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ABSTRACT: A linearized theory of magnetoatmospheric waves is developed where the restoring forces
are those of compressibility and magnetic pressure. An equation for resonance is derived. Reflection
and tunneling of upward propagating Alfvén waves in an ideal Magnetoatmosphere are considered. It
is shown that the magnetic field produces a reflecting nonabsorbing critical layer. Below the critical
layer, the solution of the problem can be written as a linear combination of an upward and a downward
propagating wave and above it the solution decays exponentially with the altitude. The location of the
critical layer and the magnitude of the reflection coefficient are determined and the conclusions are
discussed in connection with the heating mechanism of the solar atmosphere.
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1 INTRODUCTION

The dynamics of the solar atmosphere is complicated by the fact that not only is it strongly stratified,
in both gas density and temperature, but it is also permeated by a non-uniform magnetic field. The
solar atmosphere is an example of a plasma that is both structured and stratified. More specifically,
the sun is a compressible plasma and able to support sound waves. The presence of a strong magnetic
field indicates that the solar atmosphere is an elastic medium. Thus, wave motions of various types will
occur and become a source of energy in the solar atmosphere.

In this paper a linearized theory of magnetoatmospheric waves, involving the combined restoring
forces due to compressibility and magnetic pressure, is developed for the case of a uniform horizontal
magnetic field. A general propagation equation is derived for adiabatic perturbations with arbitrary
vertical distribution of Alfvén and sound speeds. An exact analytical solution of the propagation equation
is obtained for the case of an isothermal atmosphere permeated by a uniform horizontal magnetic field.
We examine the propagation of Alfvén waves in two distinct regions in the solar atmosphere, which is
taken to be an ideal one. It is shown that in the first region, where the strength of the magnetic field is
weak, the solution can be written as a linear combination of upward and downward propagating waves
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with equal wavelengths. In the first region the motion is approximately acoustic because the motion
is dominated by the restoring force of compressibility. In the second region, where the magnetic field
strength dominates the motion, the solution decays exponentially with altitude. The first and second
regions are connected by a critical layer in which the reflection takes place and the motion is influenced
greatly by the effect of the magnetic field. Also, the behavior of the solution, in both regions, indicates
that the tunneling is weak as the waves, of all kinds, propagate between the two regions and the reflection
is very strong. We expect the motion, in both regions to continue in its prescribed form because there
is no physical mechanism for dissipation. The reflection coefficient, location of the transition region,
critical layer, and the conclusions are presented in connection with the heating mechanism of the solar
atmosphere.

Finally, in the formulation of the problem we will be able to introduce and justify the so-called
“magnetic energy condition“ in an ideal Magnetoatmosphere as an upper boundary condition to ensure
a unique solution.

2 PROBLEM FORMULATION

We consider an ideal magnetoatmosphere which is inviscid and thermally non-conducting, and occu-
pies the upper half-space z > 0. It is assumed that the gas is under the influence of a uniform horizontal
magnetic field and that it has an infinite electrical conductivity. We investigate the problem of small
vertical oscillations about equilibrium.

Let the equilibrium pressure, density, magnetic field intensity and external potential be denoted by
Po(2), po(2), B(z) and 1o(z). Let P, p, B, 1) and V be the perturbations in the pressure, density, magnetic
field intensity, external potential and velocity. The equations of ideal magnetohydrodynamics are those
of momentum, induction, isotropy, and continuity:

p [% +V.VV] =-Vp-Bx (V xB) — pVy, .1)
%?—:VX(VXB), 2.2)
a Y
[5 + V.V] (Pp™") =0, (23)
7]
[& + v,v] p=—pV-V. 24)

Here ~y denotes the ratio of the specific heats. These equations are linearized about a static equilibrium
defined by
VPy+ By x (V x Bg) = —po Ve, @2.5)

In this problem 1) is considered to represent a uniform gravitational field. Thus, Vi = —g =
(0,0,9) and the last term in equations (2.1) and (2.5) is replaced by pog. In terms of the linear
Lagrangian displacement field £(r,t), the velocity perturbation is defined by:
%
ot
and the equation of motion of ideal magnetohydrodynamic is obtained by integrating and eliminating
all perturbation quantities except §. As a result, we have

