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ABSTRACT. It is known that two commuting continuous functions on an interval need not have
a common fixed point. It is not known if such two functions have a common periodic point. In
this paper we first give some results in this direction. We then define a new contractive condition,

under which two continuous functions must have a unique common fixed point.
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1. INTRODUCTION.

For some time there was a rather well known conjecture that if f and g are continuous
commuting selfmaps of [0, 1] (i.e.f(g9(z)) = g(f(z))), then they have a common fixed point. W.M.
Boyce [1] and J.P. Huneke [2] answered this conjecture in the negative by constructing a pair of
commuting continuous functions which have no common fixed point. It is easy to see that their
pair of commuting continuous functions have a common periodic point. In fact for the Boyce’s
example zero is a common periodic point. Thus one may conjecture the following:

CONJECTURE 1.1. If f and g are commuting continuous selfmaps of [0,1)], then they
must have a common periodic point.

Even though we believe that the answer to the above conjecture is also negative, at present
we are not able to construct a counterexample.

A.J. Schwartz [3] proved that if f and g are continuous functions of [0,1] into itself that
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commute, then there always exists a point z such that z = f(z) = g™(z) for some positive integer
n, under the additional assumption that f has a continuous derivative. In this paper we first give
some results in this direction. Then we define a property P, and show that under this condition,
two commuting continuous functions must have a unique common fixed point.

We begin with some preliminaries. The orbit of z under g ( i.e. the set {g*(z) : k > 0}) and
its closure are denoted by O(g, z) and m, respectively. The set of cluster points of O(g, z) is
denoted by w(g,z). A subset Y of I is called invariant under g if g(Y) C Y. A closed, invariant,
nonempty subset of I is called minimal if it contains no proper subset that is also closed, invariant
and nonempty. A point z is called a recurrent point of g if z belongs to w(g,z). Throughout f*
denotes the n fold composition of f with itself. The sets P(f), R(f) and F(f) are the sets of
periodic points of f, recurrent points of f, and the fixed points of f, respectively. We state some
known facts concerning minimal sets. Every closed, invariant, nonempty subset of I contains a
minimal set. If Y is a minimal set, then Y C R(f). If Y is a minimal set, which is not the orbit

of a periodic point, then Y is perfect. A minimal set is nowhere dense.

2. THE MAIN RESULTS.

THEOREM 2.1. Let f and g be two commuting continuous selfmaps of the unit interval.
If f and g have no common periodic points, then for any two positive integers m and n the set
Ampn ={z: f(z) = g™(z)} is uncountable.

PROOF. First we show that A,,, is not empty. If for some m and n, A,,, is empty, the

continuity of f and g permits us to assume without loss of generality, that
fi(z) < g"(2) (2.1)

for all z € I. Since g™(1) < 1, theset S = {z € I: g™(z) < z} is not empty. Thus, since S is
closed, it has a minimum element c. Clearly, ¢ = g™(c). Hence f*(c) = f*(¢g™(c)) = ¢™(f*(¢)),
so that f*(c) € S. Consequently f*(c) > ¢ = g™(c). Since f*(c) > g™(c) contradicts (2.1),
the assertion that Am . is empty is false. Now suppose that z € An,,. Then f*(z) = g™(z)
hence, f*(f(z)) = f(g™(z)) = g"(f(z)) and f(g(2)) = g(f"(2)) = g(g™(2)) = g"(g(z)). Thus
if 2 € Ampn, {f(),9(z)} € Amn and fP*(z) = gP™(z) for each positive integer p. From this it
follows that O(g,z) is contained in A, whenever £ € An,. The set O(g,z) is an invariant
set under g. Suppose A; is a minimal set contained in m Since f and g have no common
periodic points, the set A; cannot be the orbit of a periodic point. Hence A, is a perfect set
contained in A, », implying that A, , is uncountable.

