

**α -DERIVATIONS AND THEIR NORM IN PROJECTIVE TENSOR PRODUCTS OF
 Γ -BANACH ALGEBRAS**

T.K. DUTTA, H.K. NATH and R.C. KALITA

**Department of Mathematics
Gauhati University
Guwahati - 781 014
Assam, India.**

(Received April 16, 1996 and in revised form December 10, 1996)

ABSTRACT. Let (V, Γ) and (V', Γ') be Gamma-Banach algebras over the fields F_1 and F_2 isomorphic to a field F which possesses a real valued valuation, and $(V, \Gamma) \otimes_p (V', \Gamma')$, their projective tensor product. It is shown that if D_1 and D_2 are α - derivation and α' - derivation on (V, Γ) and (V', Γ') respectively and $u = \sum_i x_i \otimes y_i$ is an arbitrary element of $(V, \Gamma) \otimes_p (V', \Gamma')$, then there exists an $\alpha \otimes \alpha'$ - derivation D on $(V, \Gamma) \otimes_p (V', \Gamma')$ satisfying the relation

$$D(u) = \sum_i [(D_1 x_i) \otimes y_i + x_i \otimes (D_2 y_i)]$$

and possessing many enlightening properties. The converse is also true under a certain restriction. Furthermore, the validity of the results $\|D\| = \|D_1\| + \|D_2\|$ and $\text{sp}(D) = \text{sp}(D_1) + \text{sp}(D_2)$ are fruitfully investigated.

KEY WORDS AND PHRASES : Γ - Banach algebras , projective tensor products . α - derivations.

1991 AMS SUBJECT CLASSIFICATION CODES : Primary 46G05, 46M05 ; Secondary 15A69.

1. INTRODUCTION

Γ - Banach algebras and α - derivations are generalisation of ordinary Banach algebras and derivations respectively. The set of all $m \times n$ rectangular matrices and the set of all bounded linear transformations from an infinite dimensional normed linear space X into a Banach space Y are nice examples of Γ - Banach algebras which are not general Banach algebras. Similarly a derivation can't be defined on these spaces as there appears to be no natural way of introducing an algebraic multiplication into these. So, a new concept of derivation known as α - derivation is introduced on a Γ - Banach algebra. Bhattacharya and Maity have defined a Γ - Banach algebra in their paper [1] and have discussed in their another paper [2] various tensor products of Γ - Banach algebras over fields which are isomorphic to another field with a real valued valuation by using semilinear transformations, [3]. Derivations and tensor products of general Banach algebras are discussed in many papers, [4.5.6.7.8]. Now there are some natural questions : Does every pair of derivations D_1 and D_2 on Gamma Banach algebras (V, Γ) and (V', Γ') respectively give rise to a derivation D on their projective tensor product? If yes, then can one estimate the norm of D with the help of norms of D_1 and D_2 ? Can one evaluate the spectrum of D with the help

of those of D_1 and D_2 ? Are the converses of the above problems true? We give affirmative answers to some of these questions. The useful terminologies are forwarded below :

DEFINITION 1.1. Let $X(F_1)$ and $Y(F_2)$ be given normed linear spaces over fields F_1 and F_2 , which are isomorphic to a field F with a real valued valuation, (refer to Backman's book [9]). If $u = \sum_i (x_i \otimes y_i)$ is an element of the algebraic tensor product $X \otimes Y$, then the projective norm p is defined by

$$p(u) = \inf \left\{ \sum_i \|x_i\| \|y_i\| : x_i \in X, y_i \in Y \right\},$$

where the infimum is taken over all finite representations of u . Further the weak norm w on u is defined by

$$w(u) = \sup \left\{ \left| \sum_i \zeta_1(f(x_i)) \cdot \zeta_2(g(y_i)) \right| : f \in X^*, g \in Y^*, \|f\| \leq 1, \|g\| \leq 1 \right\}.$$

[Here X^* and Y^* are respective dual spaces of X and Y ; and F_1, F_2 are isomorphic to F under isomorphisms ζ_1 and ζ_2]. The projective tensor product $X \otimes_p Y$ and the weak tensor product $X \otimes_w Y$ are the completions of $X \otimes Y$ with their respective norms. For details, see Bonsall and Duncan's book [10].

DEFINITION 1.2. Let (V, Γ) be a Γ -Banach algebra and α , a fixed element of Γ . Then α -identity, 1_α , is an element of V satisfying the conditions $x\alpha 1_\alpha = x$ and $1_\alpha \alpha x = x$ for every x in V .