2
poos =F(6), @7

V= (2.6)
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where the force operator F (£) is defined by
F()=V(y RV -£+£-VR)-Box (VxR)-Rx(VxBo)+V-(0§) Vtho, (2.8)

where

R=V x (£ xBy). .9
The linear Lagrangian displacement field is assumed to be of the form £(x,y,zt) and as an integral
superposition of harmonic terms, with £ and its first x derivative vanishing at infinity. As a result,

€= 51; /_: et (2, k) e*=dk, (2.10)

where the wave number is assumed to be k = (k,0,0). Consequently, the horizontal magnetic field can
be written as
Bo = (Bo (2), By (2),0). @.11)

Using equation (2.10), equation (2.7) becomes
—pow?d = F (¢, k). @12)

Eliminating all variables except ¢,, we obtain the following differential equation:

d 2
- [A (z,w) %] +C(2,w)9=0, (2.13)

where the coefficient A (z,w) and C (z,w) have the following form:

poAnAizArs
A(z,w) = —————, 2.14
(z,w) o (2.14)
K2g’A1, K% ( d Ay —a;
C(z,w) = Apg——"——=—-— —[ (—-—)A] s 2.15
(z,w) Po[ 2T A \a Po\ iy, ) A6 (2.15)

where

Au = G: + a: + C[z), A]z = w2 - aﬁkz,

2.2 .
Az = WZ—M, A14=w2—%[k21411-«417],

Ap - ay
1 k2
A = w- 3 [k2A11 + A17] , Ap=w-— [A_a:lci_a,] )
A = k[A% - 4a2d)]. (2.16)

The parameters a. and a, are the x and y components of Alfvén speed, while c3 denotes the speed of
sound.

3 SIMPLIFICATION OF THE PROBLEM AND BOUNDARY CONDITIONS

For this problem the atmosphere is assumed to be isothermal (co =c(2) = constant) and permeated by
a uniform horizontal magnetic field B = (B, 0,0). The equilibrium pressure Py and constant temperature
Ty satisfy the gas law Py, = RTypo and the hydrostatic equation Fj(z) + gpo = 0. Here, R denotes
the gas constant and the prime denotes differentiation with respect with respect to z. As a result, the
equilibrium pressure and density can be written as:

Py(z) = Py (0)exp(~z/H), po(2) = po(0)exp(—2/H), (ER))
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where H = —p; (2) /po(2) = Eg"—“ is the density scale height. Consequently, the differential equation
(2.13) becomes

e + (12 - %) o ) exp (5 16" (2) - %df (2)+

[(w2 — H7) (u? - K23 (0) exp (%) ~g ( - %) k2] é(2) =0, G.2)
where )
30 = iy

denotes Alfvén speed at z = 0. Furthermore, we introduce the following dimensionless quantities and
variables:

&(2) =W (z)exp—kz, z=zpexp (-%) , 3.3)
;= 2 = _ B’ 2 3(0) _ Hw
Z—‘ﬁ, k= Hk, $o—m, ﬁ__c’—’ 0——6', 34)
where the prime on z is eliminated for simplicity. Thus, the differential equation (3.2) becomes,
W (z) aw (z)
z(l-1z) 5 +[c—(a+b+l):c]—-d—z——abW(a:)=0. @3.5)

It is clear that the differential equation (3.5) is a special case of the hypergeometric differential equation
with

k2
'0__2 )

a+b=c=2k+1, ab=02+k+(l;—l-> (3.6)

Boundary Conditions:

To complete the formulation of the problem, certain conditions must be imposed to ensure a unique
solution. If the atmosphere is viscous, an appropriate condition would be the dissipation condition,
which requires the finiteness of the rate of the energy dissipation in an infinite column of fluid of
unit cross-section. Since the dissipation function depends on the squares of the velocity gradients, this
implies

/:" W[} dz < oo. 3.7

In our problem the atmosphere is not viscous, but the integral in (3.7) is proportional to the magnetic
energy in an infinite column of fluid. This condition is a reasonable one to apply so long as there is no
energy radiation to infinity, which is true in our case, and we shall call this condition “magnetic energy
condition.“ Thus we will require (3.7) even when the atmosphere is inviscid. A boundary condition is
also required at x = 0, and we shall set

W (0) =1, 3.9

by suitably normalizing W(x). It will be seen that the boundary conditions (3.7) and (3.8) will determine
a unique solution to within a multiplicative constant.

