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ABSTRACT. In this paper we will show how to generate in general 45,,, 1 and S5, using a copy of
S, and an element of order 2 in 45,,,1 or S;,,1 for all positive integers n>2. We will also show how to
generate 4y, 1 and S,,,..| symmetrically using » elements each of order 2.
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1. INTRODUCTION
It is shown by Hammas [1] that 4, | can be presented as

G=Agys1 =<XV,T| <X, Y>=S,, T*=[1,5, 1]=1>

for n=4, 6, where [T, S,,_] means that T commutes with ¥ and with X 'ZYX, (the generators of S,,_;).
The relations of the symmetric group S,, = < X,Y > of degree n are found in Coxeter and Moser([2]. Some
relations must be added to the presentation of 45,,, | in order to complete the coset enumeration. Also, it

has been shown by Hammas [1] that for n =4, 6, the group 45,,1 can be symmetrically generated by n

i
elements Ty, Ty, .., T,_1, each of order2, of the form T;=T% =X 'TxX", where T and X satisfy the
relations of the group A,,.1. The set {T(), Ty, ..., T,,_;} is called a symmetric generating set of Arp

(see section 3).
In this paper, we give a generalization of the results obtained by Hammas [1] forall n>2.

Moreover a proof is given to show that the group

2
G=<XY,T| <X, Y>=S, T =[T,S, ;]=1>
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is either 45,1 ifnisevenor Sy, ifnisodd forall n>2. We give permutations that generate A5, |
and S5, for all n>2 which satisfy the conditions given in the presentation of the group G. Further, we
prove that G can be symmetrically generated by n permutations, each of order 2, satisfying the condition
given in remark 2.4.

Our research is motivated by the aim of showing groups in their most “natural” role acting on (or
permuting) the members of a symmetric generating set. The author has applied the method to obtain the

symmetric generating sets and the presentations of the following finite simple groups:
Tits group 2F,(2)’, Janco groups J, and J ,» Mathieu groups M,,and M,,, and some of the linear
groups PSL(2,q). For more details, see Hammas [1] .

2. PRELIMINARY RESULTS

In this section, we give some of the preliminary results to be used in later sections. The proofs of
these results can be found in many references, see for example [2], [4], and [5].
LEMMA 2.1. Let 1<a=b< n be integers where n is odd. Let G be the group generated by the n-cycle
(1,2, ...,n) and the 3-cycle ( n,a, b). If the highest common factor hef(n,a,b)=1,then G=4,,
LEMMA 2.2. Let n be an odd integer and let G be the group generated by the n-cycle ( 1,2, ..., n) and
the k-cycle (1,2, ..., k). If 1<k <nand kis an odd integer, then G =An.
PROOF. Let 6=(1,2,3,...,n), and 7 =(1,2,...,k). Since the commutator [c,t]=(1,2,k+1]), then by Lemma
2.1,G=4,.
LEMMA 2.3. Let G be the group generated by n-cycle (1,2,...,n) and the involution (n,1)(iy) for 1 <i =

j <n.If n29is an odd integer then GEAn.

REMARK 2.4. The main condition used in Hammas [1], which we are going to use in this paper, is that

T commutes with the generators of the group S,, ;.

3. SYMMETRIC GENERATING SETS

i P
Let G be agroup and let I'= {Ty, Ty, ..., T),_1 } be a subset of G, where T; = TX =x"'1x’ for
all i=0,1,..,n-1.Let S, be the normalizer of the set I"in G, which is a copy of the symmetric group of
degree n. We define I to be a symmetric generating set of G if and only if G=<I">and §,, permutes

I' doubly transitively by conjugation. Equivalently, I is realizable as an inner automorphism.

4. PERMUTATIONAL GENERATING SET OF A4j,,; and S),.
THEOREM 4.1. 49,1 (Syp+1) can be generated using a copy of S, and an element of order 2 in
Ayl S9p+1) if nis even (odd) for all n22.

PROOF. Let X=(1, 2, ..., n)(n+l, n+2, ..., 2n), Y=(n-1, n)(2n-1, 2n) and 7= (1, 2n+1)(2, n+2) ... (n, 2n)
be three permutations; the first is of order », the second and the third are of order 2. Let H be the group
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generated by X'and Y. By the Burnside and Moore Theorem (see Coxeter and Moser [2] ), the group H is

the symmetric group S,, . Let G be the group generated by X, Yand T. Consider the commutator
n=[ X.T ], which has the form n= (1,n+1,2n+1,n+2,2). Then

nonX = (120 1) 243 3) 0+ 10t 2) =ar.

Therefore a 2. (2,3,n+3). Hence

-1
Xn(a 2 )X =(1,2,..,n,n+1,...,2n,2n+1).

-1
Let B = X n(a 2 )X .LetK =<8 ,az,T > be a subgroup of G . Since the highest common factor

hef(2.3.7n+3) = 1. thenby Lemma 2.1 <f,a 2 >=Ap,+1- Now if n is an even integer, then K= A7,
Since X, ¥ and T are even permutations then K =G = App+1- Also, if nis an odd integer, then T is an odd

permutation and therefore K =G = S,,,11.

