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ABSTRACT. The category PPRS(A), whose objects are probabilistic pretopological spaces
which satisfy an axiom (A) and whose morphisms are continuous mappings, is introduced. Cate-
gories consisting of generalized metric spaces as objects and contraction mappings as morphisms
are embedded as full subcategories of PPRS(A). The embeddings yield a description of metric

spaces and their most natural generalizations entirely in terms of convergence criteria.
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1 Introduction

The category pgs-M ET*™, with extended pseudo-quasi-semi-metric spaces as objects and con-
traction mappings as morphisms, is the most general metric category we shall consider. An object
(X, d) in pgs-MET® consists of a set X and a distance function d : X x X — [0, 0o] which satisfies
the single axiom d(z,z) = 0, for all z € X. By allowing d to assume the value oo, we obtain a
well-behaved category; i.e., the category pgs-M ET® is topological.

In this paper, we study pgs-M ET* as a full subcategory of PPRS, the category of probabilistic
pretopological spaces. The latter spaces were first introduced by G. Richardson and D. Kent [14]
as generalizations of probabilistic metric spaces (see [15], [16]). The existence of an isomorphism
between pgs-M ET* and a subcategory of PPRS follows from results established in [3] and [10].
Among other important full subcategories of PPRS are the categories PRTOP of pretopological
spaces and TOP of topological spaces, each of which is embedded in PPRS in an obvious way.

Our goal is to find simple axioms for objects in PPRS, based entirely on convergence crite-
ria, which characterize pgs-M ET> (considered as a subcategory of PPRS) along with its most
important full subcategories: pg-M ET*®, p MET*®, and M ET®.

It follows from the results of [2] that there is a family of isomorphic embeddings of pgs-M ET*
into PPRS which depend on the choice of an order reversing homeomorphism S. However the
pgs-M ET®™ objects in PPRS are characterized by means of an axiom (A) which is independent
the t-norm derived from S. On the other hand, the axioms Fr and Rr which, along with (A),
characterize the subcategories pg-M ET* and p-M ET® infinity in PPRS do depend on T.
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It is interesting to observe that the notion of “t-norm,” whose original purpose was to define
the “triangle inequality” for probabilistic metric spaces, also arises naturally when characterizing
those “metric objects” in PPRS which depend on the triangle inequality, notably the pseudo-quasi

metric objects.

2 Convergence Spaces

Let X be a set, F(X) the set of all (proper) filters on X, U(X) the set of all ultrafilters filters
on X, and 2X the set of all subsets of X. For z € X, denote by £ the fixed ultrafilter generated by

{z}.

Definition 2.1 A convergence structure q on a set X is a function ¢ : F(X) — 2X satisfying:
(C1) z € q(z), for all z € X;;

(C2) F <G =q(F) S a(9);

(C3)zeq(F)=>z€q(FNz).

We interpret z € ¢(F) to mean “F g-converges to z.” The idea of “convergence” may be more
intuitively conveyed by writing “F % z.” If ¢ is a convergence structure on X, then the pair
(X, q) is called a convergence space. A function f : (X,q) — (Y,p) between convergence spaces
is continuous if f(F) 2 f(z) whenever F 5 z. If p and g are convergence structures on X and
f 1 (X,q9) = (X,p) is continuous, where f is the identity map on X, then we write p < ¢ (p is
coarser than g, or q is finer than p).

There is associated with each convergence space (X, g), a closure operator cl, and an interior
operator I,. These are defined for each A € 2% by the following:
cyA={z € X :3F 3 z such that A € F};

LA={z€eA:FSz=>AcF)
The g-closure and g-interior can also be described using only ultrafilters in the above definitions.

If 7 is a filter on X, cl,.F denotes the filter generated by {cl,F : F € F}. A convergence space
(X, q) is defined to be regular if F % z implies cl,F - z.

For every z € X, let

Vo(z)={VC X:zel,V}

Vq(z) is called the g-neighborhood filter at z. The g-neighborhood filter can also be described as the
intersection of all ultrafilters which g-converge to z.

We have three additional convergence axioms to consider:
(Cy) ¢(FNG) = q(F) N ¢(G), for all F,G € F(X);
(Cs) For each F € F(X),z € ¢(F) iff z € ¢(G), for every ultrafilter G > F;
(Cé) z € g(Vy(z)), for all z € X.

A convergence structure ¢ which satisfies (Cy) (respectively, (Cs), (Cs)) is called a limit structure
(respectively, pseudo-topology, pretopology). Observe that pretopology => pseudo-topology => limit
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structure => convergence structure. A set A C X is g-open if [; A = A. A pretopology ¢ is a topology
if every neighborhood filter V,(z) has a filter base consisting of sets which are g-open.