4 SOLUTION OF THE PROBLEM
In this section we investigate solutions of the following differential equation,
z(l—z)%z—)+[c—(a+b+l)z]iv-‘;g—abW(z)=0, 4.1
where

- k2
a+b=c=2k+1, ab=a2+k+(7—:/—l);5, 4.2
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subject to the prescribed boundary conditions. Solving for the parameters a and b, we obtain

+k—r, b=%+k+r, @“43)

acl
T2

where

2 v—1k%
T — T, Tl—z‘l'k and 1, =0" +T;.

It is clear that the parameter r is a real number, for r; > 15, r = 0 for r; = 1 and r = iy/r; — rp for
n < r2.The differential equation (4.1) is a special case of the hypergeometric equation which has three
regular singular points at x = 0, x = 1 and x = co. The intermediate regular singular point, x = 1,
corresponds to the existence of the critical layer, which has a great importance for understanding the
heating mechanism of the solar atmosphere. As a result, the differential equation (4.1) has two linearly
independent solutions which can be written in the following form for |z| < 1.

Wl (.’l:) =F (a'7 b; C;Z) ) (4.4)

W2(3)=x1‘°F(a—c+l b—c+1;2—cz), @.5)
F@+n)T(b+n)z"

F(a,b;c;z) = T )I‘ B = Z ) o (4.6)
Since k >0 ,then1 —c= -2k < 0, and
= [zoexp (—2)]'° — 00,as 2 — 0. “.n

Thus, the solution of the differential equation (4.1) as defined by equation (4.5) will be eliminated by
the magnetic energy condition. Consequently, the general solution of the differential equation (4.1) is

Wi (z) = AF (a,b;¢ 1), 4.8)

where A is an arbitrary constant and can be determined by the boundary condition (3.8). Using the
asymptotic behavior of F (a, b;c;z) for |z| > 1 and reintroducing the variable z, the solution of (4.4)
can be written as

W(z)=Cons~[[exp(%+k+ir)z]+R exp(%-%—k-ir)z], “4.9)
where R denotes the reflection coefficient and defined by
R =exp[i (6 + 2r logzo)],

and
0 =arg(R) =

T(@l(b—-a)T(c—b)
[I‘(a—b)l"(b)l"(c—a) ’

5 GENERAL DISCUSSION

The structured nature of the solar magnetic field means that magnetism is of greater importance in
some regions of the sun than in others. A simple guide to the relative importance of magnetic effects
is provided by the plasma beta, 3, defined by

ﬁ=ﬁ=2(£)2, 6.1
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where P,, denotes the magnetic pressure. A low-3 plasma, such as the corona, is thus one for which
the Alfvén speed greatly exeeds the sound speed, @ >> c. Wave propagation, then, involves the two
speeds c and c. In fact, the sound speed exists and inter into a description of propagation speeds only
in the combination with Alfvén speed. As a result, the wave speed W, is such, S, < W, < F,, where
F, and S, are the fast and slow speeds and defined by

Fl=c+ad?, S2=c?+a2 5.2

Moreover, F, will be refered to as magnetoacoustic speed; it is super-sonic and super-Alfvénic. By
contrast, S, is both sub-sonic and sub-Alfvénic.

It is easy to see that the maximum of the kinetic energy Max(K) (llTlnl) . As a result, when the
reflection coefficient R — —1, we have Max(K) — oo. This occures when

0+2rlogzg — = (2n+ 1) 7. (5.3)

We call this equation, resonence equation.

From the above discussion and the asymptotic behavior of the solution, expressed in (4.9), we have
the following observations:

(A) It is clear that |R| = 1. As a result, the magnetic field produces a nonabsorbing critical layer,
below it the solution can be written as a linear combination of an upward and a downward propagating
wave with the same wavelengths. Above the critical layer the solution decays exponentially with altitude.
Thus, the critical layer separates two distinct regions with different physical properties.

(B) In the critical layer the reflection and the wave modification take place. Since |R| = 1, the
tunneling is very weak while the reflection is very strong. In this case the total energy of the wave is
divided equally between the incident and reflected waves.

(C) Since the Magnetoatmosphere is ideal, there is a physical mechanism for dissipation. Thus, we
expect the motion to continue in this form and become one of the main sources of energy in the solar
atmosphere.

(D) As a result of (B) and (C) we see that the heating process is an acoustic one below the critical
layer because the compressibility force dominates the oscillatory process. As we move from a region
of weak magnetic field to another one with a strong magnetic field, the hcating process becomes
magnetoacoustic.
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