5. SYMMETRIC GENERATING SET OF 4,,,,1 and S,

THEOREM 5.1. Let X,Y and T be the permutations described in Theorem 4.1. Let I' ={T,T1,....T),_1},
i

where T;= TX and 1 =0,1,...,n-1. If n is an even integer, then the set I generates the alternating group

Ayp+1 symmetrically, while if zis an odd integer, then the set I generates the symmetric group Sy,

symmetrically.

n—1
PROOF. Let To=(1,2n+1)(2,n+2)... (n,2n), T1=(1,n+1)(2,2n+1)... (n,2n), ..., Tj,_1= TX =(n,2n+1)

(I,n+1) ... (n-1,2n-1). Let H=<TI >. Weclaim thatif » is an even integer, then H=4,,,1andif n is
an odd integer, then H=S;,,;. To show this, suppose first that n is an even integer. Consider the

element

=]
|
—

i
a=] TX.
1

It
(=}

It is not difficult to show that a=(1,2,n+2,n+3,3,4,n+4,n+5,5,6,...,2n,2n+1,n+1) and it is a cycle of length
2n+1.  Let B=ToT;. It is clear that B=(1,2,n+2,2n+2,n+1). Let Hi= <a,B> We claim that

Hy=Ap,41. To prove this, let © be the mapping which takes the element in the position 1 of the cycle
a into the element i of the cycle (1,2,...,2n+1). Under this mapping, the group A} will be mapped into
the group 6 (Hy)= <(1,2,...,2n+1),(1,2,3,2n,2n+1)> which is, by Lemma 2.2, the alternating group
Ayp+1-Hence H= Hy = 0 (H)=App41-

Second, suppose that # is an odd integer. Consider the element
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l
s-11 %"
o1

It is not difficult to show that § =(1.2n+1,2,n+3.4,n+5.6,n+7.....2n ) and it is a cycle of length n+1. Let

T T
w=5 17y Since & !=(22n+13.1+4,5.n%6,..,nn+1), then

p=(1,2n+1,n+3,3,4,n+4,n+5,...,n,n+1,n+2,2)
n T3
which is a cycle of length 27+1.Let =T © T, °, then B=(2,n+2,3 )(4,2n+1)(n+3,n+4). Therefore

B2 =(2,3.,n+2). Let Hy =<pu,p 2,T0 >. We claim that H, =S5,,.. To prove this, let® be the mapping
which takes the element in the position i of the cycle u into the element i of the cycle (1,2,...,2n+1).
Under this mapping the group A, will be mapped into the group
0 (Hy)= <(1,2,...,2n+1),(2n+1,4,2n),(1,2)(3,4)...(2n-3,2n-2)(2n.2n+1) >.

Since the hef(2n+1,4.2n)=1, then the group <(1,2,...,2n+1),(2n+1,4,2n) > is the alternating group 45,,,-
Since n is an odd integer, then the permutation (1,2)(3,4)...(2n-3,2n-2)(2n,2n+1) is an odd permutation.
Therefore the group 6 (H>) is the symmetric group Sy,,..1. Hence H= Hy = 6 (H) = Sp,)+1-

The set I' described above satisfies the conditions of the group G given insection 1. Itis

important to note that I' must have exactly » elements each of order 2 to generate 45,., or 5,1 The

following Theorem characterizes all groups obtained by removing m elements of the set ' for some
integer m.

THEOREM 5.2. Let T and X be the permutations described above and let I' ={T}.T5,...,T};}. Then,
removing m elements of theset I' forall 1<m<n-3, the resulting set generates SZ(n—m)-H’ removing
m=(n-2) elements of the set I', the resulting set generates the dihedral group of order 10 (D), and
removing m=(n—1) elements of the set ", the resulting set generates the cyclic group C2.

PROOF. Using induction on n—m, if n-m=1, then I {={T1}. Since T1=(1,n+1)(2,2n+1)(3,n+3)...(n, 2n),
then T | generates C2' If n-m =2, then T 5 = {T1,T}. Since Ty is the permutation described above,
To=(1,n+1)(2,n+2)(3,2n+1)...(n,2n), and T 1 T»=(2,3,n+3,2n+1,n+2), then it is clear that I 5 generates

) (THT3..Ty.1)
Dyo. Now suppose that | <m <n-3.1f n—m=k then I' }={T7, ...,T}. Assuming a=T) T,

then for k an even integer we have
o =(2,3,#+4,5,n+6,7,n+8,... k-1, n+k k+1,n+tk+12n+1 kntk-1,k-2,n+k-3,...,4.n+3,n+2)
which is a permutation of length 2k+1; while if & is an odd integer, then

o =(2,n+2,3,n+3,4,n+5,6,n+7,8,n+9,... k-1,n+k k+1,n+k+1,2n+1 kntk-1,k-2,n+k-3,...,5, n+4,3) ,
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T
it is also a permutation of length 2k+1. Let B=T 2 T T,T, . Since B=(2, n+3)(3, n+2)( 4, n+4, 2n+1),
1 14213

then |33=(2,n+3)(3,n+2). By Lemma 2.3, aand B 3 generate 4. 1. Hence the group generated by a,

B 3 and T; is the Symmetric group Sy 1. Therefore the Theorem is true for all m.

REMARK. The above results are summarized in the following table

n G=<X,YT> <X, T> <I>
1 even A2n+1 A2n+1 A2n+1
2 odd S2n+1 San+1 S2n+1

where

2n+1

2 -2 10
Appe1= <XXT|I <XY>=8, T"=[TY]=[T.X "YX]=(XD)"" =T, ,) >

2 -2 +1 10
Sype1= KETI<KY > =8, T2 =Ly =[x *1x = xn D= r 1'%,

From the above, we can see that the order of the element XT is n(n+1) when » is an odd integer.
As n gets larger, the order of XT becomes very large. For this reason, Hammas [1] had been unable to

proceed for large odd values of n.
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