DEFINITION 1.3. A linear operator D of (V, Γ) into itself is called an α -derivation if

$$D(x\alpha y) = (Dx)\alpha y + x\alpha(Dy), \quad x, y \in V.$$

Every $x \in V$ gives rise to an α -derivation D_x defined by $D_x(y) = x\alpha y - y\alpha x$. Such a derivation is called an α -inner derivation. Further, if (V, Γ) is an involutive Γ -Banach algebra with an involution $*$, then an α -derivation D is called an α -star-derivation if $Dx^* = -(Dx)^*$, x^* being the adjoint of x . Again, we define an operation \circ by $xoy = x\alpha y + y\alpha x$, $x, y \in V$. A linear map D on (V, Γ) is called an α -Jordan derivation if $D(xoy) = (Dx)ooy + x\alpha(Dy)$ for all x and y in V .

2. THE MAIN RESULTS

Throughout our discussion, unless stated otherwise, (V, Γ) and (V', Γ') are Gamma-Banach algebras over F_1 and F_2 , isomorphic to F which possesses a real valued valuation; α and α' are fixed elements of Γ and Γ' ; and $1_\alpha, 1_{\alpha'}$ are α -identity and α' -identity of V and V' respectively. Moreover, suppose that $\|1_\alpha\| = k_1 \neq 0$ and $\|1_{\alpha'}\| = k_2 \neq 0$.

The following proposition is fundamental for our purpose, and we refer to Bhattacharya and Maity [2] for its proof.

PROPOSITION 2.1. The projective tensor product $(V, \Gamma) \otimes_p (V', \Gamma')$ with the projective norm is a $\Gamma \otimes \Gamma'$ -Banach algebra over the field F , where multiplication is defined by the formula

$$(x \otimes y)(\gamma \otimes \delta)(x' \otimes y') = (x\gamma x') \otimes (y\delta y'), \text{ where } x, y \in V; x', y' \in V'; \gamma \in \Gamma; \delta \in \Gamma'.$$

THEOREM 2.1. Let D_1 and D_2 be bounded α -derivation and α' -derivation on (V, Γ) and (V', Γ') respectively. Then

(i) there exists a bounded $\alpha \otimes \alpha'$ -derivation D on the projective tensor product $(V, \Gamma) \otimes_p (V', \Gamma')$ defined

by the relation

$$D(u) = \sum_i \left[(D_1 x_i) \otimes y_i + x_i \otimes (D_2 y_i) \right], \text{ for each vector } u = \sum_i x_i \otimes y_i \in (V, \Gamma) \otimes_p (V', \Gamma').$$

- (ii) If D_1 and D_2 are α - and α' - inner derivations implemented by the elements $r_\alpha \in V$ and $s_\alpha \in V'$ respectively then D is an $\alpha \otimes \alpha'$ - inner derivation implemented by $r_\alpha \otimes 1_\alpha + 1_\alpha \otimes s_\alpha$.
- (iii) If D_1 and D_2 are α - and α' - Jordan derivations, then D is an $\alpha \otimes \alpha'$ - Jordan derivation.
- (iv) If (V, Γ) and (V', Γ') are involutive Gamma-Banach algebras, and if D_1 and D_2 are α - and α' - star derivations, then D is $\alpha \otimes \alpha'$ - star derivation.

PROOF. (i) We define a map $D : (V, \Gamma) \otimes_p (V', \Gamma') \rightarrow (V, \Gamma) \otimes_p (V', \Gamma')$ by the rule

$$D(u) = \sum_i \left[D_1 x_i \otimes y_i + x_i \otimes D_2 y_i \right], \text{ for each vector } u = \sum_i x_i \otimes y_i.$$

Clearly, D is well-defined. Before establishing the linearity of D , we first aim at proving the boundedness of D . For any arbitrary element $u \in (V, \Gamma) \otimes_p (V', \Gamma')$ and $\varepsilon > 0$, the definition of the projective norm provides a finite representation $\sum_{i=1}^n x'_i \otimes y'_i$ such that $\|u\|_p + \varepsilon \geq \sum_{i=1}^n \|x'_i\| \|y'_i\|$. Therefore, for this representation of u , we obtain

$$\begin{aligned} \|Du\|_p &= \left\| \sum_i \left[D_1 x'_i \otimes y'_i + x'_i \otimes D_2 y'_i \right] \right\|_p \\ &\leq \sum_i \left[\|D_1 x'_i \otimes y'_i\|_p + \|x'_i \otimes D_2 y'_i\|_p \right] \\ &= \sum_i \left[\|D_1 x'_i\| \|y'_i\| + \|x'_i\| \|D_2 y'_i\| \right]. \quad (\text{because a projective norm is a cross norm}) \\ &\leq (\|D_1\| + \|D_2\|) \sum_i \|x'_i\| \|y'_i\|, \quad (\text{because } D_1 \text{ and } D_2 \text{ are bounded}) \\ &\leq K (\|u\|_p + \varepsilon), \text{ where } K = \|D_1\| + \|D_2\|. \end{aligned}$$

Thus, $\|Du\|_p \leq K (\|u\|_p + \varepsilon)$. Since the left hand side is independent of ε , and ε was arbitrary, it follows that $\|Du\|_p \leq K \|u\|_p$ for every $u \in (V, \Gamma) \otimes_p (V', \Gamma')$. Consequently, D is bounded.