It is interesting that the convergence properties “regular” and “topological” are in a very natural
sense dual to each other, since they can be characterized by means of dual axioms, which we call
F and R, dve to C.H. Cook and H.R. Fischer [3]. Let X and J be non-empty sets, F € F(J), and

o:J — F(X). We define
Ko F = U n o(y);
FeF yeF
x is called the “compression operator for F relative to o.” Note that if 7 € U(J), and o(y) € U(X)
for all y € J, then xoF € U(X). We can now define the axioms F and R.

F : Let J be a non-empty set, ¥ : J — X, and let 0 : J — F(X) have the property that
o(y) > ¢(y), for all y € J. If F € F(J) is such that $(F) 5 z, then xoF 4 z.

R : Let J be a non-empty set, ¥ : J — X, and let o : J — F(X) have the property that
o(y) 2 ¥(y), for all y € J. If F € F(J) is such that ko F 5 z, then ¢(F) % z.

The next proposition summarizes previously mentioned results pertaining to these axioms. The

first assertion is proved in [14], the second in [1] and [5].

Proposition 2.2 Let (X, g) be a convergence space.
(1) (X, q) is topological if and only if it satisfies F.
(2) (X, q) is regular if and only if it satisfies R.

Let F and R denote the axioms obtained when “F(X)” and “F(J)” are replaced by “U(X)” and
“U(J)” in F and R, respectively. Obviously, F = F and R = R. Part (1) of the next proposition
is proved in [17]. Part (2) is proved in (4]

Proposition 2.3 Let (X, q) be a pseudotopological convergence space.
(1) (X, q) is topological if and only if it satisfies F.
(2) (X, q) is regular if and only if it satisfies R.

3 The (8) Axiom for Convergence Spaces.

In this section, we introduce the convergence space axiom (), and give equivalent characteriza-
tions of F' and R for convergence spaces (X, g) which satisfy (8). It should be mentioned that (5) is
a very strong axiom; the only T space which satisfies (8) is the discrete topology. Some additional
terminology will be useful.

Definitions 3.1 Let (X, q) be a convergence space, and let z,y,z € X. (X, g) is said to be
symmetric, if § - z whenever £ 5 y;
transitive, if ¢ - z whenever z 5 y and § 5 z;

s e s 9 . q . 9
skew transitive, if £ — z whenever y — z and y — z.
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Our first proposition provides an equivalence for skew transitivity. The proof is easy.

Proposition 3.2 A convergence space (X, ¢q) is skew transitive iff it is both transitive and sym-

metric.
(B) : Forall € U(X), ULz <= for all U € U, there exists y € U such that y -5 z.

In the next section, we will extend both () and the following results to the setting of proba-

bilistic convergence spaces.

Proposition 3.3 Let (X, ¢) be a convergence space which satisfies (8). Then (X, ¢) satisfies Fiff

(X, q) is transitive.

Proof: Assume F holds, let J = X, and v = idx. Let z,y,z € X, such that z S yand g 5 2.
Define o : X — U(X) as follows : o(w) = 1w for all w # y, and o(y) = 2. Thus, xo(y) =z > 2.

To show the converse, let J, o, 1, and F be as in the statement of F, a(w) B P(w) for all
w € J, and $F 5 z for some z € X. Let D € xoF. Recall that a filter base for xoF is given by

{UU,:FeFandU, ea(y)}
yEF

Thus, U U, C D for some F € F. By axiom (8), there exists a b € F such that 1/)(1)) 4 2. Since

yeF
o(b) 5 ¥(b), (B) further implies that there exists a z € Uy C D such that 2 y(b). Hence, - z
by transitivity. Since D was chosen arbitrarily, (8) implies ko F 5 z. 1

Proposition 3.4 Let (X, g) be a convergence space which satisfies (8). Then (X, q) satisfies R iff

(X, q) is skew transitive.

Proof: Assume R holds, let J = X, and ¢ = idx. Let z,y,z € X, such that § 5 z and § -5 z.
Define 0 : X — U(X) as follows : o(w) = w for all w # z and o(z) = §; hence, ko (z) =y 3 2.
Therefore, ¥z = & 3 2.

