
Internat. J. Math. & Math. Sci.
VOL. 21 NO. 2 (1998) 359-368

359

-DERIVATIONS AND THEIR NORM IN PROJECTIVE TENSOR PRODUCTS OF
F-BANACH ALGEBRAS

T.K. DUTTA, H.K. NATH and R.C. KALITA

Department of Mathematics
Gauhati University
Guwahati- 781 014

(Received April 16, 1996 and inrevised form December i0, 1996)

ABSTRACT. Let (V,F) and (V’,F’) be Gamma-Banach algebras over the fields F and F isomorphic

to a field F which possesses a real valued valuation, and (V, F (R)p V’,F’ ), their projective tensor product.

It is shown that ifD and D are a derivation and a’- derivation on (V,F) and V’,F’ respectively and

u X x (R) y, is an arbitrary element of (V,F) (R)p (V’,F’), then there exists an a(R) a’- derivation D on

(V,F) (R) (V’,F’) satisfying the relation

and possessing many enlightening properties. The converse is also true under a certain restriction.

Furthermore, the validity of the results DII Dill + D and sp (D) sp(Dt) + sp (D2) are fruitfully

investigated.
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1. INTRODUCTION

F- Banach algebras and a derivations are generalisation of ordinary Banach algebras and

derivations respectively. The set of all m x n rectangular matrices and the set of all bounded linear

transformations from an infinite dimensional normed linear space X into a Banach space Y are nice

examples of F- Banach algebras which are not general Banach algebras. Similarly a derivation can’t be

defined on these spaces as there appears to be no natural way of introducing an algebraic multiplication

into these. So, a new concept of derivation known as a- derivation is introduced on a F- Banach algebra.

Bhattacharya and Maity have defined a F- Banach algebra in their paper and have discussed in their

another paper [2] various tensor products of F- Banach algebras over fields which are isomorphic to

another field with a real valued valuation by using semilinear transformations, [3]. Derivations and tensor

products of general Banach algebras are discussed in many papers, 4,5,6,7,8]. Now there are some

natural questions" Does every pair of derivations D and D= on GammaBanach a/gebras (V,F) and (V’.F’)

respectively give rise to a derivation D on their projective tensor product? If yes, then can one estimate

the norm of D with the help of norms ofD and D. ? Can one evaluate the spectrum of D with the help
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ofthose ofD and D ? Are the converses of the above problems true? We give affirmative answers to some

of these questions. The useful terminologies are forwarded below

DEFINITION 1.1. LetX (F) and Y (F2) be given normed linear spaces over fields F and F:, which
are isomorphic to a field F with a real valued valuation, (refer to Backman’s book [9]). If u= X (x, (8) y,)
is an element of the algebraic tensor product X (R) Y, then the projective norm p is defined by

p(u):inf{E llx, lllly, x, tX,y, tY },

where the infimum is taken over all finite representations of u. Further the weak norm w on u is defined by

w(u)=sup {IX,(f(x,)).:(g(y,))l" feX*,g,Y*,’tf’l<l,i’gil<l }.

[Here X* and Y* are respective dual spaces ofX and Y; and F, F: are isomorphic to F under isormorphisms

1 and :]. The projective tensor product X (8) Y and the weak tensor product X (R) Y are the completions

of X (8) Y with their respective norms. For details, see Bonsall and Duncan’s book 10].

DEFINITION 1.2. Let (V,F) be a F- Banach algebra anda, afixed element of F. Then a- identity,

1,, is an element of V satisfying the conditions xa 1, x and 1, ax= x for every x in V.

DEFINITION 1.3. A linear operator D of (V,F) into itself is called an a derivation if

D (x a y) (Dx) ay + xa (Dy), x,y e V.