Next to establish the linearity, let $u = \sum_{i=1}^n x_i \otimes y_i$ and $v = \sum_{j=1}^m r_j \otimes s_j$ be any two elements of

$(V, \Gamma) \otimes_p (V', \Gamma')$. Then $u + v = \sum_{i=1}^{n+m} x_i \otimes y_i$, where $x_{n+j} = r_j$ and $y_{n+j} = s_j$, $j = 1, 2, \dots, m$.

$$\begin{aligned} \text{Now, } D(u + v) &= D\left(\sum_{i=1}^{n+m} x_i \otimes y_i\right) \\ &= \sum_{i=1}^{n+m} \left[D_1 x_i \otimes y_i + x_i \otimes D_2 y_i \right] \\ &= \sum_{i=1}^n \left[D_1 x_i \otimes y_i + x_i \otimes D_2 y_i \right] + \sum_{i=n+1}^{n+m} \left[D_1 x_i \otimes y_i + x_i \otimes D_2 y_i \right] \\ &= \sum_{i=1}^n \left[D_1 x_i \otimes y_i + x_i \otimes D_2 y_i \right] + \sum_{j=1}^m \left[D_1 r_j \otimes s_j + r_j \otimes D_2 s_j \right] = D(u) + D(v). \end{aligned}$$

The boundedness of D implies that the result, $D(u + v) = D(u) + D(v)$, is also true for any infinite

representations of u and v . Similarly it can be shown easily that $D(au) = aD(u)$ for any scalar a . Consequently D is a bounded linear map.

To show that D is an $\alpha \otimes \alpha'$ - derivation, we suppose that $u = x \otimes y$ and $v = r \otimes s$ are any two elementary tensors of $(V, \Gamma) \otimes_p (V', \Gamma')$. Then $u \alpha \otimes \alpha' v = x \alpha r \otimes y \alpha' s$. Now

$$\begin{aligned}
 D(u \alpha \otimes \alpha' v) &= (D_1 x \alpha r) \otimes y \alpha' s + x \alpha r \otimes (D_2 y \alpha' s) \\
 &= [(D_1 x) \alpha r + x \alpha (D_1 r)] \otimes y \alpha' s + x \alpha r \otimes [(D_2 y) \alpha' s + y \alpha' (D_2 s)] \\
 &= [(D_1 x) \alpha r \otimes y \alpha' s + x \alpha r \otimes (D_2 y) \alpha' s] + [x \alpha (D_1 r) \otimes y \alpha' s + x \alpha r \otimes y \alpha' (D_2 s)] \\
 &= (Du) \alpha \otimes \alpha' v + u \alpha \otimes \alpha' (Dv).
 \end{aligned}$$

Similarly, if $u = \sum_i x_i \otimes y_i$ and $v = \sum_j r_j \otimes s_j$ be any two elements of $(V, \Gamma) \otimes_p (V', \Gamma')$, then summing over i and j we can prove easily that $D(u \alpha \otimes \alpha' v) = (Du) \alpha \otimes \alpha' v + u \alpha \otimes \alpha' (Dv)$. so D is an $\alpha \otimes \alpha'$ - derivation.

(ii) Let D_1 and D_2 be α - and α' - inner derivations implemented by the vectors r_0 and s_0 respectively.

$$\text{So, } D_1(x) = r_0 \alpha x - x \alpha r_0, \forall x \in V \text{ and } D_2(y) = s_0 \alpha' y - y \alpha' s_0, \forall y \in V'.$$

$$\begin{aligned}
 \text{Now, } D(u) &= \sum_i [D_1 x_i \otimes y_i + x_i \otimes D_2 y_i] \\
 &= \sum_i [(r_0 \alpha x_i - x_i \alpha r_0) \otimes y_i + x_i \otimes (s_0 \alpha' y_i - y_i \alpha' s_0)] \\
 &= \sum_i [r_0 \alpha x_i \otimes y_i - x_i \alpha r_0 \otimes y_i + x_i \otimes s_0 \alpha' y_i - x_i \otimes y_i \alpha' s_0] \\
 &= \sum_i [(r_0 \otimes 1_{\alpha'}) (\alpha \otimes \alpha') (x_i \otimes y_i) - (x_i \otimes y_i) (\alpha \otimes \alpha') (r_0 \otimes 1_{\alpha'}) \\
 &\quad + (1_{\alpha'} \otimes s_0) (\alpha \otimes \alpha') (x_i \otimes y_i) - (x_i \otimes y_i) (\alpha \otimes \alpha') (1_{\alpha'} \otimes s_0)] \\
 &= \sum_i [(r_0 \otimes 1_{\alpha'} + 1_{\alpha'} \otimes s_0) (\alpha \otimes \alpha') (x_i \otimes y_i) - (x_i \otimes y_i) (\alpha \otimes \alpha') (r_0 \otimes 1_{\alpha'} + 1_{\alpha'} \otimes s_0)] \\
 &= D_{t_0}(u), \text{ where } t_0 = r_0 \otimes 1_{\alpha'} + 1_{\alpha'} \otimes s_0.
 \end{aligned}$$

Consequently, D is an $\alpha \otimes \alpha'$ -inner derivation implemented by t_0 .

