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ABSTRACT. The Neumann problem for the dissipative Helmholtz equation in a connected
plane region bounded by closed and open curves is studied. The existence of classical solution is
proved by potential theory. The problem is reduced to the Fredholm equation of the second kind,
which is uniquely solvable. Our approach holds for both internal and external domains.

KEY WORDS AND PHRASES: Helmholtz equation, Neumann problem,
boundary integral equation method.
1991 AMS SUBJECT CLASSIFICATION CODES: 35J05, 35J25, 31A25, 78A45.

1. INTRODUCTION

The boundary value problems in domains bounded by closed and open curves were not treated
in the theory of 2-D PDEs before. Even in the case of Laplace and Helmholtz equations the
problems in domains bounded by closed curves [1-2], [5-8] and problems in the exterior of open
arcs [5], [9-11] were treated separately, because different methods were used in their analysis.
Previously the Neumann problem in the exterior of an open arc was reduced to the hypersingular
integral equation [9-10] or to the infinite algebraic system of equations {11], while the Neumann
problem in domains bounded by closed curves was reduced to the Fredholm equation of the second
kind [1], [6-8]. The combination of these methods in case of domains bounded by closed and open
curves leads to the integral equation, which is algebraic or hypersingula’lr on open curves and 1t
is an equation of the second kind with compact integral operators on the closed curves. The
integral equation on the whole boundary is too complicated and the general theory of similar
equations are not constructed currently. The approach suggested in the present paper enables to
reduce the Neumann problem in domains bounded by closed and open curves to the Fredholm
integral equation on the whole boundary with the help of the nonclassical angular potential. Since
the boundary integral equation is Fredholm, the solvability theorem follows from the uniqueness
theorem, which is ensured for the Neumann problem in the case of the dissipative Helmholtz
equation This approach is based on [3-4], where the problems in the exterior of open curves were

reduced to the Fredholm integral equations using the angular potential.

2. FORMULATION OF THE PROBLEM
By a simple open curve we mean a non-closed smooth arc of finite length without self-
intersections [5]

In the plane z = (r;,7;) € R? we consider the multiply connected domain bounded by simple
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open curves I'],...,Ty, € C?*, X € (0,1], and simple closed curves I',...,I'%, € C2°, so that the
curves do not have points in common. We will consider both the case of an external domain and
the case of an internal domain, when the curve I'? encloses all other. We put

N N
r'=yr, r’=yri r=rur’
n=1 n=1

The connected domain bounded by I'? will be called D. We assume that each curve I'* is para-
metricized by the arc length s :

It ={z: z =z(s) = (z1(5), T2(5)), s € [ak,bE]}, n=1,..., Nk, k=1,2,

so that a < b} < ... < ay, < bk, <a? <b? <..<d}, <b}, and the domain D is to the right
when the parameter s increases on I'2. Therefore points € I" and values of the parameter s are in
one-to-one correspondence except a2, b2, which correspond to the same point t for n = 1,..., N.
Below the sets of the intervals on the Os axis

Ny N2 2 Ni
U [a‘}n brlzlv U [0'317 b?l]? U U [afn b:]
n=1 n=1 k=1n=1

will be denoted by I'!, T2 and I" also.
' N2
We put C°(I'2) = {F(s) : F(s) € C°a2,b?], F(a2) = F(b2)} and C°(I'?) = ﬂ co(r2).
n=1
The tangent vector to I' at the point z(s) we denote by 7, = (cosa(s), sina(s)), where
cosa(s) = z}(s), sina(s) = z5(s). Let n, = (sina(s), — cosa(s)) be a normal vector to I at z(s).
The direction of n, is chosen such that it will coincide with the direction of 7; if n. is rotated
anticlockwise through an angle of 7/2.
We say, that the function w(z) belongs to the smoothness class K if
1) w € CO(D\I'?) N CHD\I),
2) Vw € CO(D\I''\I'"?\ X), where X is a point-set, consisting of the end-points of I'! :

X=ﬂ@@wdmy

3) in the neighborhood of any point z(d) € X for some constants C > 0, € > —1 the inequality
holds
[Vw| < C |z —z(d)|*, (2.1)

where 1 — z(d) andd =al ord = b}, n=1,.., Ny,

4) there exists a uniform for all z(s) € I'? limit of (n,, Vzw(Z)) as T € D\I'"* tends to z € I'?
along the normal n,.