For the converse, let J, , o, and F be as in R, o(w) % ¢(w) for all we J,and koF 5 z.
Let F € F and let Ap = {z € X : £ 5 ¢(j), forsome j € F}. If X\AFr € ko F, then there exists

G € F such that | J Uy, € X\AF, where U, € o(w). Let b€ FNG. Since o(b) 5 9(b), there
weG
exists a z, € Uy C X\AF such that z, 5 ¥(b), by axiom (8). But this implies z, € A, which is

a contradiction; therefore, Ar € koF. Hence, there exists a y € Ar such that y 4z, by (B); but
¥ > ¥(j) for some j € F, by definition of Ar. It follows that 'p('j) 2 z, by skew transitivity. Since
F was chosen arbitrarily, F -5 z, by (8). 1

Corollary 3.5 Let (X,q) be a convergence space which satisfies (3). Then (X,q) satisfies R iff

(X, g) is transitive and symmetric.

Proof: Use Proposition 3.2. and Proposition 3.4. |
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4 Probabilistic Convergence Spaces

Probabilistic convergence spaces have evolved from the study of probabilistic metric spaces and their
generalizations (see [6], [7], [12], [15], [16]). A filter-based theory for such spaces was introduced in
[14]).

Let I denote the unit interval [0,1) in R.

Definition 3.1 A probabilistic convergence structure q on X is a function
q:F(X)xI-2X

satisfying:

(PCS1) : For each pu € I, q(F, p) = q,(F), where ¢, € C(X);
(PCS2) : If p =0, g, is the indiscrete topology;

(PCS3) : If u <vel, thengq, <gq,;

(PCS4) : For each p € I, g, = sup{q, : ¥ < p}.

The condition (PCS4) of Definition 3.1 is called left-continuity.

We will generally write q = (g,,), where  is assumed to range through I. If q is a probabilistic
convergence structure on X, then (X, q) is called a probabilistic convergence space. Essentially, a
probabilistic convergence space may be regarded as a family of convergence spaces {(X,q,) : p € I}.
If a filter F g,-converges to a point x, we say that “the probability that F q-converges to x is at least
#.” So q gives a rule for determining the probability that any given filter on X converges to any given
point in X. The probability that a filter F q-converge to z is defined to be A = sup{u € I : ¥ 35 z}.

If (X,q) and (Y, p) are probabilistic convergence spaces and f : X — Y is a mapping, then
f:(X,q) = (Y,p) is said to be continuous if f : (X, q,) = (Y,p,) is continuous for all u € I. The
category with probabilistic convergence spaces as objects and continuous functions as morphisms is
denoted by PCS. If (X,q) € |PCS| and each g, is a limit structure (respectively, pseudotopology,
pretopology), then (X, q) is called a probabilistic limit space (respectively, probabilistic pseudotopo-
logical space, probabilistic pretopological space), and the corresponding full subcategory of PCS is
denoted by PLS (respectively, PPSS, PPRS). Note that PPRS C PPSS C PLS C PCS. A
probabilistic convergence space (X, q) is defined to be Ty (respectively, T2) if the convergence space
(X, q,) is T1 (respectively, Tz).

We next define “t-norm,” a notion which is fundamental in the study of probabilistic metric
spaces and their generalizations. For further information about this topic, the reader is referred to
[16].

Definition 4.1 A t-norm is a binary operation T : I? — I which is associative, commutative,

increasing in each variable, and satisfies: T(u,1) = p, for all p € I.

A t-norm T is said to be left-continuous if T(z,y) = sup{T'(u,v): 0 < u < z,0 < v < y}, for all
z,y € (0,1)].
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Let 7 be the set of all t-norms. A partial order on 7 is defined as follows:
T < T'iff T(u,v) < T'(p,v) for all (g,v) € I*.

The smallest ¢-norm, 7 is defined by

A B, ifv=1
T(p,v)={ v, ifu=1
0, otherwsise.

The largest t-norm is T, defined by

T(p,v) = min{p,v}.

for all (u,v) € I%.
Let (X, q) be a probabilistic convergence space, and T' € T. We define two axioms for (X, q)

relative to T which are derived in an obvious way from the axioms F and R of Section 2.

Fr: Let u,v € I. Let J be any non-empty set, ¥ : J = X and o : J — F(X) be such that
o(y) 5 $(y), for each y € J. If F € F(J) and $F % z, then xoF ""5” 2.

Rr:: Let p,v € I. Let J be any non-empty set, ¢ : J — X and o : J — F(X) be such that
o(y) % ¥(y), for each y € J. If F € F(J) and ko F % z, then pF "% z.

Definitions 4.2 Let T be a t-norm. If a probabilistic convergence space (X, q) satisfies Fr, it is
called T'-topological. If (X, q) satisfies Rr, it is called T-regular.

The proof of the following proposition appears in [2].