(iii) The proof is routine.

(iv) Let D_1 and D_2 be star derivations. If $u = \sum_i x_i \otimes y_i$ is an element of $(V, \Gamma) \otimes_p (V', \Gamma')$, then the adjoint of u is given by $u^* = \sum_i x_i^* \otimes y_i^*$. Now,

$$\begin{aligned}
 Du^* &= D(\sum_i x_i^* \otimes y_i^*) \\
 &= \sum_i [D_1 x_i^* \otimes y_i^* + x_i^* \otimes D_2 y_i^*] \\
 &= \sum_i [-(D_1 x_i)^* \otimes y_i^* + x_i^* \otimes -(D_2 y_i)^*], \text{ because } D_1 \text{ and } D_2 \text{ are star derivation.}
 \end{aligned}$$

$$= -\sum_i \left[(D_1 x_i)^* \otimes y_i^* + x_i^* \otimes (D_2 y_i)^* \right] = - (Du)^*. \text{ So, } D \text{ is a star-derivation. Q.E.D.}$$

REMARK 2.1. (i) The above theorem can be extended to the projective tensor product of n number of Γ - Banach algebras.

(ii) If $u = x \otimes 1_\alpha \in (V, \Gamma) \otimes_p (V', \Gamma')$, then from the definition of D , we get

$$Du = D_1 x \otimes 1_\alpha, \text{ because } D_2 1_\alpha = 0 \quad \dots \quad (2.1)$$

From this result, we can ascertain that for each derivation D on $(V, \Gamma) \otimes_p (V', \Gamma')$, there may **not** exist derivations D_1 and D_2 on (V, Γ) and (V', Γ') respectively such that D , D_1 and D_2 are connected by the relation given in Theorem 2.1. For example, let D' be an $\alpha \otimes \alpha'$ - inner derivation implemented by an element $r_\circ \otimes s_\circ$, where s_\circ is not a scalar multiple of the identity element 1_α . Then

$D'u = (r_\circ \otimes s_\circ)(\alpha \otimes \alpha')u - u(\alpha \otimes \alpha')(r_\circ \otimes s_\circ)$, for every $u \in (V, \Gamma) \otimes_p (V', \Gamma')$. Now if $u = x \otimes 1_\alpha$, then

$$\begin{aligned} D'u &= (r_\circ \otimes s_\circ)(\alpha \otimes \alpha')(x \otimes 1_\alpha) - (x \otimes 1_\alpha)(\alpha \otimes \alpha')(r_\circ \otimes s_\circ) \\ &= r_\circ \alpha x \otimes s_\circ \alpha' 1_\alpha - x \alpha r_\circ \otimes 1_\alpha \alpha' s_\circ = (r_\circ \alpha x - x \alpha r_\circ) \otimes s_\circ \\ &= (D_{1_{r_\circ}} x) \otimes s_\circ, \text{ where } D_1 \text{ is a derivation on } (V, \Gamma) \text{ implemented by } r_\circ \quad \dots \quad (2.2) \end{aligned}$$

From the results (2.1) and (2.2) we can conclude that unless s_\circ is a scalar multiple of the identity element 1_α , $D'(x \otimes 1_\alpha)$ may not be of the form $x_1 \otimes 1_\alpha$, where $x_1 \in V$, [x_1 may be different from x]. This implies that D' may not equal D in general. However, we have a converse of Theorem 2.1 as follows. Recall that an element $x \in V$ is called an α - **idempotent element** if $x \alpha x = x$.

THEOREM 2.2. The following results are true :