Every x e V gives rise to an a- derivation D defined by Dx(y) xay yax. Such a derivation is called an

a-inner derivation. Further, if (V,F) is an involutive F- Banach algebra with an involution *, then an

a- derivation D is called an a- star-derivation if Dx* (Dx)*, x* being the adjoint of x. Again, we

define an operation o by xoy xay + yax, x,y e V. A linear map D on (V, F is called an a-Jordan
derivation if D (xoy) (Dx) oy+xo (Dy) for all x and y in V.

2. THE MAIN RESULTS

Throughout our discussion, unless stated otherwise, (V,F) and (V’,F’) are Gamma-Banach algebras

over F and F:, isomorphic to F which possesses a real valued valuation" a and a’ are fixed elements of F
and F’ and 1,,l are a- identity and a’-identity of V and V’ respectively. Moreover, suppose thatt’

l,ll k 0 and 1,, k 0.

The following proposition is fundamental for our purpose, and we refer to Bhattacharya and Maity

[2] for its proof.

PROPOSITION 2.1. The projective tensor product V,F (8)p V’,F’ with the projective norm is

a F(R)F’- Banach algebra over the field F, where multiplication is defined by the formula

(x(R)y)(?(R)5)(x’(R)y’)=(x?x’) (8) (ySy’),wherex,ye V;x’,y’e V’; ?eF;Se F’.

THEOREM 2.1. Let D and D be bounded a- derivation and a’- derivation on (V,I") and (V’,F’)

respectively. Then

(i) there exists a bounded a(R) a’- derivation D on the projective tensor product (V, F (R) (V’,F’) defined
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by the relation

i- 1
D(u) Y. t(D x) (R) y, + x (R) (D y,)J for each vector u X x (R) y,e (v.r) (R)p (v’. F’ ).

(ii) IfD and D are a- and a’- inner derivations implemented by the elements r e V and s e V’ respectively

then D is an a (R) a’ inner derivation implemented by r (R)l.+ l,(R) so.
(iii) If D] and D are a- arid ct’- Jordan derivations, then D is an a (R) a’- Jordan derivation.

(iv) If (v,r) and (v’,r’) are involutive Gamma -Banach algebras, and if D and D: are a- and a’- star

derivations, then D is a(R) or’ star derivation.

PROOF. (i) We define a map D V, r (R)p (v’,r’) (v,r)(R)p (v’,r by the rule

Clearly, D is well defined. Before establishing the linearity of D, wc first aim at proving the boundcdncss

ofD. Forany arbitrary element ue (V,F) (R)p (v’,r’) and e > o, the definition ofthe projective norm provides

a finite representation x’ (R) y’, such that ull + e > x’ y’. II. Therefore, for this representation
,=1 ,=1

of u, we obtain

Du lip [D, x’, (R) y’, + x’, (R) D2Y’,)]lip

_< , [11D X’, (R) y’, p+ x’, (R) D2y’, lip]

E [" D x’.i, y’. + x’. D2Y’ "]. because a projective norm is a cross norm ).

_< D + D: , x’, y’,ll, because D, and D: are bounded

<K(llull +e) whereK=llD, II+llDll.

Thus, Du lip _< K II ullp + e ). Since the left hand side is independent of e, and e was arbitrary, it follows

that Du II < K u for every u e V. F (R),( V’, F ’). Consequently, D’ is bounded.

Next to establish the linearity, let u ,:] x, (R) y, and v= :rj (R) s be any two elements of

(V, r (R)p v’,r’ ). Then u + v 7. x (R) y,. where x,+ rj and y,+j sj, 1,2 m.

+m xNow,D(u+v)=D( (R)y,)
:1

:[ D, x,(R)y,+x, (R)D:y, ]
=1

: [ D, x,(R) y, + x, (R) D: y, ] +* [DlX,(R)y,+x,(R)D.y,].

= [Dlx,(R)y,+x,(R) D2Y,]+E [Dl(R) s+r(R) D:sj]=D(u)+D<v,.
I---| J=l

The boundedness of D implies that the result, D u+ v) D(u) + D(v), is also true for any infinite
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representations of u and v. Similarly it can be shown easily that D(au) aD(u) for any scalar a.

Consequently D is a bounded linear map.

To show that D is an a (R) a’ derivation, we suppose that u x (R) y and v r (R) s are any two

elementary tcnsors of (V, F (R) V’,F’ ). Then u a(R)a’v x a r (R) y a’s. Now

D(ua(R)a’v)=(Dxar)@ya’s +xar@(Dy a’s)

=[(D,x)ar+xa(D,r)](R)ya’s+xar(R)[ (Dy) a’ s +ya’ (D s) ]

(Du) a(R)a’v + u a(R) a’ (Dv).

Similarly, if u Ex, (R) y, and v=E r (R) s be any two elements of V. F (R)p(V’, r’), he, summing over

and we can prove easily that D(u a(R) a’ v) (Du) a@(z’v + u a(R)a’(Dv ). so D is an a(R) a’- derivation.

(ii) Let D and D be a- and a’- inner derivations implemented by the vectors r and s respectively.

So, D (x) roa x xaro, V xeV and D (y) Soa’ y ya’s V y e V’.

Now, D(u) [ DI x, (R) Y, + x, (R) D2Y,]

[(roa x,-x, ar,)(R) y, + x, (R) (Soa’ y,-y,a’So)]

:E, [roax,(R)y,-x, aro(R)Y,+X,(R)Soa’y,-x,(R)Y,a’So]

2: [(ro (R)l..)(a(R) a’ )(x,(R)y,) (x,(R)y,)(a@ a’ )(ro(R)l,,.)
+ (I.@ So)(a@a’)(x (R)y,) (x@y,) (a@a’) I=@ so)]

= [ (r t) 1., + la{) So) (ctlkz’) (X 1) y, (x, (R) y, (a@a’) (r (R) 1=,/ 1. (R) so)]

D,o(U). where r @ I..+ I@ so.

Consequently, D is an a(R) a’-inner derivation implemented by

(iii) The proof is routine.

(iv) Let D and D2 be star derivations. If u= E, x, (R) y, is an element of (v,r) @p (V’,F ’), then the adjoint

of u is given by u 5":. x (R) y, Now,

Du’= D (2, x,* (R) y,*)

Z, [D,x," (R) Y,* + x," (R) D Y,’)]

E, [-<D, x,)" (R) y," + x," (R) {-<D:y,)’}], because D, and D are star derivation.
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_, [ (Dtx,)" (R) y,’+ x," (R) (D:y)" ] (Du)" So, D is a star-derivation. Q.E.D.

REMARK 2.1. (i) The above theorem can be extended to the projective tensor product of n number

of F- Banach algebras.

(ii) If u= x(R)l,, e (V,F) (R)p (V’,F ), then from the definition of D, we get

because D21 0 (2.1)Du= Dx (R) 1.,

From this result, we can ascertain that for each derivation D on (V.F) (R)p(V’,F ). there may not exist

derivations D and D on (V.F) and (V’,F ’) respectivey such that D, D and D are connected by the relation

given in Theorem 2.1. For example, let D’ be an atSa’ inner derivation implemented by an element ro(R)s,,,
where s is not a scalar multiple of the identity element la,. Then

D’ u= (r (R) so) (aa’) u u (aa’) (r (R) so), for every u e (V,F) (R) (V’,F ). Now if u= x(R) 1.. then

D’u (r (R) so) (atS)a’) (x(R) 1,, (x(R) 1,. (a(R)a’) (r (R) so)

roaX(R) SoOt’ 1,,.- Xaro(R) 1. ct’ s (roaX xaro) (R) s

(D% x (R) so, where D is a derivation on (V, F implemented by (2.2)

From the results (2.1) and (2.2) we can conclude that unless s is a scalar multiple of the identity element

1,,, D’ (x (R) 1,,. may not be of the form xl (R) 1,,, where x e V, [x may be different from x]. This implies

that D’ may not equal D in general. However, we have a converse of Theorem 2.1 as follows. Recall that

an element xeV is called an a itlempotent element if xax x.