REMARK. In the definition of the class K we consider I'! as a set of cuts in the domain D.
According to this definition, w(z) and Vw(z) may have a jump across '\ X.

Let us formulate the Neumann problem for the dissipative Helmholtz equation in the domain
D\I'.

PROBLEM U. To find a function w(z) of the class K which satisfies the Helmholtz equation

Weyz; (T) + Wayey (z) + BPw(z) = 0, z € D\IY, B = const, ImB >0, (2.2a)

and the boundary condition
g%wuw»r=f@> (2.26)
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If D is an external domain, then we add the following condition at infinity
w = o(jz] %), [Vuw(z)| = o(l2| %), la| = 'z} + 2§ — o0. (2:2¢)

All conditions of the problem U must be satisfied in the classical sense. By dw/0n; on I'? we
mean the limit ensured in the point 4) of the definition of the smoothness class K. The normal
derivative 8w/dn, has to be continuous across I''\ X and has to take given values on '\ X. At
the same time w(z) may have a jump across I''\ X.

On the basis of the energy equalities and the technique of equidistant curves [6], we can easily
prove the following assertion.

THEOREM 1. IfT! € C?*, X€ (0,1], I? € C29, then the problem U has at most one
solution.

The theorem holds for both internal and external domain D.

3. INTEGRAL EQUATIONS AT THE BOUNDARY

Below we assume that f(s) from (2.2b) is an arbitrary function from the Banach space
COMT) N CO(I?), X € (0,1).

If B,(T''), By(I'?) are Banach spaces of functions given on I'! and I'?; then for functions given

on I we introduce the Banach space By(I'!) N By(I'?) with the norm ||-||g,r1)ngyr2y = Illlg, ) +
-1l gcr2y -
-
By/ dawemeanz /
n=1 ak

We consider the angular potential from 3], [4] for the equation (2.2a) on I
i
wilpl(z) = 5 [ W)V (z,0)do. (3.
I
The kernel V(z,0) is defined on the each curve '}, n = 1,..., N; by the formula

V(z,0) = j ou, "8 (Bl = y(OD de, 7 € [af, b1,

where HS(z) is the Hankel function of the first kind

HP(2) = ————ﬁe"pf;_ i/8) / exp(—t)t~V? (1 “ 2 ) ",

v =1(6) = 31(),1(9), It —y(©)] = {/([@1-31(8))? + (22 — y2(€))*-

Below we suppose that u(o) belongs to the Banach space Cy(I''), w € (0,1], g € [0,1) and
satisfies the following additional conditions
by,

/p(a) do=0, n=1,..N,. (3.2)
We say, that u(s) € C¢(I?) if

(o) T [s = a7 s — 82" € co(rt,
n=1
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where C%(T") is a Holder space with the index w and

HI-"(S)”c;f(rl) =

M q q
w(s) T |s = ok [ |s — 1]
n=1

CO.(T1)

As shown in (3], [4] for such u(c) the angular potential w;[u](z) belongs to the class K. In
particular, the inequality (2.1) holds with € = —g, if ¢ € (0, 1). Moreover, integrating w; [u](z) by
parts and using (3.2) we express the angular potential in terms of a double layer potential

wilkl(z) = -5 [ plo) ot (812 = (o)) do, (33
g} v

with the density
o
p(0) = [u(®) de, o€ lakb), n=1,., M, (3.4)
1

Consequently, w;[u](z) satisfies both equation (2.2a) outside I'! and the conditions at infinity
(2.2¢).