- If D is a derivation on $(V, \Gamma) \otimes_p (V', \Gamma')$ such that $D(\sum_i x_i \otimes y_i) = \sum_i z_i \otimes y_i$, $z_i \in V$ and y_i 's are α' - idempotent elements of V' , then there exists an α' -derivation D_1 on V defined by the rule $D_1 x \otimes y = D(x \otimes y)$ for all $x \in V$ and for every α' - idempotent element $y \in V'$;
- If D is bounded, so is D_1 ;
- If D is an $\alpha \otimes \alpha'$ -inner derivation implemented by an element w of the form $w = \sum_i x_i \otimes y_i$, where y_i 's are α' - idempotent elements, then D_1 is also an α - inner derivation implemented by the element $\sum_i x_i$;
- If (V, Γ) and (V', Γ') are involutive Gamma-Banach algebras, and D is a star derivation, then so is D_1 ;
- If D is an $\alpha \otimes \alpha'$ - Jordan derivation then D_1 is an α - Jordan derivation;
- If D is an $\alpha \otimes \alpha'$ - derivation on $(V, \Gamma) \otimes_p (V', \Gamma')$ such that $D(\sum_i x_i \otimes y_i) = \sum_i x_i \otimes s_i$ for α - idempotent elements x_i 's in V , and $s_i \in V'$, then there exists an α' - derivation D_2 on (V', Γ') given by the relation $x \otimes D_2 y = D(x \otimes y)$ for every α - idempotent element $x \in V$ and for all elements $y \in V'$. The above results (ii), (iii), (iv) and (v) are also true for D_2 .

PROOF. (i) We define a map $D_1 : V \rightarrow V$ by

$$D_1 x \otimes y = D(x \otimes y), \text{ for all } x \in V \text{ and for every } \alpha'-\text{idempotent element } y \in V'.$$

Clearly, D_1 is well-defined. In particular, we have $D_1 x \otimes 1_\alpha = D(x \otimes 1_\alpha)$, $\forall x \in V$. We first establish the linearity of D_1 . Let $x_1, x_2 \in V$.

$$\begin{aligned}
\text{Then } D_1(x_1 + x_2) \otimes 1_{\alpha} &= D((x_1 + x_2) \otimes 1_{\alpha}) \\
&= D(x_1 \otimes 1_{\alpha} + x_2 \otimes 1_{\alpha}) \\
&= D(x_1 \otimes 1_{\alpha}) + D(x_2 \otimes 1_{\alpha}) \\
&= (D_1 x_1 \otimes 1_{\alpha} + D_1 x_2 \otimes 1_{\alpha}) \\
&= (D_1 x_1 + D_1 x_2) \otimes 1_{\alpha}
\end{aligned}$$

$$\text{So, } (D_1(x_1 + x_2) \otimes 1_{\alpha})(f, g) = ((D_1 x_1 + D_1 x_2) \otimes 1_{\alpha})(f, g), \quad \forall f \in V^*, \forall g \in V^*.$$

$$\text{This gives, } f(D_1(x_1 + x_2)) g(1_{\alpha}) = f(D_1 x_1 + D_1 x_2) g(1_{\alpha}), \quad \forall f \in V^*, \forall g \in V^*.$$

The Hahn-Banach theorem provides a functional $g_0 \in V^*$ in such a way that $g_0(1_{\alpha}) = \|1_{\alpha}\| = k_2$.

$$\text{Then, } f(D_1(x_1 + x_2)) = f(D_1 x_1 + D_1 x_2), \forall f \in V^*. \text{ This yields, } D_1(x_1 + x_2) = D_1 x_1 + D_1 x_2.$$

By appealing to the same mechanism, we can show that $D_1(ax) = aD_1(x)$ for any scalar a . So D_1 is linear. Next, to show that D_1 is an α -derivation.

$$\begin{aligned}
D_1(x_1 \alpha x_2) \otimes 1_{\alpha} &= D(x_1 \alpha x_2 \otimes 1_{\alpha}) \quad (x_1, x_2 \in V) \\
&= D[(x_1 \otimes 1_{\alpha})(\alpha \otimes \alpha') (x_2 \otimes 1_{\alpha})] \\
&= (D(x_1 \otimes 1_{\alpha}))(\alpha \otimes \alpha') (x_2 \otimes 1_{\alpha}) + (x_1 \otimes 1_{\alpha})(\alpha \otimes \alpha') D(x_2 \otimes 1_{\alpha}) \\
&\quad (\text{because } D \text{ is an } \alpha \otimes \alpha' \text{-derivation}) \\
&= (D_1 x_1 \otimes 1_{\alpha})(\alpha \otimes \alpha') (x_2 \otimes 1_{\alpha}) + (x_1 \otimes 1_{\alpha})(\alpha \otimes \alpha') (D_1 x_2 \otimes 1_{\alpha}) \\
&= (D_1 x_1) \alpha x_2 \otimes 1_{\alpha} + (x_1 \alpha (D_1 x_2)) \otimes 1_{\alpha} = [(D_1 x_1) \alpha x_2 + x_1 \alpha (D_1 x_2)] \otimes 1_{\alpha}
\end{aligned}$$

$$\text{So, } D_1(x_1 \alpha x_2) = (D_1 x_1) \alpha x_2 + x_1 \alpha (D_1 x_2). \text{ Therefore, } D_1 \text{ is an } \alpha \text{-derivation. The rest of the results are routine.}$$

3. THE NORM OF D

We now shift our attention to study the possibility of the result, $\|D\| = \|D_1\| + \|D_2\|$, when D_1 and D_2 are related as in Theorem 2.1.