Proposition 4.3 Let T be a t-norm, and let (X, q) be a probabilistic convergence space. Then
(X,q) is T-regular iff, for all y,v € I, F % z implies cl,, F "% z.

Similarly, for any ¢t-norm T', we may derive the axioms Fr and Ry from the axioms F and R,

respectively. The next proposition is proved in [4].

Proposition 4.4 Let (X, q) be a probabilistic pseudotopological space.
(1) (X,q) satisfies Fr iff (X, q) satisfies Fr.
(2) (X,q) satisfies Ry iff (X,q) is Rr.

For a fixed t-norm T, the full subcategory of PCS whose objects are T-topological is denoted by
FrPCS. The categories RrPCS, FrPCS, and RyPCS are defined analogously.

We conclude this section with the following simple result.

Proposition 4.5 Let T be a t-norm, and let (X, q) be a T-regular probabilistic convergence space.
Then (X, q) is Ty iff (X,q) is T2.

Proof: Assume (X,q) is T. Then (X,q) is Ty, and by Proposition 4.3, 7 3 z implies
d "™ z. But T(1,1) = 1, by Definition 4.1; bence, (X, ) is regular, and so (X, qu) is Ta.
Thus, (X, q) is T».

The converse is clear. 1
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5 The (A) Axiom for Probabilistic Convergence Spaces

We now extend the results of Section 3 to the setting of probabilistic convergence spaces.

Definitions 5.1 Let (X, q) be a probabilistic convergence space, let T be a t-norm and let z,y, z €
X. (X,q) is said to be
symmetric : if, forevery u € I, Y y implies y 3 z;

L op = IT(u, . . g
T-transitive : if # 5" z whenever # 25 y and y % z;

9 WV, - 3 .
skew T-transitive : if %" z whenever vy B zandy 2.
Proposition 5.2 A probabilistic convergence space (X, q) is skew T-transitive iff it is both T-

transitive and component-wise symmetric.

Proof: Let u € I, and assume (X, q) is skew T-transitive. Then 7 2 z and 7 % z implies
g
PR z, or more simply, z Bz implies ¢ 2 z. Hence, (X, q) is symmetric, and transitivity now
follows easily.

The converse is straightforward. 1

The following axiom, denoted (A), extends the (8) axiom of Section 3 to the setting of proba-
bilistic convergence spaces. The (A) axiom will hold in those probabilistic convergence spaces which

have a natural correspondence with pseudo-quasi-semi metric spaces.

(A) : Forald € U(X)andvel, U Bz <= forall U €U, and all 4 < v, there exists
ay €U such that § 3 z.

Propositions 5.3 and 5.4 extend the results of Propositions 3.3 and 3.4, repectively.

Proposition 5.3 Let (X,q) be a probabilistic convergence space which satisfies (A). Then, for
any left-continuous t-norm T, (X, q) satisfies Friff (X, q) is T-transitive.

Proof: Assume Fr holds, let J = X, and ¢ = idx. Let z,y,z € )E, suchthat ¢ ¥ yand y & 2.
Define o : X — U(X) as follows : o(w) = w for all w # y, and o(y) = 2. Thus, xo(y) = & R 2

For the converse, let J, o, ¥, and F be as in the statement of Fr, o(w) & Y(w) for all w € J,
and YF 3 7 for some 2 € X. Recall that a filter base for xoF is given by

{U U,:F € F and Uy € 0(y)}.
veF
Let € < T(p,v), and choose v < p, < v such that € < T(y,8) < T(u,v). Let D € xoF; thus,
|J Uy € D for some F € F. Since $F % z by hypothesis, there exists b € F such that y(b) 33 z,
veF
by (A). Since o(b) 2 9(b), (A) further implies that there exists z € Uy C D such that z <% (b).
Hence, z i 2z by T-transitivity, which implies £ %5 2. Since D and e were chosen arbitrarily, (Aa)

. . T,
implies ko F 5" 2. 1
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Proposition 5.4 Let (X,q) be a probabilistic convergence space which satisfies (A). Then, for
any left-continuous t-norm T', (X, q) satisfies Ry iff (X, q) is skew T-transitive.

Proof: Assume Ry holds, let J = X, and 1 = idx. Let z,y,z € X, such that vy 8 zandy B 2.
Define o : X — U(X) as follows : o(w) = w for all w # z and o(z) = §; hence, ko(z) =y & z.
Therefore, Yz = z RCY z.

