.7) is verified.
Thus, we define
(u v)' ok
st =S 2 2L 60 BT - M-, @2)
1=0
In consequence, using (1.7), we obtain that
g(t,u,v) < f(t,u), forallte€landa(t)<v<u<pB(). (2.3)

Now, let us consider the following boundary value problem
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u(t) = g(t,u(t),at), tel, au(0)-bu(ty)=c. 2.9)
Now,
Y (@) = ft(t) 2 g(t, (), a(t)), tel, ay(0)-by(t)=c
and
o(t) < f(t,a(t)) = g(t,at),at)), tel, aa(0)-balt)<c,

that is, o and <y are lower and upper solutions for (2.4) respectively.
Theorem 1.1 shows that there exists at least one solution of (2.4) a; € [a, 7]
Now, suppose we have constructed g = a < a3 < ... < a, < 4, with a, a solution of

u,(t) =gt u(t),an-1(t), t€I, au(0)-bu(ty)=c,
lying in [@,7]. In this case, we have that

Y(t) = £t () 2 g(t,7(t), an(t));  av(0) = by(to) = ¢
and

o (t) = g(t, an(t), an-1(t)) < f(t, an(t)) = g(t, an(t), an(t)),

aan(o) - ban(to) =c.
We conclude, using again Theorem 1.1, that problem
u'(t) = g(t,u(t),an(t)), te€l, au(0)-—bu(ty)=c 2.5)

has a solution an.; € [an,?]). The so obtained sequence {ay,} is nondecreasing and bounded in C(I),
whence it converges in C'(I) to some continuous function ¥ € [, 7).
Since

t
an(t) = an(0) + /o 905, @n(8), a1 (s))ds,
we have that
W(t) = $(0) + /0 o5, %(s), B(s))ds = (0) + /0 F(s,%(s))ds

which implies that ¢/(t) = f(t, ¥(t)).

Furthermore, since aa,(0) — bas(to) = ¢ for all n > 1, we conclude that ay(0) — by(tg) = c.
That is, ¥ € [a,7] is a solution of (1.1). Since « is an arbitrary solution of (1.1) it is clear that % is the
minimal solution of (1.1) in e, §], which exists by (1.9).

Now, we prove that the convergence is order k. For it, using (2.1), we have that

() = £t ¢(t)) =
1 _ k
Z a - t, o n(t)) (’Jf(t) an(t)) a — (t, n(t)) M

1=0

a¢(0) - by(to) =c,

pn € [am 1/’]
On the other hand, by (2.2) and (2.5), it is verified that forn > 0
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a::+l(t) = g(t» Qnyq (t)v an(t)) =
k— _ 1
5 21 (¢ oty 22O =) - ano,
_0 .
80n41(0) — bani1(te) = c.

Let w, = ¢ — o, and a, = an+1 — @,. Thus, we have that

v = 3 2L (6,00 t) [BOca0],

=1

k
2T (6,00 2D Mik(0), auns1(0) — b (i) =

Now, there exists N; > 0 such that

k
ST{ (t,z) < (K')N, forallt € I and z € [a(t), B(t)]. (2.6)
Furthermore, a"(t) < wk(t), for all n€N and t € I. Finally, using that for all A, B €R,
A-B=A-BY " 411 B we can write that
=0

w11 (8) = Po(t)Wni1 @< Ckwﬁ(t), tel,

where Cx = N, + M > 0 and

k-1 1 1—1 .
) =Y 3L (ten(t) (—, > w J(t)az.(t)) :
=1 S =0
In consequence, it is verified that
7O (W11 (t) = Pa(B)wns1 (b)) < Cre™Vuk(t), tel,

where 0,,(t) = [y p.(s)ds. Thus,
t
Wy (t) < e [w,.“ (0) + Cx / e"’"‘”wﬁ(s)ds]. @7
1]

Now, using expression (2.7) for ¢ = ¢, and the equality aw,,;(0) = bw,1(to), since a,b > 0, we
conclude that

to
(a— be""(“’))wn+1 (0) < bCent) / e 7wk (s)ds.
0

Now, due to the fact that a,,w, — 0 as n — oo, and using the expression of p,, condition (19
implies that there exists ng € N such that @ — be%) > §/2 > 0 for all n > ng. Thus,

to t
0 < Wpy1(t) < Cre®™® [be""(t“) / e 7wk (s)ds/ (a — beon®)) + f e"”‘(’)wﬁ(s)ds] <
0 0
to T
Cut |28 [ s/ 4 [ eonds fanll, < Alwal,
0 0

where A is a positive constant. Note that the previous inequalities hold since there exists %{: in © and
they are continuous functions for i = 1,...,k. Thus, since o, € [@, B], we have that there exists a
constant D > 0 such that |p,(¢)| < D foralln > ng.