THEOREM 3.1. If D , D_1 and D_2 are related as in Theorem 2.1, then

$$\|D\| \leq \|D_1\| + \|D_2\| \leq 2\|D\|.$$

PROOF. For each $u \in (V, \Gamma) \otimes_p (V', \Gamma')$ with $\|u\|_p = 1$ and for each $\varepsilon > 0$, $\exists a$ (finite) representation

$$u = \sum_i x_i \otimes y_i \text{ such that } \|u\|_p + \varepsilon \geq \sum_i \|x_i\| \|y_i\|.$$

$$\text{Now, } \|D\| = \sup_u \{\|Du\|_p : \|u\|_p = 1\}$$

$$\begin{aligned}
 &= \sup_u \left\{ \left\| \sum_i [D_1 x_i \otimes y_i + x_i \otimes D_2 y_i] \right\|_p : \|u\|_p = 1 \right\} \\
 &\leq \sup_u \left\{ \sum_i \left[\|D_1 x_i\|_p \|y_i\|_p + \|x_i\|_p \|D_2 y_i\|_p \right] : \|u\|_p = 1 \right\} \\
 &= \sup_u \left\{ \sum_i \left[\|D_1\| \|x_i\| \|y_i\| + \|x_i\| \|D_2\| \|y_i\| \right] : \|u\|_p = 1 \right\} \\
 &\leq \sup_u \left\{ \sum_i \left[\|D_1\| \|x_i\| \|y_i\| + \|x_i\| \|D_2\| \|y_i\| \right] : \|u\|_p = 1 \right\} \\
 &\leq (\|D_1\| + \|D_2\|) \sup_u \left\{ 1 + \varepsilon : \|u\|_p = 1 \right\} \\
 &= (\|D_1\| + \|D_2\|)(1 + \varepsilon)
 \end{aligned}$$

Since ε was arbitrary, it follows that $\|D\| \leq \|D_1\| + \|D_2\|$ (3.1)

Next, let $x \in V$ be such that $\|x\| = 1$. Then $\|x/k_2 \otimes 1_{\alpha'}\| = \|x/k_2\| \|1_{\alpha'}\| = 1$

$$\begin{aligned}
 \text{Now, } \|D\| &= \sup_u \left\{ \|Du\|_p : \|u\|_p = 1 \right\} \\
 &\geq \|D(x/k_2 \otimes 1_{\alpha'})\|_p = \|D_1(x/k_2) \otimes 1_{\alpha'}\|_p, (\text{Since } D_2(1_{\alpha'}) = 0) = \|D_1 x\|
 \end{aligned}$$

Thus, $\|D_1 x\| \leq \|D\|$ for every $x \in V$ with $\|x\| = 1$. This gives $\|D_1\| \leq \|D\|$. Similarly, we can prove that $\|D_2\| \leq \|D\|$. Hence, we have $\|D_1\| + \|D_2\| \leq 2\|D\|$ (3.2)

The inequalities (3.1) and (3.2) together imply $\|D\| \leq \|D_1\| + \|D_2\| \leq 2\|D\|$. Q.E.D.

Our next question is - can one improve the above result - ? We illustrate the possibility with the help of examples :

Let V be the set of 2×3 rectangular matrices and Γ be the set of all 3×2 rectangular matrices with real (or complex) entries. Then V and Γ are Banach spaces under usual matrix addition, scalar multiplication, and the norm defined by $\|A\|_{\infty} = \max_{i,j} |a_{ij}|$, where $A = (a_{ij})$. Then (V, Γ) is a Γ -Banach algebra. Now the following result is true :

THEOREM 3.2. For a fixed $\alpha \in \Gamma$, each α -derivation on V is inner.

Since α -derivations on a finite dimensional Γ -Banach algebra are all inner, the result follows immediately, see [10].

We show below with an example in the Γ -Banach algebra of 2×3 rectangular matrices that the equality $\|D\| = \|D_1\| + \|D_2\|$ holds.

AN EXAMPLE 3.1.

Let $\alpha = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix}$ be a fixed element in Γ , and let $D_{1\alpha}$ and $D_{2\alpha}$ be two α -derivations on V implemented by A_{α} and B_{α} respectively, where $A_{\alpha} = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix}$ and $B_{\alpha} = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & -3 \end{pmatrix}$

Now $\|A_{\alpha}\| = 2$ and $\|B_{\alpha}\| = 3$. and $D_{1\alpha}(A) = A_{\alpha}\alpha A - A\alpha A_{\alpha}$, $\forall A \in V$.

Then $\|D_{1\alpha} A\| \leq 2\|A_{\alpha}\| \|\alpha\| \|A\| = 2\|A_{\alpha}\| \|A\|$, because $\|\alpha\| = 1$.