COROLLARY 2.1. Let f and g be two commuting continuous selfmaps of the unit interval.
If for some positive integers m and n, the set {z : f*(z) = g™(z)} is countable, then f and g have

a common periodic point.
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Fixed points of contractive type mappings have been studied by a number of authors. B.E.
Rhoades [4] has investigated a comparison of different kinds of contractive definitions in the liter-
ature. The following theorem is in this direction.

DEFINITION 2.1. Let X be a compact metric space. The function h: X x X — [0,00)
is said to have property P, if it satisfies the following conditions:

(i): h(z,y) =0 if and only if z =y,

(#1): if limuco Tn = Zo, liMnooo Yn = Yo, and imy .o (24, y5) =0,
then 2o = yo.

THEOREM 2.2. Let f and g be selfmaps of the unit interval and let h : I x I — [0, 00)
be a function having property P,. Suppose g is continuous on I and A is a nonempty closed
g—invariant subset of F(f). If there exists a real number a, 0 < a < 1 such that for all z and y

in F(f), f and g satisfy the following inequality:

h(fz,fy) < a-max{k(gz,9y), h(9z, fz), k(gy, fy),
h(gy7f$)vh(fzygy)}7 (22)

then f and g have a unique common fized point.
PROOF. First we show that any two functions f and g satisfying inequality (2.2), have at
most one common fixed point. To see this, on the contrary, suppose ¢; and ¢, are two different

common fixed points of f and g. Then using (2.2) we get

h(?n?z) h(fql:qu)

a - max{h{g9q:,94z), k(9q1, f@1), (992, a2), (942, fa1), k(fq1,942)},

IN

implying

h(‘h, 42) S a- ma'x{h(Qh 92), h(q17 Q1), h(‘h, 42), h(‘h» 91)}»

a- max{h(q:,q2), h(g:,q1)}

In a similar manner we may show
h(gz,q1) < a-max{h(q1,q2), k(g2 0},
hence we shall have
max{k(q1,q2), h(g2,0)} < a-max{h(q1, %), k(g @)}

This is impossible unless max{h(q, g2), h(g2,q1)} = 0, which implies that k(g1,¢2) = 0, and hence
¢1 = q2, a contradiction. Now we show that f and g have a common fixed point. Without loss

of generality we may assume that A = F(f). It is clear that the set B = N3, g"(A) is a closed
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nonempty subset of A, and that ¢?(B) = B. If for some yo € B, f(yo) = 9(yo), then yo is a
common fixed point of f and g, so we may assume that f(y) # g(y) for all y € B. Let y; be an
arbitrary point of B, and z, € B be such that g’(z;) = y; . Since g(y) # f(y) for all y € B,
if we let £ = y1 and y; = g(22), then g(y2) = y1 = f(v1). Since h(gy2, fyz) = h(fy1, fy2), from
inequality (2.2) we have

A

h(fy1, fy2) < a-max{h(gy1,9y2), h(gy1, f11), h(gy2, fyz),
h(!]!/z,f!ll)vh(f?ll,g!/z)}

a - max{h(gy1,9y2), k(gy1, f11), h(gy2, fy2),0)}

a - max{h(gy1, fy1), h(gy2, fy2)}

implying h(gy2, fy2) < a- h(gy1, fy1). If we define ¢ : B — [0,00) by ¢(z) = h(gz, fz), then we
have ¢(y2) < a-¢(y1). Suppose z3 € B be such that g?(z3) = y2. By taking z = y; and y3 = g(z3),
similarly we can show that ¢(y3) < a - #(y2) < a® - #(y1). By repeating this process we obtain a
beunded sequence {y,}2, in B. Suppose {yn, }32, is a convergent subsequence of {y,}3%, and

limk—co Yn, = Yo - Since g is continuous on I,

kll{g h(gynu ynk) klggo h(gynk ) fy'lk )

klgg B(Yne)

Jim @™ g(y1) =0.

IA

So g(yo) = yo, and yo € B C F(f), hence yo is a common fixed point of f and g.

