Internat. J. Math. & Math. Sci. 375
VOL. 21 NO. 2 (1998) 375-379

COMPUTABLE ERROR BOUNDS WITH IMPROVED APPLICABILITY
CONDITIONS FOR COLLOCATION METHODS

A.H. AHMED

Visiting Professor
Instituto de Matematica Pura e Aplicada, IMPA
Estrada Dona Castorina 110 - Jardim Botanico
CEP 22460-320 - Rio de Janeiro - RJ, BRAZIL

(Received July 10, 1995 and in revised form February 5, 1997)

ABSTRACT. This paper is concerned with error bounds for numerical solution of linear ordinary
differential equation using collocation method. It is shown that if the differential operator is split in
different operator forms then the applicability conditions for the computable error bounds which are
based on the collocation matrices could be improved.
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1. INTRODUCTION

This paper extends previous work of Cruickshank & Wright [1] and Ahmed [2] on computable error
bounds for collocation solution of ordinary differential equations. In [1] computable error bounds for the
solution with the global collocation method were described in terms of matrices related to the highest
derivatives of the solution. It is shown later in [2] that if the bounds were related directly to the matrices
involved in the solution and not via the highest derivatives then significant improvement in the closeness
of these bounds could be achieved. However, despite this improvement, the conditions of applicability
which were the main drawback of [1] have turned out to be the same. That is for many practical
problems an inordinate amount of work is necessary to produce any strict error bounds of this type. The
aim of this paper is to consider this problem in order to improve the applicability of these bounds. The
work in this paper is developed from Ahmed's thesis [3]. .

2. THE NEW SPLITTING OF THE DIFFERENTIAL OPERATOR
Before investigating the result more precisely we introduce the following assumptions and notations.
We consider an m-th order differential equation of the form

m—1
Z™(t) + Y pit)z? (t) = y(t) 21
7=0

with associated homogeneous boundary conditions. The theory in [1] and [2] deals with this equation in
the operator form
D" -T)z =y, 22
where (D™z)(t) = (422)(¢) But as indicated in Kantorvich & Akilov [4] and Anselone [5], the theory
can be applied to a general equation of the form
(D-T)z =y, (23)

where D is invertible. Clearly different choices may be treated to deal with the problem of applicability.
However, there are some practical difficulties which would limit them. Firstly the inverse of D needs to
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be known explicitly. Secondly the procedure for calculating the projection norm or bound on it needs to
be available. Thirdly all the assumptions required by the theory in [4] and [5] should be satisfied.

To avoid the difficulty of knowing the inverse of D explicitly, perhaps the simplest extension could
be to define the differential operator D by

Dz = D™z 4+ Ap_ D™ 'z + - + Aoz 2.4)

where the A's are some parameters to be chosen to give the highest possible applicability with a
reasonable amount of work. Since D is a linear differential operator with constant coefficients its inverse
if it exists can be found analytically.

The norm of the project operator associated with D, which will be denoted by ¢* was shown in
Ahmed [6] to be asymptotically the same as the norm of the usual interpolating projection operator if, for
the global collocation method, the points are more usually Tchebychev. It was also shown there that
bounds of the norm of this projection operator can be calculated in terms of the usual interpolating
projection. These results will overcome the second problem. For satisfaction of the conditions required
by the theory in [4] and [5], using the analysis in [6] this will be straightforward if we prove that 7D~ is
a compact operator. That is guaranteed by Kolomogorov and Fomin [7] since TD™! is an integral
operator.

Now replacing D™ by D and following the same analysis in [1] and [2] we reach smilar expressions
for the error bounds with slight computational modifications in certain terms. This is shown in the next
section.

3. EXPRESSIONS FOR THE ERROR BOUNDS WITH THE NEW SPLITTING

OF THE DIFFERENTIAL OPERATOR

If we refer to the bounds presented in [1] and [2], then the bounds with the new splitting will have
exactly the same expressions with the following modifications in computation of the following terms:

1. The integral operator K which stands for D™ in [1] and [2] will be replaced by TD"!;

2. The projection operator ¢y, will be replaced by ¢7,;

3. The collocation matrix Qf:,f' ) which relates to the highest derivative of the solution and is
denoted in [1] by W, will be replaced by the matrix Q;,, where Q;, = Q7 + z\m-ng" + oo+ AQng
and Q¥ relates to the kth derivative of the solution.