Hence, $\|D_{1\alpha}\| \leq 2\|A_{\alpha}\| = 2.2 = 4$. Next, suppose that $X_{\alpha} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ Then $\|X_{\alpha}\| = 1$.

Also $\| A_o \alpha X_o - X_o \alpha A_o \| = \| \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 4 \end{pmatrix} \| = 4$. Hence $\| D_{1\alpha} \| = 4$

Similarly we can show that $\| D_{2\alpha} \| = 6$. So $\| D_{1\alpha} \| + \| D_{2\alpha} \| = 4 + 6 = 10$.

If D is the derivation defined by the relation as in Theorem 3.1, then we always have

$$\| D \| \leq \| D_{1\alpha} \| + \| D_{2\alpha} \| = 10 \quad \dots \quad (3.1)$$

Next, consider the element $u_o = e_1 \otimes e_1$, where $e_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then $\| u_o \|_p = 1$.

Now, $\| D \| \geq \| Du_o \|_p$

$$= \| D_{1\alpha} e_1 \otimes e_1 + e_1 \otimes D_{2\alpha} e_1 \|_p$$

$$\geq \| D_{1\alpha} e_1 \otimes e_1 + e_1 \otimes D_{2\alpha} e_1 \|_w$$

(because the projective norm is always greater than or equal to the weak norm)

$$= \sup \left\{ | f(D_{1\alpha} e_1) g(e_1) + f(e_1) g(D_{2\alpha} e_1) | : f, g \in V^*, \| f \| = \| g \| = 1 \right\} \quad (3.2)$$

Again $D_{1\alpha} e_1 = A_o \alpha e_1 - e_1 \alpha A_o$

$$= \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} -4 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}$$

$$D_{2\alpha} e_1 = B_o \alpha e_1 - e_1 \alpha B_o$$

$$= \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & -3 \end{pmatrix}$$

$$= \begin{pmatrix} -6 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix}$$

We know that if we define

$f_i(e_j) = 1$ if $i = j$ and $= 0$ if $i \neq j$, then $\{ f_1, f_2, f_3, f_4, f_5, f_6 \}$ is a basis for V^*

In (3.2) put $f = g = f_i$. Then we find that $\| D \| \geq 10$. \dots (3.3)

The inequalities (3.1) and (3.3) combinedly give $\| D \| = 10$. Hence $\| D \| = \| D_{1\alpha} \| + \| D_{2\alpha} \|$

ANOTHER EXAMPLE 3.2.

Next we wish to illustrate that the result in Theorem 3.1 cannot be improved in general. If we assume V and Γ represent the same set of all 2×2 real matrices, then (V, Γ) is a particular Γ - Banach

algebra with the usual operations. The ordinary identity matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity of (V, Γ) under multiplication.

If $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, then $\beta = \{e_1, e_2, e_3, e_4\}$ is the standard basis for (V, Γ) . For a simple example, let D_1 and D_2 be derivations on (V, Γ) implemented by the

matrices $A_\circ = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$ and $B_\circ = \begin{pmatrix} 4 & -7 \\ 0 & 2 \end{pmatrix}$ respectively. Then the matrix representations of D_1 and D_2

with respect to the basis β are respectively

$$[D_1]_\beta = \begin{pmatrix} 0 & 0 & 3 & 0 \\ -3 & 1 & 0 & 3 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -3 & 0 \end{pmatrix} \quad \text{and} \quad [D_2]_\beta = \begin{pmatrix} 0 & 0 & -7 & 0 \\ 7 & 2 & 0 & -7 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 7 & 0 \end{pmatrix}$$

So, $\|D_1\| = 3$ and $\|D_2\| = 7$. Again, $\gamma = \{e_i \otimes e_j \mid i, j = 1, 2, 3, 4\}$ is a basis for $(V, \Gamma) \otimes_p (V, \Gamma)$ and the matrix representation of D with respect to the basis γ is

$$[D]_\gamma = \begin{bmatrix} 0 & 0 & -7 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 7 & 2 & 0 & -7 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\ -3 & 0 & 0 & 0 & 1 & 0 & -7 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 & 7 & 3 & 0 & -7 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & -3 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -3 & 0 & 0 & 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -7 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 1 & 0 & -7 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 7 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 7 \end{bmatrix}$$

Hence $\|D\| = 7$. Thus the strict inequality $\|D\| < \|D_1\| + \|D_2\| < 2\|D\|$ holds.

4. THE SPECTRUM OF D

We next devote to studying the validity of the result $\text{sp}(D) = \text{sp}(D_1) + \text{sp}(D_2)$. Recall that $\text{sp}(D_i)$ consists of all scalars λ_i such that $D_i - \lambda_i I_i$ is singular. Analogous definitions apply to $\text{sp}(D_2)$ and $\text{sp}(D)$. Further, for the singularity and invertibility of a rectangular matrix, see Joshi [11].