Let us construct a solution of the problem U . This solution can be obtained with the help of
potential theory for the Helmholtz equation (2.2a). We seek a solution of the problem in the form
oi; the angular potential on I'* and the single-layer potential on I'?

wlpl(e) = w1 [ul(z) +weul(z) , (3.5)

where wi[p](z) is given by (3.1), (3.3) and
wilsl(@) = § [ w01 (812~ (o)) do.
bd

We will seek u(s) from the Banach space C¥(I'')NC%(I'?), w € (0, 1], ¢ € [0,1) with the norm
"'"C;(I“)nc°(r") = |l 1) + I llcoqre) - Besides, p(s) must satisfy conditions (3.2).

It follows from the properties of potentials [1], [3-4], [6], that for such p(s) the function (3.5)
belongs to the class K and satisfies all conditions of the problem U except the boundary condition
(2.2b). In the case of the external domain D the function (3.5) satisfies the condition at infinity
(2.2¢).

To satisfy the boundary condition we put (3.5) in (2.2b), use the limit formulas for the angular
potential from [3] and arrive at the integral equation for the density u(s) :

g [ I T o+ 5 [ MoV olaleh ) do = gaCute)+

+3 / W(o) 58 (B12(s) ~ y(@))do = £(s), €T, (3.6)

where 6(s) = 0 if s € I'! and §(s) = 1 if s € %,
7 0 1 31
Vo(a,0) = [ s—h (Bl —v(E))dg, o € lah,bi), n=1.2,. Ny,
A y

h(z) = H$) (2) — ln%.

By wo(z,y) we denote the angle between the vector Ty and the direction of the normal n,. The
angle @o(z,y) is taken to be positive if it is measured anticlockwise from n, and negative if it is

measured clockwise from n,. Besides, ¢o(z,y) is continuous in z,y € ' if z # y.
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Thus, if p(s) is a solution of equations (3.2), (3.6) from the space
C¢(TH N C*(T?), w € (0,1], ¢ € [0,1), then the potential (3.5) satisfies all conditions of the
problem U. The following theorem holds.

THEOREM 2. IfT' € C**, I'? € C%°, f(s) € CO¥*(I') N CO(I?), X € (0,1], equation (3.6)
has a solution u(s) from the Banach space C¢(I'') N C°(I%), w € (0,1], q € [0,1) and conditions
(8.2) hold, then the function (3.5) is a solution of the problem U .

Below we look for u(s) in the Banach space C¢(I'') N C°(I'?).

If s € T2, then (3.6) is an equation of the second kind with compact integral operators. If
s € I', then (3.6) is a singular integral equation [5).

Our further treatment will be aimed to the proof of the solvability of the system (3.2), (3.6)
in the Banach space Cy (') N C°(I'?). Moreover, we reduce the system (3.2), (3.6) to a Fredholm
equation of the second kind, which can be easily computed by classical methods.

Equation (3.6) on I'> we rewrite in the form

u(s) + /u(a)Ag(s,o)do = —2f(s), seT? (3.7
where
Aals,0) = —{ (1= 60)) oV (a(6),0) + 36(0) 58" (B12(6) - y(am}

and V(z,0) is the kernel of the angular potential (3.1).
We note Ay(s,0) € C°(I'? x T'), because I'? € C?°,
It can be easily proved that

sin po(z(s), y(a)) 1 ;
(o) gl 7= € VXY

(see (3], [4] for details). Therefore we can rewrite (3.6) on I'! in the form
1 do
2z i =— r .8
e e CIR (39)

where

Vo) ={ (=) [} (Bl L) - Lo tate)o)] -

- 26(0) o (B1e(6) - y(o)l)} € COR(I x T,
poz)\if0<z\<landpo=l—eoforanyeoe(O,l)if/\=1.
4. THE FREDHOLM INTEGRAL EQUATION
AND THE SOLUTION OF THE PROBLEM

Inverting the singular integral operator in (3.8) we arrive at the following integral equation of
the second kind [5]:

“”*Q(s)/“ Mol o) + gl 35 6o = gl s<T (@)

n=0
where Gy, ..., Gn,-1 are arbitrary constants and

/ 20u(9)f () ,

o—S

Ao(s,0) = / 2D uerte, aols) -
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Qi(s) = ﬁ /s —aly/bl —s
n=1