4. The subscript n refers to the number of partitions and g refers to the number of collocation
points. For global case n = 1, then the expression of the error bounds with this new splitting and
notation will be ’

1S | D | + 1634l 1Qual 50D

Io-1)<Pi= -y G.1)
if
5%, < || 62 =1) (@D || + (82~ 1) (@D el @l | (zD) ™| < 1
d=0,1,2,..
and
IS @D 1D Ter  1@uel -1
IO-7)7"| < 4a= —= AT 32)
if

a2 < ||| (51 (@D)?| + @D (£ -2) (TD )%

@l | D=1y <1

d=1,2,...
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Since the main purpose of this paper is to study the problem of applicability we are not going to compare
the closeness of these new bounds. However, we don't expect to have any significant changes, especially
with the bounds using matrices related directly to the solution as they will not be affected by the new
splitting. But for the applicability conditions we expect significant changes since all modified terms are
involved.

4. NUMERICAL APPLICATIONS
In our numerical application we will consider the simple second order case

z"(t) + pi(t)z'(t) + po(t)z(t) = y(t),z(£1) = 0
with D taking the simples form
Dz =z" + Mz,

that is, the coefficient of z’ is taken zero. Obviously, if pi) # 0, then the inclusion of that parameter is
expected to give better results. Generalization to higher order equations and more complicated D is
straightforward but a bit tedious.

The test problems will be the same ones considered in [1] and [2].

Problem (1) " +a(l+t)r=y z(xt)=0

Problem (2) " —az=y z(£1)=0

Problem(3)  z"- 2y =y z(£1)=0

Problem (4) z''+2e2 (%f%, =y z(+1)=0.
The parameter « is included to vary the smoothness of the problem. Problem 2 will be neglected because
it is a trivial case with the above D. ), is firstly chosen the one point best approximation of p,(t). That
is, A, = 3{max,|pi(s)| + min, |p,(s)|}.

In table (1) we present bounds for |TD!|| and ||(TD™)"!|| and the norms of the matrices related
toD™"and Dforn=1,g=>5and n =1, ¢ = 20. In comparing those bounds we notice the following:

(i) There are some odd values in problem (1) (values with *) where the new splitting gives larger
values. The easiest practical way of avoiding these nearly singular cases is to consider other values of A
nearby and to choose the best of them, as shown later.

(ii) For problem (3) huge reductions were achieved. That is because ) is negative and hence TD~!
is well behaved, the function py(t) = ﬁ; does not vary much and can be well approximated by a
constant and p; (t) = 0. .

(iii) For problem (4) all values are reduced but the reductions are not as in problem (3) since here
p1(t) # 0. Obviously, if D includes an approximation of p; then similar reductions are expected.

(iv) For most of the cases the reductions increase with a, which indicates better results with less
smooth problems.

In comparing the norms of the collocation matrices related to D and D™, Q;,, and Wy, respectively,
we note the following in table (1).

(v)For problem (1) Q;,, < Wy, for every value of a = 1,2 where |ITD1|| was shown in (i) to be
relatively large. The explanation of this may be due to singularity of D at a = 2, 18 which will affect the
values of Wy, more than Q7.

(vi) For problem (3) Q;,, < Wy, as expected from (ii).

(vii) For problem (4) Q;,, is almost similar to Wy,;. This is probably due to the dominate of the
derivative term.

Table (2) compares the smallest number of points required for the applicability of bounds with the
original and the modified splittings. That is the bounds P, and A4 given by (3.1) and (3.2) and the
corresponding bounds described in [1] and [2].
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We note here the following:

(viii) For problem (1) as expected from (i) and (v) we see good improvements with a = 0.5 and
a = 1 but no improvement with a = 2. This case will be reconsidered.
(ix) For problem (3) huge improvements were achieved, especially with o = 100 as expected from

(ii) and (vi).
(x) For problem (4), there are also good improvements as expected from (iii) and (vii).