REMARK 2.1. There is nothing in the proof of Theorem 2.2 that requires the underlying
space to be the unit interval. However in our proof the compactness of the unit interval is used.
Therefore one can let the underlying space to be a compact metric space. Also condition P; is not
a necessary condition and it may be replaced with weaker conditions when f and g are nice. For
example if h, f are nice enough that the function ¢ defined in Theorem 2.2 attains its minimum
at some point y; € B, then we can find a point y; € B such that ¢(y;) < #(y:) a contradiction,
so f and g must have a common fixed point. If we are not concerned about the uniqueness of the
common fixed point, similar to the proof of Theorem 2.2 we have the following.

THEOREM 2.3. Suppose f and g are two selfmaps of a compact metric space X and let
h:X xX — [0,00) be a function having property P;. Suppose also that g is continuous on X and
A is @ nonempty closed g—invariant subset of F(f). If there exists a real number a, 0 < a < 1

such that for all z and y in A, f and g satisfy the following inequality:

h(fz,fy) < a-max{h(gz,gy), h(gz, fz), k(gy, fy),
k(gy, fz), h(fz,gy)}, (2.3)
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then f and g have a common fized point.

The conclusion of Theorem 2.3 is not valid if inequality (2.3) is replaced with

h(fz,fy) < max{h(gz,gy),h(gz, fz), h(9y, fy),
h(gy, fz), h(fz,gy)}-

The following example illustrates this.

EXAMPLE 2.1. Let f and g be defined on the unit interval as follows:
(8z + 15)/24 0<z<3/4,
(—32z +31)/8 3/4 <z <13/16,

g9(z) =
2z -1 13/16 <z < 7/8,
3/4 7/8<z<1,
(8z + 39)/48 0<z<3/4,
3/4 z = 3/4,
fz) =1 (-32z+39)/16  3/4 <z <13/16,
z 13/16 < z < /8,
{ 7/8 T/8<z <1
0 fz=y,
Define h(z,y): I x I — [0,00) as h(z,y) =
z+y ifz#y.
1+ 2 if 3/4,
One can easily check that k has property P, f(z) = (L+g(@)/2 itz #3/
3/4 if z = 3/4,

and F(f) = {3/4}U[13/16,7/8]. Let A = {3/4,7/8}, then A is a closed g—invariant subset of
F(f) and for every z # y in A we have

h(fz,fy) = max{h(gz,gy),h(92, fz),h(9y, fy),
h(gy, fz), h(fz,gy)} < 13/8.
It is easy to see that f and g do not have a common fixed point.
THEOREM 2.4. Suppose f and g are two selfmaps of a compact metric space X with g

continuous, and let b : X x X — [0,00) is a function having property P,. If for all z # y in X,
f and g satisfy the following inequality:

h(fz, fy) < max{h(gz,gy), h(gz, fz), h(gy, fy),
k(gy, fz), h(fz,9v)}, (24)

then one of the following holds:
(i) either f and g have a common fized point,
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(it) or every nonempty closed g—invariant subset of F(f) contains a perfect minimal set B
such that the functions ¢1(z) = k(gz,z) and ¢y(z) = h(z,gz), do not attain their minimum or
mazimum on B.

PROOF. From inequality (2.4) it follows that for each z € F(f) with z # g(z), we have
h(gz,z) < h(g%z,gz). This implies that F(f) cannot contain any periodic point of g with period
greater than 1. Let A be a nonempty closed g—invariant subset of F(f), then it should contain a
minimal set B. If this minimal set is finite, f and g have a common fixed point. Otherwise, B is
a perfect set with g(B) = B. Since for each z € B, h(gz,z) < h(¢%z, gz), the functions ¢, and
¢, cannot attain their maximum or minimum on B.

LEMMA 2.1. Suppose h:[0,1] x [0,1] — [0,00) is a lower semicontinuous function such
that h(z,y) = 0 if and only if z = y. Then h satisfies property P,.