For the converse, let J, ¥, o, and F be as in Rr, o(w) & P(w) for all w € J, and ko F .
Let € < T'(p,v), and choose v < p, 6 < v such that € < T(,0) < T(g,v). Let F € F and let
Ar ={z € X : £ % y(j), forsome j € F}. i X\Ar € xoF, then there exists G € F such that

U Uw C X\Af, where U, € o(w). Let b€ FNG. Since o(b) & 1(b), there exists z € Uy C X\ Ar
weG
such that 2% ¥(b), by axiom (A). But this implies £ € AF, which is a contradiction; therefore,

Ar € koF. Since Ar € ko F, there exists a y € A such that § 33 z, by (A); but, also, § LA ¥(j)

for some j € F, by definition of Ap. $(j) "%" z follows by skew T-transitivity, and thus, $(j) % z.
Since F and € were chosen arbitrarily, pF %" z, by (A). 1

Corollary 5.5 Let (X, q) be a probabilistic convergence space which satisfies (A). Then, for any

left-continuous t-norm T, (X, q) satisfies Rr iff (X, q) is symmetric and T-transitive.

Proof: Use Proposition 5.2 and Proposition 5.4 I

6 Generalized Metric Spaces as Probabilistic Convergence
Spaces

Definition 6.1 Let X be a set and let d : X x X — [0, 0], and consider the following “metric”
axioms:

(d1) d(z,z)=0, for all z € X

(d2) d(z,y) < d(z,z) + d(z,y) for all z,y,z in X;

(d3) d(z,y)=d(y,z), for all z,y in X;

(d4) d(z,y) =0 impliesz = y.

(d2) is known as the triangle inequality, (d3) as symmetry, and (d4) as separation. If d is required
to satisfy (d1), (d2), and (d3) only (respectively (d1) and (d2) only, (d1) only), then d is known
as an eztended pseudo-metric (respectively, eztended pseudo-quasi-metric, extended pseudo-quasi-
semi-metric). A pair (X,d), where d is an extended pseudo-quasi-semi-metric on X is called an
extended pseudo-quasi-semi-metric space or, more briefly, eztended pgs-metric space. A mapping
f : (X,d) = (Y,d') between extended pgs-metric spaces is called a contraction map if for all
z,y € X,

&(f(z), f(¥)) < d(z,y).

The category consisting of extended pseudo-quasi-semi-metric spaces as objects and contraction
maps as morphisms will be denoted by pgs-M ET*™. The other cases are defined analagously.

We now identify those probabilistic convergence spaces which correspond to generalized met-
ric spaces in pgs-M ET*, p¢-MET>®, p MET* and MET>. Let PPRS be the category of all
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probabilistic pretopological spaces. We denote by PPRS(A), the full subcategory of PPRS whose
objects satisfy the (A) axiom of Section 5. We introduce three additional full subcategories of PCS’
FrPPRS(A) : The T-topological objects in PPRS(A);

RrPPRS(A) : The T-regular objects in PPRS(A);

RrPPRS(A)* : The T; objects in RrPPRS(A).

Proposition 6.2 Let T be a left-continuous ¢t-norm, then the following hold:
(a) RrPPRS(A) C FrPPRS(A).

(b) FrPCS N PPRS(A) = FrPPRS(A).

(c) RrPCSN PPRS(A) = RrPPRS(A).

Proof: To prove Part (a), apply Proposition 4.4, Proposition 5.3 and Corollary 5.5. For both
Part (b) and Part (c), Proposition 4.4 will suffice. |

Let I denote the unit interval [0, 1], and let S : I — [0, co] be an order reversing homeomorphism;
i.e., S is a homeomorphism, and S(y) > S(v) whenever u,v € I and p < v. The set of all such
order reversing homeomorphisms S is denoted by S

We now construct an isomorphism, based on a given S € S, between pgs-M ET* and PPRS(A).
Let S be in S. If (X,d) is in pgs-MET®, let ¢s(d) : F(X) x I — 2X be defined as follows: For
each F € F(X) and ¢ € I, ¢s(d)(F, ) = ¢s(d).(F), where ¢s(d), : F(X) — 2X is defined by

z € ¢s(d)u(¥) iff g.g;:gg d(z,y) < S(u)-

Alternatively, ¢s(d), can be described in an equivalent fashion by
¢s(de .o .
F S ziff g_ré;i:gd(z,y) < S(p).
Proposition 6.3 If (X,d) is in |pgs-M ET*|, then (X, #s(d)) is in |PPRS(A)|.