To derive equations for Gy, ..., Gy, -1 we substitute u(s) from (4.1) in the conditions (3.2), then
we obtain

sign(s — al) .

m=0

N-1
/ w(0)n(@)do + 3 BunGm = Hpy n=1,., Ny , (4.2)
r

where  I,(0) = — / QrY(s)Ao(s,0)ds, H,=~— / Q7N (5)®o(s)ds,
T T}

Bnm = — [ Q71(s)s™ds. (4.3)
1{ 1

By B we denote the N; x N; matrix with the elements B,,, from (4.3). As shown in (4], the
matrix B is invertible. The elements of the inverse matrix will be called (B~!)nm. Inverting the

matrix B in (4.2) we express the constants G, ..., Gn,-1 in terms of p(s)
Ny
Gn = Z(B_l)nm [Hm - /P’(U)lm(a)da} .
m=1 T

We substitute G, in (4.1) and obtain the integral equation for (s) on I'*

1
Qi(s)

uls) + @%s) r/ 1(0)Ax(5,0)do = —— (), s €T, (4.4)

where

M-l M
Ai(s,0) = Ao(s,0) = Y. 5" 3 (B amim(0),

n=0 m=1
M-1 M
®1(s) =Po(s) — Y. 5" Y (B amHm
n=0 m=1
It can be shown using the properties of singular integrals (2], [5], that ®o(s), Ao(s, o) are Holder
functions if s € I'!,; o € I'. Therefore, ®,(s), Ai(s,o) are also Holder functions if s € I'*, 0 € I.
Consequently, any solution of (4.4) belongs to Cy/,(I'!) and below we look for u(s) on I'! in this
space.
We put Q(s) = (1 —6(s)) Qi(s) +6(s), seT.
Instead of u(s) € Cy),(*)NC?(I?) we introduce the new unknown function p.(s) = u(s)Q(s) €
C%#(I') N C°(I'?) and rewrite (3.7), (4.4) in the form of one equation

pa(s) + / 1a(0)QH(0)A(s,0)do = B(s), s€T, (4.5)
T
where
A(s,0) = (1 = 6(s)) Ai(s, ) + &(s)A2(s,0), ®(s) = (1 —8(s)) Pa(s) — 25(s)f(s)-

Thus, the system of equations (3.2), (3.6) for u(s) has been reduced to the equation (4 5) for
the function u.(s). It is clear from our consideration that any solution of (4.5) gives a solution of
system (3.2), (3.6).

As noted above, ®,(s) and A;(s,o) are Holder functions if s € '}, o € I". More precisely (see
[4), [5]), ®1(s) € COP(T!), p = min{1/2,)A} and A;(s, o) belongs to C®?(I'!) in s uniformly with

respect to o € I'. We arrive at the following assertion.
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LEMMA. IfT! € C**, A€ (0,1, T2 € C?9, &(s) € C%(T") N CO(T2), p = min{},1/2},
and p.(s) from C%(T) satisfies the equation (4.5) , then u.(s) € CO?(T'') N CO(T2).

The condition ®(s) € CO?(I'!) N C®(I'?) holds if f(s) € CO*(I'') N CO(I2).

Hence below we will seek p,(s) from CO(T').

Since A(s,0) € C%(I" x I'), the integral operator from (4.5):

Ap. = [ 1(@)Q7(0)Als, 0)do
T

is a compact operator mapping C°(T') into itself. Therefore, (4.5) is a Fredholm equation of the
second kind in the Banach space C°(T").

