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INTRODUCTION

Grothencheck has proved that, under certain condiuons, spaces of continuous linear mappings on locally

convex spaces are naturally isomorphic to spaces of continuous mappings on locally compact topologmal

spaces, rather as vector spaces or even as locally convex spaces Non-linear vermons of his results have been

discussed in [2]
In the present note, we use Grothendieck’s argument to show that modules of continuous linear mappings

wtth values m topologmal modules of continuous mappings may be identified with modules of continuous

mappings vath values m topological modules of continuous linear forms.

Throughout flus note, A denotes a commutative topological nng with an dentity element and all A-modules

under consideratmn are umtary T represents an arbitrary topological space, C(T; S) the A-module of all

continuous mappings from T into the topological A-module S and C(T) := C(T; A). Given two topological A-

modules R and S,,(R; S) represents the A-module of all continuous A-linear mappings from R into S and

R’ := :(R; A). Moreover, R’ denotes the A-module R’ endowed with the A-module topology % ofpomtwse

convergence.

PROPOSITION 1. Let E,F be topologmal A-modules and u E/(E;F) Then tu/(F’; E’) and tu
transforms equicontmuous subsets of F’ into equicontmuous subsets of E’, where tu is the adjomt ofu

PROOF. Straightforward.

Consider C(T) endowed with the topology of compact convergence. By Theorem 15 4 (1) of [5] and

Propomtion (a) of [3], C(T) m a topological A-module. (The proposition just mentioned will also ensure that

other function spaces which will appear in the sequel are topological A-modules.)
For each T, let 6(t): C(T) A be given by 6(t)(f) f(t) for f C(T). Then 6(t) (C(T))’
PROPOSITION 2. The mapping

6: e T (t) e (C(T))’
is continuous when (C(T))’ is endowed with 7-, and transforms compact subsets of T into eqmcontmuous

subsets of (C(T))’
PROOF. Let to E T, f C(T) and W a neighborhood of zero in A. By the continuity of f at to, there

exasts a neighborhood V of to m T such that f(t) f(to) E W for all V, that m, (6(t) (to))(f) W

for all E V. This proves the contmuity of 6 at to. Moreover, ifK is a compact subset of T, then

6(K)({f e C(T);f(K) c W}) c W.
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This shows that 6(K) ,s equlcontmuous, thereby concluding the proof.
Let E be a topological A-module For each u 6 (E;C(T)), define (u) tu o 6 By Proposllaons and

2, I,(u) e C(T; E’) and (u) transforms compact subsets of T into equicontmuous subsets of E’ Let @ be
the A-hnear mapplng

u e (E;C(T)) (u) e C(T;E’s),
and let H be the submodule ofC(T; E’) formed by the continuous mappings h T E such that h(K) s an
equmonhnuous subset of E’ for every compact subset K of T.

TItEOREM. s an A-module isomorphism between (E; C(T)) and H
PROOF. We have just observed that Im() C H.
We claim that s mjectave. Indeed, take a u 6 (E;C(T)) such that (u) 0, and fix an x e E Then,

for all e T,
[(’, o )(t)]() [(t) o ,](=) ,(=)(t) o.

Therefore u(x) 0, and so u 0.

Now, let us verify that H c Im() Indeed, if h e H, define u(x)(t) h(t)(x) for x E, T. Then
u(z) C(T) since u(x) ,b o h, where ,I is the 7-s-continuous A-linear mapping oE’ o(x) A. More-
over, t is easily seen that u is an A-linear mapping from E into C(T) In order to prove the contmmty of u, let
K be a compact subset ofT and W a neighborhood ofzero m A By the equmontmuity of h(K), there exists a

neighborhood U ofzero m E such that h(K)(U) c W. Therefore

u(U) c {f e C(T); f(K) c W},
winch proves the continuity of u. Finally, it is clear that (u) h, which concludes the proofof the theorem.

Let E be a topological A-module. Let .M be a fanuly of bounded subsets of E such that for every
B, B2 6 .A there is a B3 6 .M with B U B2 c B3, and let T be the A-module topology on E’ of .M-
convergence. By Theorem 15.2 (1), (4) of [5], the set G of all mappings g:T E’ such that g(K) is

bounded in E’ for every compact subset K ofT is an A-module. By Theorem 25.5 of [5], H C G, and hence
H is a submodule of G. Consider E’ endowed with r Then G, endowed with the topology of compact

convergence, is a topological A-module. Consider on H the A-module topology reduced by that ofG
COROLLARY 1. is a topological A-module somorphism between ,(E;C(T)) and H, where

(E;C(T)) denotes (E;C(T)) endowed with the A-module topology of J4-convergence.
PROOF. It suffices to observe that, if B .A4, K is a compact subset of T and W ts a neighborhood of

zero in A, then u e {v e (E;C(T));v(B)(K) C W} (a basic neighborhood of zero m (E;C(T))) if and
only tf(u) e {h e H; h(K)(B) c W} (a basic neighborhood ofzero m H).,

If E is a barrelled topological A-module ([4], Definition 2.1), Theorem 15.4 (1) of[5] and Theorem 3 of

[4] imply that H C(T; E) As a consequence, Corollary yields:

COROLLARY :. If E is a barrelled topological A-module, then ,,(E;C(T)) and C(T;E’) are

tsomorphic as topological A-modules.
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