Internat. J. Math. & Math. Sci. 493
VOL. 21 NO. 3 (1998) 493-498

NECESSARY AND SUFFICIENT CONDITIONS FOR THE OSCILLATION OF DELAY
DIFFERENTIAL EQUATION WITH A PIECEWISE CONSTANT ARGUMENT

H.A. AGWO
Department of Mathematics
Faculty of Education
Ain Shams University
Roxy ,Cairo , Egypt.

(Received August 13, 1996 and inrevised form March 18, 1997)

ABSTRACT: The characteristic equation for an equation with continuous and piecewise constant
argument in the form

x(t)+px(t—7)+qx([t—k])=0 wherep,qe R ,t1 € R and keX.
is presented , which when g=0 reduces to
fA)=A+e* =0
and when p=0 reduces to
A-1+gi™* =0.

Also, the necessary and sufficient conditions for oscillation are obtained.
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1. INTRODUCTION

The study of equations with piecewise constant argument was originated by the work of Wiener
and his collaborators. See [1,2,3,4,5 and 6] and the references cited therein .In addition to its own
interest this area has stimulated much activity in the study of delay difference equations.

As usual , a solution x(t) is called oscillatory if it has arbitrarily large zeros .Otherwise , the
solution is called nonoscillatory.An equation is called oscillatory if all its solutions are oscillatory.

Let [.] denote the greatest-integer function,X the set of non-negative integers and R the set of real
numbers.

Consider
i)+ px(t-1)+qx(t-k]=0 (1.1)

where p,g eR ,1eR” and keN.
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By a solution of Eqn.(1.1), we mean a function x which is defined on the set {-k, ..., -1, 0} U
[-7,0) and satisfies the following properties:
(a) x is continuous on [-1,o ).
(b) the derivative x exists at each point ¢ €(0,0) with the possible exception of the points 1 €N , where
one side derivatives exist.
(c) Eqn.(1.1) is satisfied on each interval [n,n+1) forneN.

Let ¢ e C([-7,0],R)and a_, ,...,a_,,a, be given real numbers such that

a_, =¢(-j) for j<t, j=01.2. .k, (1.2)
then one can show that Eqn. (1.1) has a unique solution satisfying the initial conditions

x(t) = ¢(t) -tSts< 0 (1.3a)

x(-j)=a_, Jj=01,..k (1.3b)

When ¢ =0, Eqn. (1.1) reduces to
u(t)+ pu(t-7)=0 (1.4)
which is oscillatory if and only if its characteristic equation
f(A)=a+e* =0 (1.5)
has no real roots, or equivalently, to
1

pT>—. (1.6)
e

On the other hand , when p=0, Eqn.(1.1) reduces to

V() +qv([t-k]) =0 (1.7)
which is oscillatory if and only if the following equation

A-1+qi* =0 (1.8)
has no positive real roots , or equivalently,

K
q> W , k21 ' (1.9a)
g1 , k=0 (1.9b)

An open question arises ( see [4] ,p. 223) for obtaining a characteristic equation for equation
(1.1) which reduces to Eqn.(1.5) when ¢g=0 and reduces to Eqn. (1.8) when p=0 and also obtaining the
necessary and sufficient conditions for oscillation of all solutions of

)+ px(t-D+gx([t-1])=0 (1.10)

2. THE MAIN RESULTS

In the following , a characteristic equation associated with equation (1.1) will be presented in
Theorem 2.1 . Also the necessary and sufficient conditions for oscillation are obtained through Theorems
2.2and23.