Let us show that homogeneous equation (4.5) has only a trivial solution. Then, according to
Fredholm’s theorems, the inhomogeneous equation (4.5) has a unique solution for any right-hand
side. We will prove this by a contradiction. Let ud(s) € C°(T') be a non-trivial solution of the ho-
mogeneous equation (4.5). According to the lemma K(s) € COP(TY)y N CO(I'?), p = min{A,1/2}.
Therefore the function p%(s) = ul(s)@7'(s) € Cf)5(T'*) N C°(T'?) converts the homogeneous equa-
tions (3.7), (4.4) into identities. Using the homogeneous identity (4.4) we check, that u%(s) satisfies
conditions (3.2). Besides, acting on the homogeneous identity (4.4) with a singular operator with
the kernel (s — t)~! we find that u®(s) satisfies the homogeneous equation (3.8). Consequently,
p9(s) satisfies the homogeneous equation (3.6). On the basis of theorem 2, w[u®](z) is a solution
of the homogeneous problem U. According to theorem 1 : w(u®)(z) = 0, z € D\I'". Using the
limit formulas for tangent derivatives of an angular potential [3], we obtain

wp’)(z) -

By (I'')* we denote the side of I'' which is on the left as a parameter s increases and by (I'*)~ we
denote the other side.

Hence, w[p](z) = walp’)(z)
equation

w[,u°](a:) wW(s)=0, seT

lim lim
:—or(s)e(r")"’ :—-t(s)e(l") o

0, z € D, and p°(s) satisfies the following homogeneous

~212() + £ [ 10 D (Bla(s) ~ y(o))do = 0, s € T2 (46)
r? *

The Fredholm equation (4.6) is well-known in classical mathematical physics (1], [6]. We arrive
at (4.6) when solving the Neumann problem for the Helmholtz equation (2.2a) in the domain D by
the single layer potential. It is well-known [1], that the equation (4.6) has only the trivial solution
1%(s) =0 in C°(I'?). This is true for both internal and external domain D.

Consequently, if s € T, then p%(s) = 0, pl(s) = u°(s)Q"'(s) = 0 and we arrive at the
contradiction to the assumption that p2(s) is a non-trivial solution of the homogeneous equation
(4.5). Thus, the homogeneous Fredholm equation (4.5) has only a trivial solution in C°(T"). We
have proved the following theorem.

THEOREM 3. IfT'' € C?*, T? € C?°, X € (0,1], then (4.5) is a Fredholm equation of the
second kind in the space C°(T'). Moreover, equation (4.5) has a unique solution p,(s) € C°(T) for
any ®(s) € C°(1).

As a consequence of the theorem 3 and the lemma we obtain the corollary.

COROLLARY. IfT! € C** A€ (0,1], T? € C*° and ®(s) € CO*(I'') N C°(I'?), where
p = min{\, 1/2}, then the unigue solution of (4.5) in C°(T'), ensured by theorem 3, belongs to
CO?(I') N CO(T2).

We recall that ®(s) belongs to the class of smoothness required in the corollary if f(s) €
C%*(T') N C°(T'?). As mentioned above, if u.(s) € COP(I'') N C°(T'?) is a solution of (4.5), then
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u(s) = pa(s)Q*(s) € CF5(T1)NCO(T?) is a solution of system (3.2), (3.6). We obtain the following
statement.

THEOREM 4. IfT! € C*, T? € C2, f(s) € COMI!) N CT?), X € (0,1], then the
system of equations (5.2), (3.6) has a solution p(s) € C},(I") NC°(I?), p = min{1/2, A}, which
15 ezpressed by the formula p(s) = p.(s)Q7Y(s), where p,(s) € CO¥P(TY) N CO(I'?) is the unique
solution of the Fredholm equation (4.5) in C°(T).

On the basis of the theorem 2 we arrive at the final result.

THEOREM 5. IfT* € C?*, T? € C?°, f(s) € CO*I) N C%T?), A € (0,1), then the
solution of the problem U exists and is given by (3.5), where u(s) is a solution of equations (3.2),
(3.6) from C7,(T*) N C°(T?), p = min{1/2, \} ensured by the theorem 4.

It can be checked directly that the solution of the problem U satisfies condition (2.1) with
€ = —1/2. Explicit expressions for singularities of the solution gradient at the end-points of the
open curves can be easily obtained with the help of formulas presented in [4].
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