In table (3) the bounds for ||TD~!|| are considered with other values of A for problem (1), a = 2.
We see that the bounds take their minimum around A = 1. The applicability is tested in table (4) with
A=05,1,1.25. We observe that the best applicability occurs for A = 1 where ||TD™!| takes its
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minimum which supports our method in dealing with the choice of A values.

Table (1)
Comparison of bounds on integral operators
and the norms of the related matrices
Problem
o« A |t | lTo™|| | ws Q; Wao Q3
1
5 75 0.1812 0.2500 1.3258 1.0122 1.3257 1.1136
1 1.5 0.6494 0.5000 1.9318 13572 1.9318 1.3543
2 3 2.4064 1.000 13.4358 5.678 13.4934 5.6359
100 150 8.0191 50.000 526.872 | 112.6927 | 26.2084 7.3665
3
.5 -0.04514 | 0.0045 0.03125 1.0025 1.0042 1.01409 1.0045
1 -.09028 0.0088 0.0625 1.0048 1.0027 1.0283 1.0144
2 -.8056 0.0171 0.1250 1.0089 1.0060 1.0546 1.0278
100  9.028 0.2058 6.250 1.475 1.2439 1.4831 1.245
4
5 -0.15625 | 0.4755 0.6250 1.4935 1.5017 1.5515 1.552
1 -0.3125 0.9074 1.250 2.0520 2.0659 2.2038 2.2043
2 -0.625 1.6665 2.500 33172 3.337 3.7425 3.7439
100 -312.5 17.888 125.0 32.1639 | 34124 | 148.5813 | 148.7529
Table (2)
Comparison of applicability conditions
(The smallest number of collocation points required for applicability)
Problem o n A Az
a A original modified | original modified | original modified | original modified
1
5 075 19 4 8 4 3 2 3 2
1 1.5 82 35 22 19 36 18 9 2
2 3 > 120 >120 | >120 >120 |[>120 >120 | >120 >120
100 150 > 120 >120 | > 120 >120 [ >120 >120 | >120 >120
3
.5 -004514 2 2 2 2 2 2 2 2
1 -.09028 2 2 2 2 2 2 2 2
2 -.18056 2 2 2 2 2 2 2 2
100 -9.028 > 120 22 |>120 10 [ >120 4 |>120 3
4
.5 -0.15625 33 17 12 6 13 5 6 4
1 -03125 |>120 97 38 22 | >120 65 24 16
2 -0.625 >120 >120 [ >120 74 | > 120 >120 | >120 77
100 -312.5 >120 >120 | >120 >120 | > 120 >120 | >120 > 120




COMPUTABLE ERROR BOUNDS 379

Table (3)
Bound on || TD~}|| with other values of A near 3 for problem (1), & = 2

A 275 [25 3.25 2 1.75 1.5 125 |1 0.75
ITD-1|| | 3.393 | 19.538 | 1.9816 | 1.2342 | 1.0385 | 0.9657 | .9401 | 0.9365 | 0.9459

Table (4)
The applicability for values of A with
small bounds of | TD~|| for problem (1), a = 2

A Im n | A Ay
5 >120195|>120 | 61
1 >120 | 85| >120 | 48
1251>120(87 | >120 | 49

5. CONCLUSION

It is shown in this paper that extension of the principal part of the differential operator to be a linear
combination with constant parameters of all the derivatives can be one practical solution to the problem
of applicability of the error bounds derived in [1] and [2].

The numerical results have shown that significant improvements in the applicability are achieved with
this new extension. More investigation in the method of choosing the parameters or in looking for other
principal part extensions may be needed for further improvements. One option could be to consider the
equation in the form

(1 - D’""T)z =D"y,
and to investigate for satisfaction of the theory and look for practical bounds for ||D""1 7|
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