PROOF. Suppose limp—co Zn = o, limy oo Yn = Yo, and limp_o, h(zn,yn) = 0. We need
to show that zo = yo. On the contrary suppose zo # yo. Let § = dist{(zo,y0),{(z,2z): = € [0,1]}}
R a:nd B, = m = Bz, %], where zg = (Zo, yo). Let € be an arbitrary positive number. Then
there exists a positive integer A such that for all n > N ,(zn,yn) € B, and | A(zs,yn) |< €. Since
h is lower semicontinuous and B, is compact, it attains its minimum at some point (s,t) in B.
Hence | k(s,t) |=|minimum of A(z,y) on By |<| h(zx,yn) |< €, implying h(s,t) = 0. Thus s = ¢,
a contradiction.

THEOREM 2.5. Let f and g be commuting selfmaps of [0,1] with g continuous. If A is a
nonempty closed g—invariant subset of F(f), then one of the following holds:

(i) cither P(f)(\P(g) #9,

(it) or there is a perfect set Ay C (ANR(g)N P(f)).

PROOF. Take zo € A. For every positive integer n, g"(zo) € A. Thus O(g,z0) C A im-
plying w(g,zo) € A = A. Clearly w(g, o) is nonempty and is invariant under g. Thus it contains
a minimal g—invariant subset A;. Obviously A; C (AN R(g)). If A, is a finite set, then it is the
orbit of a periodic point of g, implying @ # (P(g)NA) € P(f)N P(g)- Otherwise A, is a perfect
set contained in AN R(g).

REMARK 2.2. As in the proof of Theorem 2.5, if f and g have no common periodic point
then there exits a perfect set A; contained in A R(g) N P(f). Since f and g do not have common
periodic points and, for a continuous function on a compact interval P(f) = P(g) ( see Coven and
Hedlund [5] ), we have A; € ANR(g) = ANP(g) = AN[P(g9) \ P(g)] . From this it follows that

if P(g) \ P(g) does not contain a perfect set, then f and g must have a common periodic point.

In particular, for two commuting continuous functions if either of P(g)\ P(g) or P(f)\ P(f) does
not contain a perfect set, then f and g must have a common periodic point.

Consider the following ordering of positive integers:
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1,2,4,8,......,7-8,5-8,3-8,...,7-4,5-4,3-4,...,7-2,5-2,3- 2, ..., 7,5,3.
A.N. Sarkowskii has proven that if m is to the left of n in the above ordering and f has a
periodic point of period n, then f must have a periodic point of period m (see Stefan [6]).
Let P.(f) = {z € [0,1] : f*(z) = z}. The Sarkovskii’s theorem immediately implies that if
P,(f) = Pu(f), then Pi(f) = P.(f) for every n > 1. Suppose f and g are two commuting
continuous selfmaps of the unit interval which do not have a common periodic point. We claim
that f and g should have periodic points of all even orders. To see this, on the contrary suppose
that n = 2% . r(r odd,k > 1) and f has no periodic point of order n. By Sarkowskii’s theorem
P,..(f) = P.(f) implying Pi(f7) = P,(f"), hence P,(f7) = Pi(f7) for any n > 1. Thus we have
P(f") = UX, Pa(f7) = Py(f7) which implies P(f7) \ P(f7) = 0. Since g commutes with f, it also
commutes with f7. Thus g and f7 should have a common periodic point which is also a common
periodic point of f and g. We may interchange the roles of f and g. This implies that either f and
g have a common periodic point or both have a rich orbit structure. By a rich orbit structure we
mean that they have a homoclinic point and positive topological entropy ( see Block (7] ). Thus
we have the following:

THEOREM 2.6. Suppose f and g are two commuting continuous selfmaps of the unit
interval. Then one of the following holds:

() either P(f)NP(g) # 0,

(ii) or both f and g have periodic points of all even orders.
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