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ABSTRACT. In this paper, a generalized Hyers-Ulam stability of the homogeneous equation shall be
proved, i.e., if a mapping f satisfies the functional inequality IIf(yz) Fkf(x)ll _< o(x, y) under suitable

conditions, there exists a unique mapping T satisfying T(yx) ykT(:r) and liT(z) f(z)ll _< @(x)
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1. INTRODUCTION
It is well-known that if a real-valued mapping f defined on non-negative real numbers is a solution of

the homogeneous equation, i.e. if f satisfies

f(vz) --ykf(z), (1.1)

where k is a given real number, then f(z) cz: for some c e R.
In this note, we shall investigate a generalized Hyers-Ulam stability of the homogeneous equation

(1.1) with extended domain and range by using ideas from the paper ofC4vruta ].
Let (X,+, be a field and (X, +, I]]1) a real Banach space. In addition, we assume ]lzVl] Ilzll ]IYJ]

for all z, y e X. For convenience, we write z2, z3,.., instead of z. z, (z- z) z,.... If there is no

confusion we use 0 and I to denote the ’zero-element’ and the unity (the neutral element with respect to
’. ’) in X, respectively. By z-1 we denote the multiplicatively inverse element of z. Suppose k is a

natural number. Let o X x X [0, oo) be a mapping such that

2=0

or

3=0

for some z 6 X with Ilzll > 1 and all x X. Moreover, we assume that

(1 3)
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,(0’,) o(II011)
o(ii ,ii

(if z(z) < oo)
(if z(z)< oo) (1 4)

as n oo, for some w E X and all z E X. Let a mapping f X X satisfy

(1 5)

and

qo(:z, ,) o(ll$(:z)ll) as n oo (if z(z) < oo)
(if ,(z) < oo) (1 6)

for all z and !/ 0 in X. If (1.3) holds true then we further assume f(0) 0. Our main result is the

following theorem.

THEOREM. There exists a unique mapping T" X X satisfying (1.1) and

,h(z) (if (z) <
lit(z)-f(z)ll < z(z) (ifz(z)< oo) (1.7)

for all x X

2. PROOF OF THEOREM
’We use induction on n to prove

n-1

-< llull-+)’(ff:, u)
3=0

(2.1)

for any n 6 N. By (1.5), it is clear for n 1. Ifwe assume that (2.1) is true for n, we get for n +

by using (1.5) and (2.1).
(a) First, we assume that O,(z)< oo for some z 6 X with Ilzll > 1 and all z X

n > m > 0. It then follows from (2.1) and (1.2) that

S Ilzll- Ilzll-+)(::z, z)
#=0

n-1

Therefore, (z-’’f(z"z)) is a Cauchy sequence. Since X is a Banach space, we may define

T(z) --lim z-’f(zn:r,)

Let

for all z E X. From the definition of T, (1.2) and (2.1) we can easily verify the truth of the first relation

in (1.7).
Suppose x and l/ 0 to be arbitrary elements ofX. By (2.1) we have

II-f(:) f(: )ll <- I111 -qo(z’z, u).
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It follows from the inequality just above and (1.6) that

Iif(zr’z)-/-f(/Z’Z) 111 < I[/ll-kll./’(Z’z)ll-a,a(Z’Z,/) 0 as n oo.

Hence, it holds

,lirnoo f(z’z)-/-kf(/z’z) 1. (2.2)

By (2.2) we can show that for all z and//:/: 0 in X

T(yz) lira z-nkf(znyz)

t’,limoo Z-’kf(z"Z),.-,oolim
t’T(x).

Besides, it is not difficult to show that T(0) 0. Hence, T(/x) /T(z) holds tree for all x,/ X
Let U X X be another mapping which fulfills (1.1) and (1.7). By using (1.1), (1 7) and (1.4) we

get

liT(z) U(z)ll -Ilwll-llT(w"z) U(wx)ll < 211wll-"C’(wz) 0 as n oo.

Hence, it is clear that T(x) U(z) for all x X.
(b) Now, we consider the case (x) < oo for some z X with Ilzll > x and all z X By

replacing x in (2.1) with /-’x we get

rt--1

IIs( ) (uu ycu /11 -< Ilull’ ,u) (9_ 3)
3=0

for any n N. As in part (a), ifn > m > 0 then we obtain

< --, 0 --,

by using (2.3) and (1.3). We may define

T(z) lira

for all z X. Hence, th second inequality in (1.7) is obvious in view of(2.3).
For arbitrary z and y 0 in X, it follows from (2.1) and (1.6) that

as in part (a) above. By using (2.4), we get for and y 0 in X

T(u )

Since f(O) 0 is assumed in the ce of.(z) < :, it also holds T() T(z) for 0

The uniqueness fT can be proved as in (a).

3. EXAMPLES
EXAMPLE 1. Let (, t/) 6 + 11111111 6 _> o, _> o, o < < , b _> 0) be given in the

functional inequality (1.5). If a mapping f" X -, X satisfies the first condition in (1.6) then there exists

a unique mapping T" X X fulfilling (1.1) and



78 S.-M. JUNG

liT(z) f(z)l] <_ 6(llz][k 1) -1 ib k ilXlla+o111 (llll IIll) -
for any x, z E X with [Izl[ > 1. In particular, if6 > 0 and 0 0 then f itself satisfies (l.l).

EXAMPLE 2. Assume that go(z, y) olllillll (o > o, > k, b > o) is given in the functional
inequality (1.5) If a mapping f :X --, X satisfies the second condition in (1.6) then there exists a

unique mapping T X X which satisfies (1.1) and

][T(z) f(z)l[ < Ollll (llll IIll)-llmll
for all z, z e X with [[z[[ > 1.

If(z, ) 8]]z[]g(][V][) for some mapping g- [0, oo) [0, oo) then our method to get stability for
the homogeneous equations (1 1) cannot be applied. By modifying an example in the paper of Rassias
and emrl [2] we shall introduce a mapping f R -- R satisfying (1.5) and (1.6) with some and such

that If(x)l Ixl -k (for x 0) is unbounded.

EXAMPLE 3. Let us define f(x) xk log [x[ for x = 0 and f(0) 0. Then f satisfies (1.5) and
both conditions of (1..6) with (x, y) Ixl Il Iloglll ( 0) and (x, 0) 0, even though
satisfies neither (1.2) nor (1.3). In this case we can expect no analogy to the results ofExample and 2

Really, it holds

lira IT(x)- f(z)[ Ix[ -k oo

for each mapping T R - R fulfilling (1.1).
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