THEOREM 4.1. The derivations D , D_1 and D_2 are defined as in Theorem 2.1. Then

$$\text{sp}(D_1) + \text{sp}(D_2) \subseteq \text{sp}(D)$$

PROOF. Let $\lambda_1 \in \text{sp}(D_1)$ and $\lambda_2 \in \text{sp}(D_2)$.

$\Rightarrow D_1 - \lambda_1 I_1$ and $D_2 - \lambda_2 I_2$ are singular

$\Rightarrow \exists$ nonzero vectors $x_\circ \in V$ and $y_\circ \in V'$ such that $(D_1 - \lambda_1 I_1)x_\circ = 0$ and $(D_2 - \lambda_2 I_2)y_\circ = 0$

Now, $x_\circ \otimes y_\circ$ is a non-zero element in $(V, \Gamma) \otimes_p (V, \Gamma')$.

Again, $[D - (\lambda_1 + \lambda_2)I](x_0 \otimes y_0) = D(x_0 \otimes y_0) - (\lambda_1 + \lambda_2)(x_0 \otimes y_0)$

$$= D_1 x_0 \otimes y_0 + x_0 \otimes D_2 y_0 - (\lambda_1 + \lambda_2) x_0 \otimes y_0$$

$$= (D_1 - \lambda_1 I_1) x_0 \otimes y_0 + x_0 \otimes (D_2 - \lambda_2 I_2) y_0 = 0$$

So, $D - (\lambda_1 + \lambda_2)I$ is singular and hence $\lambda_1 + \lambda_2 \in \text{sp}(D)$. Thus, we obtain $\text{sp}(D_1) + \text{sp}(D_2) \subseteq \text{sp}(D)$. Q.E.D

REMARK 4.1. (i) We conjecture that the above result cannot be improved in general.

(ii) However, the equality holds in finite dimensional Γ -Banach algebras. For, if $\dim(V, \Gamma) = m$, $\dim(V', \Gamma') = n$, then $\dim((V, \Gamma) \otimes_p (V', \Gamma')) = mn$. So, $\text{sp}(D_1)$, $\text{sp}(D_2)$ and $\text{sp}(D)$ have m, n and mn eigenvalues respectively. Again, $\text{sp}(D_1) + \text{sp}(D_2)$ gives mn values which are precisely the eigenvalues of D .

Further, we have the following illuminating result.

THEOREM 4.2. As usual, let D_1 , D_2 and D be derivations connected by the relation as in Theorem 2.1(i). If (V, Γ) and (V', Γ') are finite dimensional Gamma-Banach algebras, D_1 and D_2 are implemented by $r \in V$ and $s \in V'$ respectively, then

$$\text{sp}(D_1) = \{ a = \lambda - \mu \mid \lambda, \mu \in \text{sp}(r) \},$$

$$\text{sp}(D_2) = \{ b = \lambda' - \mu' \mid \lambda', \mu' \in \text{sp}(s) \}$$

$$\text{and } \text{sp}(D) = \{ a + b \mid a \in \text{sp}(D_1), b \in \text{sp}(D_2) \}.$$

PROOF. The first two results will follow from Proposition 9, §18, Ch2 in [10], and the last result will follow from Remark 4.1 (ii). Q.E.D.

REFERENCES

- [1] BHATTACHARYA, D.K. and MAITY, A.K., Regular representation of Γ -Banach Algebra, *J. of Pure Mathematics, Calcutta University, India*, (To appear).
- [2] BHATTACHARYA, D.K. and MAITY, A.K., Semilinear tensor product of Γ -Banach algebras, *Ganita* Vol. **40**, No. 2, (1989), 75-80.
- [3] GREUB, W.H., *Multilinear algebra*, Springer Verlag, 1967.
- [4] BADE, W.G. and DALES, H.G., Discontinuous derivations from algebras of power series, *Proc. London Math. Soc.* (3), **69** No. 1 (1989), 133 - 152.
- [5.] CARNE, T.K., Tensor products of Banach algebras, *J. London Math. Soc.* (2), **17** (1978), 480-88
- [6] CHUANKUN SUN, The essential norm of the generalized derivation, *Chinese Anna. Math.*, **13A** :2 (1992), 211-221.
- [7] KYLE, J., Norms of derivations, *J. London Math. Soc.* (2), **16** (1977), 297-312
- [8] VUKMAN, J., A result concerning derivations in Banach algebras, *Proc. Amer. Math. Soc.*, Vol **116**, No. 4 (December 1992), 971-975.
- [9] BACKMAN, G., *Introduction to p -adic numbers and valuation theory*, Academic Press, 1964
- [10]. BONSALL, F.F. and DUNCAN, J., *Complete normed algebras*, Springer Verlag, 1973
- [11]. JOSHI, V.N., A determinant for rectangular matrices, *Bull. Austral. Math. Soc.*, (Series A), Vol **21** (1980), 137-146

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk