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ABSTRACT. A triangular norm is a special kind of associative function on the closed unit interval [0,1].
Triangular norms (or -norms) were introduced in the context of probabilistic metric space theory, and they
have found applications also in other areas, such as fuzzy set theory. We determine the explicit forms of all
t-norms which satisfy a generalized homogeneity property called quasi-homogeneity.
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0. INTRODUCTION
Let I = [0, 1] be the closed unit interval on the real line R. A triangular norm (or t-norm) is a
map T: I x I->] satisfying the following four hypotheses. First, T is associative:

T(x, T(y, 2)) = T(T(x, y), 2), xyzel
second, T is nondecreasing in each variable; third, T is commutative; and fourth, for all x € J,
T(x, 1) =x. ©.1)

T-norms were introduced by Menger [1] as a means of generalizing the triangle inequality to statistical
(later, probabilistic) metric spaces. Associated with a family {F),,} of probability distribution functions is
amap T: I x I-] (later, a -norm) such that

Fpx +) 2 TTFpy(x), F ()] 0.2)

for all p, g, r in some space S and all nonnegative reals x and y. Interpreting Fp,(x) as the probability
that the distance between p and ¢ is less than x, inequality (0.2) means that the probability that the
distance from p to r is less than x + y is at least as great as the T-value of the probabilities that the
distance from p to g is less than x and the distance from q to r is less than y. For further information
on the history, theory and applications of t-norms, see Schweizer and Sklar [2].

In light of the interpretation above, we examine now those f-norms satisfying an additional
property. If the probabilities F,(x) and Fg,(y) on the right side of (0.2) are shrunk by a factorr € I,
then it may be reasonable to suppose that the probability F,(x + ) is also shrunk by a factor depending
on ¢, possibly after some change of scale. More precisely, we shall study those ¢-norms T which satisfy
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TG, ty) = T {o(0) [ T(x, ]}, ©03)

for some map @: /-7 and some continuous injection IT: I— [0, «). Such r-norms will be called quasi-
homogeneous. If IT in (0.3) is the identity map, then T is called homogenous, and the forms of such t-
norms are known already (e.g. [3]). In that case, either T(x, y) = Min (x, y) with @(f) =1, or T(x, y)
= xy with @(¢) = 2. We shall obtain that result as a corollary of the main result of the present paper, in
which we determine the general solution of (0.3) for -norms.

Before proceeding, let us observe some other properties of r-norms. It is easy to deduce the
following from the definition of triangular norm:

T(x, 0) = T(0, x) = 0, xel,
T(x, y) < Min (x, y), x,yel
(i.e. Min is the “maximal” t-norm), so in particular
T(x, x) < x, xe I

Note also that (0.3) forces IT to be strictly increasing. For, setting x =y = O there, we have
T, 0) = H"]{cp(t) H[T(0,0)]}. Since 7(0,0) = 0, this means I1(0) = @(#) I1(0) for all r € [0, 1].
Hence I1(0) = 0, since otherwise ¢ = 1, which in (0.3) with r = 0 would yield 0 = T(x, y) for all x, y €
I, in violation of (0.1).
1. PRELIMINARIES

In the sequel, let R* = [0, ] be the extended nonnegative real half-line. The structure of
continuous f-norms is known. (The continuity assumption can be weakened somewhat, but that is not
relevant to the current discussion.)

THEOREM 1.1. (Schweizer and Sklar [2: Sections 5.3-5.5]) Let T: I x I — I be a continuous
t-norm.

(i) T satisfies T(x, x) < x for all x € (0, 1) if and only if T admits the representation
T(x, y) = flg(x) + g(y)}, (L1

where g: > R* is continuous, strictly decreasing with g(1) = 0, where f: R*—1 is onto, continuous,
strictly decreasing on [0, g(0)] with f{u) = O for u > g(0), and where f o g is the identity map on I
(i.e. g is a “quasi-inverse” of f).

@ii)) fT(x, x)=xforallxe I,then T=MinonI X I.

(iii) Otherwise, the semigroup (I, T) is an ordinal sum of semigroups {(Sy, T;)}. Here each S;
is a proper closed (nontrivial) subinterval of I, each T; admits a representation of the form (1.1) on
S) X Sy, with g on Sy and f;, onto Sy, and T = Min on (IxI)\ kkJ(Sk x$,) [21.

REMARK. Any t-norm of the form given by case (i) of Theorem 1.1 is called Archimedean. If
in addition g(0) = e, then f = g-! and T is called strict.

We shall use Theorem 1.1 to find the forms of quasi-homogeneous z-norms. We shall also need
the following known result.

THEOREM 1.2. (See e.g. Aczel and Dhombres [4: Chapter 15, Theorem 1). The general
solution of

g(tx) = a(t) g(x) + b(1), (1.2)

among maps g, a, b: I->R* is given by the following:
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8(x) = x) + c, a(x) = 1, b(x) = fx); (1.3)
8(x) =c, a arbitrary, b(x) = c[1 - a(x)}; (14)

or
8(x) = cm(x) +d, a(x) = m(x), b(x) = d[1 - m(x)]; (1.5)

for all x € I, where ¢ and d are arbitrary constants, & I- R* is an arbitrary solution of the logarithmic
functional equation

Axy) = &x) + &y), x yel,
and m: I- R™ is an arbitrary solution of the multiplicative functional equation
m(xy) = m(x) m(y), x, yelL
2. DETERMINATION OF QUASI-HOMOGENEOUS T-NORMS
We prove first that quasi-homogeneity implies that T must be continuous and that only certain
forms are possible for .

LEMMA 2.1. If a t-norm T is quasi-homogeneous in the sense of (0.3), then T is continuous
and there exists a constant o > 0 such that

o) = 1> 2.1
PROOF: Setting x =y =1 in (0.3), we find that
1[G, ] = o() I1(1), (22)
since T(1, 1) = 1. Since II(1) # 0, this yields
o) =TIy TI[T(2, 2)), 2.3)

and shows immediately that @ is monotonic, with ¢(1) = 1. It shows also that @ is multiplicative, since by
(0.3) we have

o(xy) = TI(1)"1 [ T(xy, xy)]
=TI(1)! @(x) II[T(y, y)]
= @(x) 9(y). x,yel

Moreover, (2.3) shows that @(7) < 1 for ¢ < 1, for otherwise, since I1 is strictly increasing we would have
T(t, t) > 1 for some ¢ < 1, contradicting T < Min. Thus @ must be of the form (2.1) for some o > 0.
Now (0.3) takes the form
T(mx, ty) = I-H{ @ T(T(x, )1} 24)

For any given x, y € I, if x <y we have
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I oT(x,y) = l'loT[y'ﬁ, y~l) =y* l'IoT(i,lJ =y*1 (i);
y y y

while if x > y, then

MoT(x,y) = I‘loT(x'l, xl) =x l'lof(l, Z—) =x* H(Z).
x x x

In either case, putting m = Min (x, y) and M = Max (x, y), we obtain
T(x, y) = T M® n(ﬂ)}.
(x, y) { v

Since IT is continuous, this shows that T is continuous and completes the proof of the lemma.

We observe in passing that the full force of the definition of z-norm was not used in Lemma 2.1. In
fact, Lemma 2.1 is valid also whenever T: I x I — I is quasi-homogeneous, satisfies T(1,x) =T(x,1)
= x, and the diagonal map ¢ --> T(t, t) is non-decreasing and satisfies (¢, t) < 1 forall t < 1.

+ Now we may assume that T is continuous and use Theorem 1.1 to obtain additional information
about the structure of 7. The next step is to deal with the Archimedean case.

THEOREM 2.2. T:IxI— I is a quasi-homogeneous r-norm satisfying T{(x, x) < x for all
x € (0, 1) if and only if either

T(x, y) = xy, 2.5

for all x, y € I, with @ given by (2.1) and with I1(z) = II(1) t% for some o> 0, or

CIRY
T(x, y) = (x +y - l) , Vv X,y € (O,l] (2.6)
0 , otherwise
o . 1(p V6.
for some P < 0, with ¢ given by (2.1) for some a > 0 and with I(z) = II(1) 3 t +1 if > 0 and

I1(0) = 0.

PROOF: Suppose T is a quasi-homogeneous #-norm with T(x, x) <x on (0, 1). By Lemma
2.1, T is continuous and ¢ has the form (2.1) for some & > 0. Thus by Theorem 1.1(i), T has the form
(1.1) where g is a quasi-inverse of f. Inserting the representation (1.1) into (2.4), we get

flg(1x) + g(1y)] = I {1 T = flg(x) + g(y)1}. (eA)]

First, we establish that g(0) = o (and hence f= g-! and T is strict). Suppose, to the contrary, that g(0)
< oo. Since g is continuous, we can choose positive ¢ so close to O that g(z) > -;-g(O). Recalling that

g(1) =0, f0) = 1 and f{u) = O for u > g(0), we deduce from (2.7) by putting x =y = 1 that
0 =fl2g(1)] = II-1{£* TI(1)}
for all ¢ sufficiently close to 0. But this implies [1(0) = 0 = I(1), contradicting the injectivity of I1. Thus

g0)=coand =gl
Now we can write (2.7) as
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g(tx) + g(ty) = g o TI-H{1* T o g1 [g(x) + g(y)]}, (2.8)

where g is a strictly decreasing homeomorphism of I onto R*. Fixing ¢ temporarily, let u = g(x), v =
g(y) and define

8:(x) = g(1x), ky (x) := g o T [1* T1(x)],
for x € I. Then (2.8) becomes
808 u)+ g0 g (W) =kpo g l(u+v), u,ve R
Since g, and k, are strictly monotonic by definition, the solution of this Pexider equation is
gogl(u)=au+by, kogl(u)=au+2b,

for some “constants” a, and b, (depending on f). Freeing ¢ € I and recalling the definitions of g, and
k,, we have now

8(tx) = a(t) g(x) + b(1), 2.9)
g o IT1[/* TI(x)] = a(?) g(x) + 2b(1), (2.10)

valid for all ¢, xe I.
The general solution of equation (2.9) is given in Theorem 1.2. We eliminate solution (1.4) here
because g is strictly monotonic. We consider solutions (1.3) and (1.5) separately.
Case 1. Suppose the solution of (2.9) is of the form (1.3). Since g is strictly decreasing, so is
the logarithmic function £ That is, there exists a constant b < 0 for which
g(x)=blogx+c,a(t)=1, and b(t) =log 1. (2.11)
Substituting these into (2.10), we find that

1 T(x) = I(xz2), t,xel

With x = 1, this yields I1(q) = q% II(1) for all g € I. Furthermore, inserting (2.11) into (1.1), with f
= g-1, we obtain (2.5) for T.

Case 2. Suppose the solution of (2.9) is of the form (1.5). Since g is strictly monotonic, the
same is true of the multiplicative function m, so m(x) = xB. Moreover, since g(0) = = and g(1) = 0,
we must have

g(x)=c(B-1),a(t)=1B, and b(t) = c(B - 1) (2.12)

for some constants § < 0 and ¢ > 0. Inserting these into (2.10) and simplifying, we arrive at
[ 1) = [00® + 8 - 1yvﬂ.

]
Puttingx=1and g = (2tﬁ - I)A , this gives
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¥

(g) = TI(1) [%(qB +1)
Finally, (2.12) combined with (1.1) (and f= g!) yields

1
T(xy) = {1 + %[c(xb “D+cy? - 1)]}/'5
which simplifies to (2.6).

The converse is easily verified, and that completes the proof of Theorem 2.2.
Now we are ready to establish the main result.

THEOREM 2.3. T:IxI- I is a quasi-homogeneous z-norm if and only if T is given by
(2.5), by (2.6) for some P < 0, or by T(x,y) = Min (x,y). In the last case, @ is given by (2.1) for some a
> 0, and IT has the form Il(x) = IT(1) x®.

REMARK. If we define Tgto be the t-norm given by (2.6), then

gi_rg) Ty(x.y) = xy, and Bgn_I“ Ty(xy) = Min (x,y).

Defining T to be the product on / x I and T_, to be Min, we can restate the conclusion of Theorem 2.3

as follows. The only quasi-homogeneous t-norms are the members of the family {7} for -eo < B<oO.
PROOF OF THEOREM 2.3: Let T be a quasi-homogeneous ¢-norm. Then by Lemma 2.1,
T is continuous and ¢ has the form (2.1) for some o > 0. Now we apply Theorem 1.1.

If case (i) of Theorem 1.1 holds, then we find that (2.5) or (2.6) holds by Theorem 2.2.
In case (ii) of Theorem 1.1, we have T = Min, and equations (0.3) and (2.1) yield
Min (tx,ty) = IT-1{s* IT  Min (x,y)}.
With x =y = 1, we obtain
I1() = > I1(1), te I

Finally, we consider case (iii) of Theorem 1.1. Choose any xg € (0, 1) such that T(xg, xp) =
xg, and let Sy be any subinterval of [xq, 1] such that T) admits representation (1.1) in the square
Sk X Sk. Then

T(x,y) = Min(x,y), (x,y) € Dy U Dy,

where D; and D, are the rectangles

Dy ={xy10<y<xg<sx<1}, Dy={(x)10<sx<xp<y<1]}

in I x 1. We prove that in fact this case cannot occur.
Let us confine our attention to the lower triangle {(x,y) 10 <y < x < 1}. Choose (x,y) in
x
Sy % Sg so that xg <y < x < 1. Then we choose ¢ = 20 so that (zx, ty) belongs to D;. Now (0.3)
y
and (2.1) yield

o
T[T(x,y)] = T(xg) [iJ ,
%o
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which implies that T(x, y) is independent of x for x > y > xq. Specifically,

a
T(x, y) = IT-1 [-Z-J T(x,) (2.13)
%o

when x > y > xo, which is inconsistent with representation (1.1) for the restriction Ty of T to S;xSy.
Indeed, as in the proof of Theorem 2.2, T} must be strict:

Ti(xy) = g M &) + 8], x, y€ S

This representation, with strictly monotonic g;, shows that T;(x, y) is injective in x for each y € S;.
But the right hand side of (2.13) is independent of x. This contradiction shows that there can be no Sj in
the interval [xg, 1].

A similar argument shows that there can be no S; in the interval [0, xg]. Thus there can be no
proper ordinal sum. That is, case (iii) of Theorem 1.1 is incompatible with quasi-homogeneity. (In other
words, if a quasi-homogeneous T satisfies T(xg,xq) = xo for some x € (0, 1), then it satisfies T(x,x)
=xforall xe (0, 1).)

The converse is easily verified, and this completes the proof of the theorem.

From Theorem 2.3, the structure theorem for homogeneous ¢-norms is easily extracted.

COROLLARY 24. T: IxI— Iis a homogeneous t-norm if and only if either T(x,y) =
xy, with @(t) = 2, or T(x,y) = Min (x,y), with () = ¢.

PROOF: Suppose T is a homogeneous t-norm. We apply Theorem 2.3 in the special case in
which IT in (0.3) is the identity map. When T is of the form (2.5), we have (cf. Theorem 2.2) Il(x) =
H(l)x%. This will give II(x) = x only if & = 2; in (2.1) this yields @(f) = f2. When T is given by
(2.6) for some P < 0, we note that I1(x) = l'I(l)[%(xb + 1)]% Such IT can never be the identity map, so
this case cannot arise. Finally, when T{(x,y) = Min (x,y), the accompanying II is (cf. Theorem 2.3)

II(x) = I1(1) x*. This I is the identity only if o = 1, in which case (2.1) becomes ¢(f) = ¢.
The simple converse completes the proof.
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