To construct the sequence {/3,} we define the following function:
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T 2L (1,0) 8L - Myu—v)t i k odd
1=0
h(t,u,v) =
Zk_l %(t, v) S"—:.EL‘ + Ni(u—v)* if k even.

1=0

Here M, and N, are nonnegative constants given by (1.7) and (2.6) respectively
Thus, it is easy to see that

h(t,u,v) > f(t,u), forallt € Ianda(t) <u<v<pB(E). (2.8)

Now, let Gy = 5. For n > 1 we define 3, by induction, as a solution of the following boundary
value problem

u'(t) = h(t,u(t), Baa1(t)), t€I, au(0)-—bu(ty) =c. 29

Indeed, using (2.8) it is easy to see that 3,_; is an upper solution and ~ is a lower solution for (2.9).
In consequence, ¥ < B, < Bn-1 £ fp =B for n > 1, and {B,} converges uniformly to ¢, where ¢ is
the maximal solution in {a, 8] of (1.1). Now, the definition of h, expression (2.1) and inequalities (1 7)
and (2.6) imply that the convergence of {5,} to ¢ is of order k. O

REMARK 2.1. Condition (1.9) may seem very restrictive but, as we will see in the following
example, in some cases it is a fundamental condition. Let us consider the problem

U(t) = fu®), tel, u(0)=ult),

with f defined by f(u) = u? ifu < 0 and f(u) = 0 otherwise.

Note that @ = — 1/2 and S = 0 are lower and upper solutions respectively for this problem.

Analogously to the example given in [2] we show that the sequences obtained via the monotone
method converge linearly but not quadratically to the unique solution u = 0. If we use the function g (for
k = 2) as in Theorem 2.1 (see formula (2.2)) we obtain that a,,; = (2 — v/2)a,. Clearly, there exists
a constant A > 0 such that ||, || < Alla,||? if and only if anyy < (\/5 —2)/X. This last inequality
does not hold.

Note that in this case condition (1.9) reads

1- %6 5 550 £e[-1/2,0].

This is not true since for £ = 0 this expression equals zero.
3. BOUNDARY CONDITIONS au(t;) — bu(T) = ¢

In this section we shall consider the following problem

u'(t) = f(t,u(t), tel, au(t)-—bu(T)=c, a,b>0,a+b>0 3.1

where0 <t; <T.

For it we say that a is a lower solution for (3.1) if

o) < ftalt), tel, aa(t)—ba(T)<ec.
Analogously, we define an upper solution by reversing the previous inequalities.

This case can be reduced, by a simple change of variable, to that considered in preceding sections, as
we will see in the following result.

THEOREM 3.1. If there exist a and 5 lower and upper solutions respectively of (3.1) on I, with
B < a, there exists gk—;f; acontinuous function in {(¢,z);t € I, B8(t) < z < a(t)} and f satisfies

b—ae’™ >§>0, (3.2
with 8 defined as
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T
o) = [ 5L (o.eas,

and £ € [B,a). Then there exist two monotone sequences {a,} and {8,} with oy = a and 5 = 5,
which converge uniformly to the extremal solutions 1 and ¢ of (3.1) This convergence is of order k
PROOF. To prove this result we consider the following modified problem

u'(t) = F(t,u(t)), tel, bu0)—au(T —t)= —c. (3.3)

Here f(t,z) = — f(T —t,x).

Using the concept of lower and upper solution for (3.1) it is clear that @(t) = o(T —t) and
B(t) = B(T —t) are an upper and a lower solution respectively for the problem (3 3), with B < @
Furthermore, using (3.2), we have that f satisfies condition (19). Thus, we are in the conditions of
Theorem 2.1. In consequence there exist two monotone sequences {&,} and {f, }, which converge to
the extremal solutions of (3.3) with rate of convergence k. The proof is completed defining
an(t) = (T — t) and B (t) = B,(T - t). O

REMARK 3.1. Note that it is not possible to extend the results obtained in Theorems 2 1 and 3 1
to the conditions au(tp) — bu(t;) = ¢ with 0 <ty <?; <T. In this case (see [8]), the presence of
lower and upper solutions is not a sufficient condition to assure the existence of a solution.

A similar comment is valid for the problem (1.1) with a > B and (3.1) witha < 8
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