THEOREM 2.2. The following results are true"

(i) lfD is a derivation on (V,F) (R)p (V’,F’) such thatD (,Y_.x, (R) y,) ,z, (R) y,. z, eV and y,’s are a’- idempotent

elements of V’, then there exists an a’-derivation D on V defined by the rule ,Dx (R) y= D (x(R) y) for all

x eV and for every a’- idempotent element y e V’;

(ii) If D is bounded, so is D"
(iii) If D is an a(R)a’-inner derivation implemented by an element w of the form w= x (R) y, where y,’s
are a’- idempotent elements, then D is also an a- inner derivation implemented by the element 2x

(iv) If (V,F) and (V’,F are involutive Gamma-Banach algebras, and D is a star derivation, then so is D"
(v) If D is an ct(R)a’ Jordan derivation then D is an a- Jordan derivation;

(vi) If D is an a’- derivation on (V,F) (R) (V’,F such that D( (R) y,) (R) s for a- idempotent

elements x,’s in V. and s, eV’, then there exists an a’- derivation D on (V’,F given by the relation

x (R) D.y D(x(R) y) for every a- idempotent element x eV and for all elements y eV’. The above results (ii).

(iii), (iv) and (v) are also true for D2.

PROOF. (i) We define a map D V V by

Dx(R) y= D(x(R) y), for all x eV and for every a’-idempotent element y eV’.

Clearly, D is well-defined. In particular, we have D x (R) 1,.= D (x (R) 1,.), /x e. V. We first establish the

linearity of D. Let x.x: eV.
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Then D (X + X2) (R)1,,.= D((x+ x2) (R) 1,.

D (x (R) 1,. + x (R) 1,.)

D (x (R) 1,,,) + D x (R) 1,e)

(Dxt (R) 1,,. + D x (R) 1,.)

(Dix + Dx) (R) 1,.

So, (D(xI+x2) ) l,,)(f,g (( DX+ DIX2){) l,,.)(f,g), ’’ fe. V’, ’’g eV".

Thisgives, f(D(x+x2))g(la.)=f(Dlx+DX2)g(l.), ’feV’,CgeV’’.

The Hahn-Banach theorem provides a functional go e V in such a way that go(la,) 1.11 k.

Then, f (D (x + x2)) f (D x + DI x2),’ f e V’. This yields, D (xl+x2) D x + D, x..

By appealing to the same mechanism, we can show that D (ax) aDl (x) for any scalar a. So D, is linear.

Next, to show that D is an a- derivation.

D (xax2) i 1,,.---- D (xlax2(R) 1,,.) (x.x eV)

D [ (x ( I,.)(a(8)a’)(x2 (8:) I,.)]

(D (x (R) 1,,.)) (atS)a’) (X2l)la,) + (X I) 1) (atS)a’) D (x2 (R) la.)

(because D is an a@a’-derivation)

(D x I) la, (a’) (x ) la, + (x () 1,,3 (atSla’) (DI x. (R) l,e)

(D,xl) ax (R) 1, + (x,a (DIx2)) (R) l, [ (D,x,) a xa + x a (DIX2) ]) a,

So, D (xlax:) (Dx)a x2+ xla (D x2). Therefore, DI is ana- derivation. The rest ofthe results are routine.

3. THE NORM OF D

We now shift our attention to study the possibility of the result. D Dl + D_ II. when D.

D and D are related as in Theorem 2.1.

TItEOREM 3.1. IfD, D and D2 are related as in Theorem 2.1, then

DI_<II Ol + IO,.I _<21DI.

