

**SYMMETRIC GENERATING SET OF THE GROUPS A_{2n+1} AND S_{2n+1}
USING S_n AND AN ELEMENT OF ORDER TWO**

A.M. HAMMAS

Department of Mathematics
College of Education
P.O.Box 344
King Abdulaziz University
Madinah, Saudi Arabia

(Received March 18, 1996 and in revised form August 28, 1996)

ABSTRACT. In this paper we will show how to generate in general A_{2n+1} and S_{2n+1} using a copy of S_n and an element of order 2 in A_{2n+1} or S_{2n+1} for all positive integers $n \geq 2$. We will also show how to generate A_{2n+1} and S_{2n+1} symmetrically using n elements each of order 2.

KEY WORD AND PHRASES: Symmetric generators, Involution, Double transitive groups, Group presentation

1991 AMS SUBJECT CLASSIFICATION CODES: 20F05

1. INTRODUCTION

It is shown by Hammas [1] that A_{2n+1} can be presented as

$$G = A_{2n+1} = \langle X, Y, T \mid \langle X, Y \rangle = S_n, T^2 = [T, S_{n-1}] = 1 \rangle$$

for $n=4, 6$, where $[T, S_{n-1}]$ means that T commutes with Y and with $X^{-2}YX$, (the generators of S_{n-1}). The relations of the symmetric group $S_n = \langle X, Y \rangle$ of degree n are found in Coxeter and Moser[2]. Some relations must be added to the presentation of A_{2n+1} in order to complete the coset enumeration. Also, it has been shown by Hammas [1] that for $n = 4, 6$, the group A_{2n+1} can be symmetrically generated by n elements T_0, T_1, \dots, T_{n-1} , each of order 2, of the form $T_i = T^X^i = X^{-i}TX^i$, where T and X satisfy the relations of the group A_{2n+1} . The set $\{T_0, T_1, \dots, T_{n-1}\}$ is called a symmetric generating set of A_{2n+1} (see section 3).

In this paper, we give a generalization of the results obtained by Hammas [1] for all $n \geq 2$. Moreover a proof is given to show that the group

$$G = \langle X, Y, T \mid \langle X, Y \rangle = S_n, T^2 = [T, S_{n-1}] = 1 \rangle$$

is either A_{2n+1} if n is even or S_{2n+1} if n is odd for all $n \geq 2$. We give permutations that generate A_{2n+1} and S_{2n+1} for all $n \geq 2$ which satisfy the conditions given in the presentation of the group G . Further, we prove that G can be symmetrically generated by n permutations, each of order 2, satisfying the condition given in remark 2.4.

Our research is motivated by the aim of showing groups in their most “natural” role acting on (or permuting) the members of a symmetric generating set. The author has applied the method to obtain the symmetric generating sets and the presentations of the following finite simple groups:

Tits group ${}^2F_4(2)$, Janko groups J_1 and J_2 , Mathieu groups M_{12} and M_{24} , and some of the linear groups $PSL(2, q)$. For more details, see Hammas [1].

2. PRELIMINARY RESULTS

In this section, we give some of the preliminary results to be used in later sections. The proofs of these results can be found in many references, see for example [2], [4], and [5].

LEMMA 2.1. Let $1 \leq a \neq b \leq n$ be integers where n is odd. Let G be the group generated by the n -cycle $(1, 2, \dots, n)$ and the 3-cycle (n, a, b) . If the highest common factor $\text{hcf}(n, a, b) = 1$, then $G = A_n$.

LEMMA 2.2. Let n be an odd integer and let G be the group generated by the n -cycle $(1, 2, \dots, n)$ and the k -cycle $(1, 2, \dots, k)$. If $1 < k < n$ and k is an odd integer, then $G = A_n$.

PROOF. Let $\sigma = (1, 2, 3, \dots, n)$, and $\tau = (1, 2, \dots, k)$. Since the commutator $[\sigma, \tau] = (1, 2, k+1)$, then by Lemma 2.1, $G \cong A_n$.

LEMMA 2.3. Let G be the group generated by n -cycle $(1, 2, \dots, n)$ and the involution $(n, 1)(i, j)$ for $1 < i \neq j < n$. If $n \geq 9$ is an odd integer then $G \cong A_n$.

REMARK 2.4. The main condition used in Hammas [1], which we are going to use in this paper, is that T commutes with the generators of the group S_{n-1} .

3. SYMMETRIC GENERATING SETS

Let G be a group and let $\Gamma = \{T_0, T_1, \dots, T_{n-1}\}$ be a subset of G , where $T_i = T^{X^i} = X^{-i} T X^i$ for all $i = 0, 1, \dots, n-1$. Let S_n be the normalizer of the set Γ in G , which is a copy of the symmetric group of degree n . We define Γ to be a symmetric generating set of G if and only if $G = \langle \Gamma \rangle$ and S_n permutes Γ doubly transitively by conjugation. Equivalently, Γ is realizable as an inner automorphism.

4. PERMUTATIONAL GENERATING SET OF A_{2n+1} AND S_{2n+1}

THEOREM 4.1. A_{2n+1} (S_{2n+1}) can be generated using a copy of S_n and an element of order 2 in A_{2n+1} (S_{2n+1}) if n is even (odd) for all $n \geq 2$.