THEOREM 2.1. The characteristic equation associated with equation (1.1) is

-7

Fy=a-1+P2 (a1 agat=0 @1
InA
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which reduces to Eqn. (1.5) when ¢=0 and reduces to Eqn. (1.8) when p=0.
PROOF: Consider Eqn.(1.1) and assume that the initial conditions (1.3a) and (!.3b) are satisfied
.For t €[n,n+1) , we have [t-k] = n-k and one can write
x(t)+px(t-t)+qa,, =0 , te[n,n+1) (2.2a)
x(n) =a, ,ne N (2.2b)
Integrating (2.2a) from n to ¢ , we get

x(t)-a, +p [x(s-7)ds+qa, ,(t-n)=0. (2.3)

By using the continuity of x(t)as t »>n+1, we find

n+l

a,,—a,+p jx(s— r)ds+qa, , =0. 2.4)

Assume that x(t) =e* , t e[n,n+1) , then from (2.4) ,we get
~Ar

f(A)=e‘-1+p; (A-1)+ge*=0 2.5)

Putting e* =y in Eqn.(2.5),then

)2

(r-1+qy " =0. (2.6)
Iny

Fir)=r-1+

and consequently Eqn.(2.6) has no positive real roots if and only if Eqn.(2.5) has no real roots.Assume
that Eqn.(2.5) has no real roots , then A = 0, and consequently y =1 . If p= 0, then Eqn. (2.6) reduces to
Eqn.(1.8),also if =0 ,then Eqn.(2.6) reduces to Eqn.(1.5) .

THEOREM 2.2. Equation (1.1) is oscillatory if and only if its characteristic equation (2.6) has
no positive real roots.

PROOF: Assume that the characteristic equation (2.6) has a positive real root y,, then y! isa
solution of Eqn.(2.4) which is a nonoscillatory solution and consequently Eqn.(1.1) is not oscillatory .On
the other hand , assume that x(¢) > 0 V t & [n,n+1) for sufficiently large n and F(y ) has no positive real
roots .As F() = w0, it follows that F(y ) >0 Vy e(0,).For seeking the contradiction , choose :

(i) psOand g <0 then F(y) <0 V ye (0,1),
(i) p 20,q < O with p<|g| and 7 <k then F(y) <0 ¥ ye (0,1),
(i) p< 0, g 20 with g <| p| (1- 1/e) and 7 =k then F(1/e) <O,
(iv) p20,9 >0 with p+g <1/8¢* and 7 <k then F(l/e) <0,
which is a contradiction.
THEOREM 23. If p,geR*, then all solutions of equation (1.1) are oscillatory if and only if

k+1
pa+q(—"+k{—)>1 k21 @7

PROOF: Assume that Eqn.(1.1) has a nonoscillatory solution ,then the characteristic Eqn.(2.6)
has a positive real root y, €(0,1) . Otherwise F(y,) >0 Vy, €[1,0) and therefore , we have
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PYo "
Iny

F(ro)=r,-1+ (70'1)+q70 —0,7’06(0»1)

and then

-T
0= (ro—l){1+"’°7 +q70 1 (ro -1}

01P70

+ */(y, -1
Iny, gy, /(o1

(k+1)*!
k k
which is a contradiction .On the other hand ,assume that

k+1
pet +q(k+k—}‘)-sl k1.

<1-per —q

Now , we study the following cases:
1) ¢=0,p>0.
1
Since F(y )> 0,vy e(l,oo) and F(e ?) <0 ,then there exists y, € R"suchthat F(y,)=0.i..the
characteristic equation has a positive real root and consequently equation (1.1) is not oscillatory.
(2) =0, g>0.
In this case , F(y)>0,Vy e(l,0)and F (7(%) < 0.Therefore , the characteristic equation has a
positive real root and then equation(1.1) has a nonoscillatory solution.
(3) p>0 ,4>0.
(k +1)*

Since per +q P <1,
then,
p(k+l)"'
k+1 - k+1
q(k+1) + k <pet+q(—k—)—-51,k.>_l. (2.8)
k In(——) K
k+1

It is clear that the characteristic equation has no real roots in (1,«0) and F(y) > 0,but

(k+1D)°

k P (k+)
—_—) = -1+ +
(k+1) K+l o T
k+1
(k+1)™
k+1 —‘.
ol 9 k#DT P K From(28)it followsthat F(——)<0 and
k+1 (k+1) &k k+ll( k) k+1
k+1

consequently equation (1.1) has a nonoscillatory solution.
REMARK.If r=k=1andpge®R" then pe+4q>1 isanecessary and sufficient condition for
oscillation of
@)+ px(t-1)+gx([t-1])=0.
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