PROOF. For each u e (V,F) (R) (V’, F ’) with Iu Ip and for each e > 0,3 a (finite) representation

+e >X,I xil Yiu X,xi(R)yisuchthat |ull

Now, IIDII sup {8 Du |p ull,-- }
u



a-DERIVATIONS AND THEIR NORI IN TENSOR PRODUCTS 365

sup{lY [D, xi(R)yi + xi (R)Dyi ] ip. |u |p-

<sup{,lD, xi(R) Yi|p+l[xi(R) DYi|p ]" |u|.=l }
u

-1j"-sup{Z[ID, xil|Yill+llxilnDYia] lul.-

<sup{Z,[ D,| Yill+ll x D yig]" lul }
u

< (|D,{{+|D{{)sup{l+ {}u{{ I}
u P--

( D, +{ D 2 I) (+)
Since was arbitrary, it follows that D < D,| + D :{{
Next, let x IB V be such that x II-- x. Then x (R) l. =ll x/k2 x

(3 1)

Now Di{ sup {ll Duli flu {{
u

, ,(Since D (1) 0) =il D, x>lid (kz>lx,)ll p liD,(x/k,)l lip

Thus, D, x 5 D for every x e V with x 1. This gives D, < D 11. Similarly, we can prove that

D2 _< D II. Hence we have D, + D2 _< 2 D (3.2)

The inequalilies (3.1) ard (3.2) together imply I1Dll _< D, / D -< 2 D II. Q.E.D.

Our next question is can one improve the above result ? We illustrate the possibility with the help

of examples

Let V be the set of 2 x 3 rectangular matrices and F be the set of all 3 x 2 rectangular matrices with

real (or complex) entries. Then V and F are Banach spaces under usual matrix addition, scalar multiplica-

tion, and the norm defined by m II. m.a.x a,j I, where A a ,j). Then V, F is a F- Banach algebra

Now the following result is true

THEOREM 3.2. For a fixed ot e F, each or- derivation on V is inner.

Since {x -derivations on a finite dimensional F-Banach algebra are all inner, the result follows

immediately, see 10]
We show below with an exarnpe in the F- Banach algebra of 2 x 3 rectangular matrices that the

equality D I!--II D, / D= holds.

AN EXAMPLE 3.1.

Let 0 be afixed element in F and let D. and D,..be two - derivations on V
-1 0

implemented by AoandB respectively, where A=(00o 00 !2) andB=(00 03)0-3
Now mo 2 and !1Bo II-- 3. and D,a (A) AoaA AaA ,V A e V.

Then D, A -< 2 A0 a A 2 mo A II, because a II-- ].

nnc D,o < 2 mo II- 2.2 -4. Nxt suppos that X (0 0 ) Then X II-- .
001
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Also IIAoaXo-XotZAoll= I1(0 0 0 ) =4. HencellDi, ll=4
0O4

Similarly we can show that D 6. So D, + D.. 4 + 6 10.

If D is the derivation defined by the relation as in Theorem 3. l, then we always have

(3.1)

Next, consider the element Uo e (R) e,, where e,-( 0 )Then uo lip0

Now, IID II-> DUo lip

D e (R) e + e (R)D2e lip

>- Dl el (R) el + el @ D2e {{w
(because the projective norm is always greater than or equal to the weak norm)

sup f f(D,e,)g(e,)-I-f (e) g D2 e )1" f, g e V*, [If g } (32)

Again D, e, Aoae e, aAo

(o o (: o o)-(: o 0) 0 (:
2O0

D2 e Boae e aB

(00 00_33)(i 0( 10 O0 :)--(10 : 00) i) (: 00133)

We know that if we define

f, (e)= if i= and 0 if ;e j, then { f f2. f3 f4. f. f6 } is a basis for V*

In (3.2) put f g f. Then we find that D -> 10 (3.3)
The inequalities (3.1) and (3.3) combinedly give IID 10. Hence D DI + D2

ANOTHER EXAMPLE 3.2.