Proof: We first verify that, for all 4 € I, ¢s(d), is a pretopology. (i) I F = z, then

1nf sup d(z,y) = d(z,z) = 0. Hence, £ *sDr 2 for all pel (i) ¥F ¢5(ds z,and G > F, then

inf supd(z,y) < inf supd(z,y) < S(u). Thus, G s 2 (iii) Given z € X, let {F; : j € J}

Geg yeG FeF yeF

be the set of all filters on X such that F; s .. Then, Pl}él;_ supd(z,y) < S(u) for all j € J.
) y€F

Let an arbitrary element of n}', be denoted U F;, where each Fj is in F;. It follows that
jeJ ieJ

inf  sup d(z,y) = sup mf sup d(z,y) < S(p). Thus, n}' ¢s(ds z, establishing that ¢s(d)
UF,€N7, yeuF,

is pretopological. (PCS2) If p= 0 then mf sup d(z,y) < S(u) oo for all 7 € F(X) and all

z € X;hence, F 2 z,forall F € F(X) and all z € X, and so g, is the indiscrete topology. (PCS3):
Let 4 < v, and F *9” z; then mf supd(:c y) < S(v) < S(u). Hence, F P g (PCS4): To
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#s(d )u

show ¢s(d) is left continuous, let F z for all 4 < v. Then, Fx_lé; supd(z,y) < S(p)foralluy < v
veF

implies lnf sup d(z,y) < S(v), and thus, F os@v

It rema.ms to show that ¢s(d) satisfies (A). Let U be an ultrafilter on X and let v € I.
o5l z; then Ll,lélfl supd(z,y) < S(v). Hence, if 4 < v, there exists a V € U such that
veU
su d(z,y) < S(u), which implies d(z,y) < S(u) for all y € V. It follows that if U is any element
up (z,y) u y u y y

Assume U

of U, there exists ay € UNV, and hence a y € U, such that y s o

Conversely, let U be an ultrafilter on X and let v € I. Assume that for all U € U and all 4 < v,

there exists a y € U such that y #sx 2. For each p<v,pt A, ={yeX:y 5w z}; then

X—A, ¢U,and so A, € U for each 4 < v. It follows that inf supd(z,y) < inf sup d(z,y) < S(v).
UeU yerv <V yed,

Therefore, U **%" z, and consequently, ¢s(d) satisfies (A). 1

Let ¢5 be defined for objects by ¢s(X,d) = (X, ¢s(d)) and for morphisms by ¢s(f) =
Proposition 6.4 ¢s: pgs-MET® — PPRS(A) is a functor.

Proof: Let (X,d) and (X’,d') be objects in pgs-MET>, f : (X,d) — (X’,d’) a contraction
map and F € F(X). If p € I, and F Qe z, then

Hg}{n sup d(f(z),w) < jnf isup a(f(2), f(y)) < jnf fsup d(z,y) < S(w)-

Hence, f(F) **$ f(z), establishing that f : (X, ¢s(d)) — (X, és(d")) is continuous. 1

We next construct the inverse functor 15 : PPRS(A) — pgs-M ET*. If (X, q) isin |PPRS(A)|,
define ¥5(X, q) = (X, ¥s(q)), where ¥s(q) : X x X — [0, o0] is given by

¥s(a)(z,y) = inf{S(v) : § B z}.
If f is a morphism in PPRS(A), define ¢s(f) = f.
Proposition 6.5 If (X, q) € |[PPRS(A)], then (X,¥sq) € |pgs-M ET>|.

Proof: It is sufficient to show that ¥s(q) satisfies (d1) of Definition 6.1. Since 5 z, for all
z € X, ¥s(q)(z,z) = inf{S(v): £ B 2} = S(1) =0, for all z € X. 1

Proposition 6.6 s : PPRS(A) — pgs-M ET® is a functor.

Proof: Let (X,q) and (X’,q') be objects in PPRS(A), f:(X,q) — (X’, ') a continuous
function, and z,y € X. Select u € I such that ¥s(q)(z,y) = S(u); then y ¥ z, which implies

fly) 3 f(=), by continuity of f. Hence, ¥s(q)(f(z),f(¥)) < S(k) = ¥s(a)(z,y), and thus,
f: (X, ¢s(q)) = (X', ¥s(q’)) is a contraction map. 1

Theorem 6.7 ¢s: pgs-MET> — PPRS(A) is an isomorphism.
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Proof: It will be sufficient to show s 0 ¢s(X,d) = (X, d) for each (X,d) € pgs-MET*, and
¢s o Ps(X,q) = (X,q) for each (X,q) € PPRS(A). Let (X,d) be in pgs-MET* and z,y €
X. ¥s(¢s(d))(z,y) = inf{S() : § *9* 2} = f{S(v) : d(z,y) < S(v)} = d(z,y). Hence,
¥s o ¢s(X,d) = (X, d).

Now let (X,q) be in PPRS(A), v € I and U an ultrafilter on X. Let U 25 z; then by
axiom (A), for all g < v and all U € U, there exists a y € U such that y 2 z. For each
p<v,pt A, ={y€X:9 B z). Then X-A, ¢ U, andso A, € U, forall p < v. It

4s(¢'_s_$Q))v

follows that inf sup ¥s(q)(z,y) < inf sup ¥s(q)(z,y) < S(v). Therefore, U z, and thus
Uel yeu U<V yeA,

¢s(¥s(q)) < q.
To establish the reverse inequality, let (X, ¢s(¥s(q))) be in PPRS(A), v € I and U an ultrafil-
ter on X. Let ¢ **=V z; then tl,léfu sup ¥s(q)(z,y) < S(v). Hence, if 4 < v, there exists a V € U
veU

such that sup ¥s(q)(z,y) < S(), which implies ¥s(q)(z,y) < S(u) for all y € V. It follows that
vev

if U is any element of U, there exists a y € U NV such that y & z. By axiom (4), it follows that
U % z, and consequently, q < ¢s(¥s(q)). Hence, q = ¢s o ¥s(q). ]

A useful class of continuous t-norms may be obtained via the next proposition. See Chapter 5
of [16] for additional information.

Proposition 6.8 Let S bein S. Then the mapping Ts : I? — I, defined by Ts(p,v) = S~ (S(p)+

S(v)) is a continuous t-norm.

Any continuous ¢-norm T of the form T = Ts for some S € S is called the strict t-norm derived
from S.

In the results that follow, let S be in S, and let T be the strict t-norm derived from S. Let és
be the restriction of ¢s to pg-M ET*. We now show that ¢s : pg-MET™ — FrPPRS(A) is an
isomorphism.

Proposition 6.9 If (X,d) € |pg-M ET*|, then (X, ¢s(d)) is T-transitive.

Proof: Let z,y,2€ X, 2 5w y,and y s . Then, d(z,y) < $(u), and d(y,z) < S(v). By

the triangle inequality, d(z,z) < S(p) + S(v) = S(T(s,v)); hence, 2 el

Corollary 6.10 If (X,d) € |[pg-M ET*|, then (X, ¢s(d)) € |FrPPRS(A)|.

Proof: (X, ¢$s(d)) € |PPRS(A)|, by Proposition 6.3, and (X, ¢s(d)) satisfies Fr by Proposition
5.3. Hence, (X, ¢s(d)) € |FrPPRS(A)|, by Proposition 6.2(b). 1

Proposition 6.11 If (X,q) € |[FrPPRS(A)|, then (X, ¥s(q)) € |pg-M ET>|.

Proof: It is sufficient to show (X, ¥s(q)) satisfies (d2) of Definition 6.1 (the triangle inequality).
Let z,y,z € X. Select u,v € I such that d(z,y) = S(p), and d(y,z) = S(v); thus, y 2 z and

2% y. It follows that i) z, by Proposition 5.3, and therefore,

d(z,z) < S(T(u,v)) = S(p) + S(v) = d(z,y) + d(y, 2).
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Combining the three previous results we obtain the next theorem.

Theorem 6.12 ¢ : pg-MET*> — FrPPRS(A) is an isomorphism.

Now let ¢s be the restriction of ¢s to p-MET®™. Following a similar procedure, we show that
the mapping és: pMET> - RrPPRS(A) is an isomorphism.

Proposition 6.13 If (X, d) € |[pp MET™|, then (X, ¢s(d)) is symmetric.

Proof: Let z,y € X, u € I, such that ¢s(@)u y. Then, using (d3) of Definition 6.1, d(z,y) =
d(y,z) < S(u), which implies § **9" z. ;

Corollary 6.14 If (X,d) € |pp MET®|, then (X, ¢s(d)) € |RrPPRS(A)|.

Proof: (X, ¢s(d)) € |[PPRS(A)|, by Proposition 6.3. Furthermore, (X, ¢s(d)) is T-transitive
by Proposition 6.9, and thus, (X, ¢s(d)) satisfies Rr by Proposition 6.13 and Corollary 5.5. Hence,
(X, ¢s(d)) € |RrPPRS(A)| by Proposition 6.2(c). 1

Proposition 6.15 If (X,q) € |RrPPRS(A)], then (X, ¥s(q)) € [ MET|.

Proof: We must prove that (X, ¥sq) satisfies (d3) of Definition 6.1. (X,q) is symmetric by
Corollary 5.5. It follows that, for all z,y € X, ¥s(q)(z,y) = S(p) = ¥ Bz y =
¥s(q)(y,z) < S(u). Hence, ¥s(a)(y,z) < ¥s(q)(z,y), and by a similar argument, s(q)(y,z) <

¥s(q)(z,y)- Thus, ¥s(q)(y, z) = ¥s(q)(z,y)- 1

Theorem 6.16 ¢s : pMET> — RrPPRS(A) is an isomorphism.

Recall that Ry PPRS(A)* is the full subcategory of RrPCS(A) consisting of those objects
which satisfy the T3 property. Let ¢s be the restriction of ¢s to MET*. ‘The next results show
that ¢s : MET® — RrPPRS(A)" is an isomorphism.

Proposition 6.17 If (X,d) € |[M ET*|, then (X, ¢s(d)) is Ta.

Proof: Let z,y € X, 4 3" y. Then, d(z,y) = S(1) = 0, which implies z = y, by (d4) of
Definition 6.1. Thus, (X, ¢s(d)) is T1, and so (X, ¢s(d)) is T2 by Proposition 4.5. 1

Corollary 6.18 If (X,d) € [MET>|, then (X, ¢s(d)) € |RrPPRS(A)*|.
Proposition 6.19 If (X, q) € |RrPPRS(A)*|, then (X, ¥s(q)) € IMET>|.

Proof: Let z,y € X, ¥sq(z,y) = 0. Then, y 2, z, but, since (X, q) is T;, we must have z =y
since (X, q,) is Ty. Therefore, (X, $sq) satisfies (d4) of Definition 6.1. 1
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Theorem 6.20 If S € S and T the ¢t-norm derived from S, then
és: MET* — RrPPRS(A)*
is an isomorphism.
The following list summarizes the four main results of this section. The symbol “~” means “is
isomorphic to.”
(1) pgs-MET> = PPRS(A);
(2) p¢-MET> = FrPPRS(A);
(3) pMET> = RrPPRS(A);

(4) MET* = RrPPRS(A)".

References

{1] H.J. Biesterfeldt, Jr., “Regular Convergence Spaces,” Indag. Math. 28 (1966), 605-607.

(2] P. Brock and D. Kent, “Probabilistic Convergence Spaces and Regularity,” Intl. J. Math. and
Math. Sci., to appear.

[3] P. Brock and D. Kent, “Approach Spaces, Limit Tower Spaces and Probabilistic Convergence
Spaces,” Applied Categorical Structures, to appear.

{4] P. Brock, Probabilistic Convergence Spaces,” Doctoral Dissertation, Washington State Univer-
sity, 1996.

[5] C. H. Cook and H. R. Fischer, “Regular Convergence Spaces”, Math Ann. 174 (1967), 1-7.
[6] L.C. Florescu, “Probabilistic Convergence Structures,” Aequationes Math. 38 (1989), 123-145.
[7] M. J. Frank, “Probabilistic Topological Spaces,” J. Math. Analysis and Appl. 34 (1971), 67-81.

(8] D. Kent and G. Richardson, “Convergence Spaces and Diagonal Conditions,” Topology and Its

Applications, to appear.
[9] H. J. Kowalsky, “Limesraume und Komplettierung,” Math. Nachr. 12 (1954), 301-340.

[10] E. Lowen and R. Lowen, “A Quasitopos Containing CONV and MET as Full Subcategories,”
Intl. J. Math. and Math. Sci. 11 (1988) 417-438.

[11] R. Lowen, “Approach Spaces: A Common Supercategory of TOP and MET,” Math. Nachr.
141 (1989), 183-226.

[12] K. Menger, “Statistical Metrics,” Proc. Natl. Acad. Sci. USA, 37 (1951), 178-180.



452 P. BROCK

[13] G. Preuss, “Theory of Topological Structures,” Kluwer Academic Publishers, 1987.

[14] G. D. Richardson and D. C. Kent, “Probabilistic Convergence Spaces” J. Austral. Math. Soc.,

to appear.
[15] B. Schweizer and A. Sklar, “Statistical Metric Spaces,” Pacific J. Math. 10 (1960) 313-334.

[16] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland Publ. Co. New York
1983.

[17) O. Wyler, “Convergence Axioms for Topology,” to appear.



Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and

Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews | March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of Sdo Paulo, 05508-970 Sao Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratério Associado de
Matemadtica Aplicada e Computagdo (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), Sdo Jose dos
Campos, 12227-010 Sao Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