Next we wish to illustrate that the result in Theorem 3 cannot be improved in general. Ifwe assume

V and F represent the same set of all 2 x 2 real matrices, then V, F is a particular F Banach

(1 0 " is the identity of( V, F underalgebra with the usual operations. The ordinary identity matrix
0

multiplication.
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(),If e, 10
eE=

01 then [ { e,, e: e e, } is the standard
00 00 10 01

basis for V, F ). For a simple example, let D, and D be derivations on V, F implemented by the

matrices Ao< 3 ) (-27)and B respectively. Then the matrix representations of D, and D:

with respect to the basis fl are respectively

0 030 0 0-7 0

[D,] 0 and [DEI# 2 0

0 -1 0 -2

0-3 0 7

So, Di II- 3 and D: 7. Again, 3’ { e, e, i, 1, 2, 3, 4 } is a basis for V,F (R)r (v,r) and

the matrix representation ofD with respect to the basis ), is

[D ]r

0 0 -7 0 0 0 0 0 3 0

7 2 0 -7 0 0 0 0 0 3

0 0 -2 0 0 0 0 0 0 0

0 0 7 0 0 0 0 0 0 0

-3 0 0 0 0-7 0 0 0

0-3 0 0 7 3 0 -7 0 0

0 0 -3 0 0 0 -1
0 0 0-3 0 0 7
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

30 0 0 0 0

03 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0
0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 3

0 -1 0 -7 0 0 0 0 0

0 7 0-7 0 0 0 0

O O O -30 O 0 0 0
0 0 0 7-1 0 0 0 0
0 -3 0 0 0 0 0 7 0
0 0-3 0 0 7 2 0-7
0 0 0 -3 0 0 0-2 0

0 0 0 0-3 0 0 7 0

Hence I1D 7. Thus the strict inequality D < D,II + liD,_ < 2 D holds.

4. THE SPECTRUM OF D

We next devote to studying the validity ofthe result sp D sp D1 + sp (D2). Recall that sp (D)
consists ofall scalars 21 such that D-2 I is singular. Analogous definitions apply to sp D2 and sp (D)

Further, for the singularity and invertibility of a rectangular matrix, see. Joshi 11 ].
THEOREM 4.1. The derivations D, Di and D2 are defined as in Theorem 2.1. Then

sp D, + sp D: c sp (D)

PROOF. Let 2, e sp D, and 22 e sp D2)
DI- k. I and D- 2212 are singular
:i nonzero vectors xoeV and YoeV’ such that (Dr A,, xo= 0 and D 22 I,. yo= 0

Now, x (R) yo is a non-zero element in V ,F (R)p V, F’).
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Again, D ;t + 22) (Xo(R) Yo) D (x (R) Yo) ;t + ;t2) (x (R) Yo)

D x (R) Yo + Xo (R) D Yo )’ + ;t Xo(R) Yo

=(D-2I, x o(R)Yo + Xo(R) (D:-:I:) y =0

So, D .1+22) is singular and hence ,1+).2e sp D ). Thus, we obtain sp (D) + sp (D _C sp (D). Q.E.D

REMARK 4.1. (i) We conjecture that the above result cannot be improved in general.

(ii) However, the equality holds in finite dimensional r- Banach algebras. For, if dim V, r m, dim

V’,I" n, then dim V, r (R)p v’, r’ )) ran. So, sp (D), sp D2) and sp D have m,n and mn

eigenvalues respectively. Again, sp (D) + sp (D2) gives mn values which are precisely the eigenvalues of

Further, we have the following illuminating result.

THEOREM 4.2. As uusal, let D D: and D be derivations connected by the relation as in Theorem

2.1 (i). If (V, r and (V,’ r’ are finite dimensional Gamma-Banach algebras, D and D: are implemented

by e, V and e,V’ respectively, then

sp (D)= { a=2-/ 2,p e sp (r) },

sp (D) { b =/-/z’ .’, /z’ f. sp (s) }

and sp(D)={a+bl aesp(D,),be, sp(D:)}.
PROOF. The first two results will follow from Propostion %18, Ch2 in 10], and the last result

will follow from Remark 4.1 (ii). Q.E.D.
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