PROOF. Let $X = (1, 2, \dots, n)(n+1, n+2, \dots, 2n)$, $Y = (n-1, n)(2n-1, 2n)$ and $T = (1, 2n+1)(2, n+2) \dots (n, 2n)$ be three permutations; the first is of order n , the second and the third are of order 2. Let H be the group

generated by X and Y . By the Burnside and Moore Theorem (see Coxeter and Moser [2]), the group H is the symmetric group S_n . Let \bar{G} be the group generated by X, Y and T . Consider the commutator $\eta = [X, T]$, which has the form $\eta = (1, n+1, 2n+1, n+2, 2)$. Then

$$\eta^3 \eta^X = (1, 2n+1)(2, n+3, 3)(n+1, n+2) = \alpha.$$

Therefore $\alpha^2 = (2, 3, n+3)$. Hence

$$X\eta(\alpha^2)^{X^{-1}} = (1, 2, \dots, n, n+1, \dots, 2n, 2n+1).$$

Let $\beta = X\eta(\alpha^2)^{X^{-1}}$. Let $K = \langle \beta, \alpha^2, T \rangle$ be a subgroup of \bar{G} . Since the highest common factor $\text{hcf}(2, 3, n+3) = 1$, then by Lemma 2.1 $\langle \beta, \alpha^2 \rangle = A_{2n+1}$. Now if n is an even integer, then $K = A_{2n+1}$.

Since X, Y and T are even permutations then $K = \bar{G} = A_{2n+1}$. Also, if n is an odd integer, then T is an odd permutation and therefore $K = \bar{G} = S_{2n+1}$.

5. SYMMETRIC GENERATING SET OF A_{2n+1} and S_{2n+1}

THEOREM 5.1. Let X, Y and T be the permutations described in Theorem 4.1. Let $\Gamma = \{T_0, T_1, \dots, T_{n-1}\}$,

where $T_i = T^{X^i}$ and $i = 0, 1, \dots, n-1$. If n is an even integer, then the set Γ generates the alternating group A_{2n+1} symmetrically, while if n is an odd integer, then the set Γ generates the symmetric group S_{2n+1} symmetrically.

PROOF. Let $T_0 = (1, 2n+1)(2, n+2) \dots (n, 2n)$, $T_1 = (1, n+1)(2, 2n+1) \dots (n, 2n)$, ..., $T_{n-1} = T^{X^{n-1}} = (n, 2n+1)(1, n+1) \dots (n-1, 2n-1)$. Let $H = \langle \Gamma \rangle$. We claim that if n is an even integer, then $H \cong A_{2n+1}$ and if n is an odd integer, then $H \cong S_{2n+1}$. To show this, suppose first that n is an even integer. Consider the element

$$\alpha = \prod_{i=0}^{n-1} T^{X^i}.$$

It is not difficult to show that $\alpha = (1, 2, n+2, n+3, 3, 4, n+4, n+5, 5, 6, \dots, 2n, 2n+1, n+1)$ and it is a cycle of length $2n+1$. Let $\beta = T_0 T_1$. It is clear that $\beta = (1, 2, n+2, 2n+2, n+1)$. Let $H_1 = \langle \alpha, \beta \rangle$. We claim that $H_1 \cong A_{2n+1}$. To prove this, let θ be the mapping which takes the element in the position i of the cycle α into the element i of the cycle $(1, 2, \dots, 2n+1)$. Under this mapping, the group H_1 will be mapped into the group $\theta(H_1) = \langle (1, 2, \dots, 2n+1), (1, 2, 3, 2n, 2n+1) \rangle$ which is, by Lemma 2.2, the alternating group A_{2n+1} . Hence $H \cong H_1 \cong \theta(H_1) \cong A_{2n+1}$.

Second, suppose that n is an odd integer. Consider the element

$$\delta = \prod_{i=1}^n T^X^i$$

It is not difficult to show that $\delta = (1, 2n+1, 2, n+3, 4, n+5, 6, n+7, \dots, 2n)$ and it is a cycle of length $n+1$. Let

$\mu = \delta^{T_1} T_0$. Since $\delta^{T_1} = (2, 2n+1, 3, n+4, 5, n+6, \dots, n, n+1)$, then

$$\mu = (1, 2n+1, n+3, 3, 4, n+4, n+5, \dots, n, n+1, n+2, 2)$$

which is a cycle of length $2n+1$. Let $\beta = T_1^{T_2} T_2^{T_3}$, then $\beta = (2, n+2, 3)(4, 2n+1)(n+3, n+4)$. Therefore $\beta^2 = (2, 3, n+2)$. Let $H_2 = \langle \mu, \beta^2, T_0 \rangle$. We claim that $H_2 \cong S_{2n+1}$. To prove this, let θ be the mapping which takes the element in the position i of the cycle μ into the element i of the cycle $(1, 2, \dots, 2n+1)$. Under this mapping the group H_2 will be mapped into the group

$$\theta(H_2) = \langle (1, 2, \dots, 2n+1), (2n+1, 4, 2n), (1, 2)(3, 4) \dots (2n-3, 2n-2)(2n, 2n+1) \rangle.$$

Since the $\text{hcf}(2n+1, 4, 2n) = 1$, then the group $\langle (1, 2, \dots, 2n+1), (2n+1, 4, 2n) \rangle$ is the alternating group A_{2n+1} . Since n is an odd integer, then the permutation $(1, 2)(3, 4) \dots (2n-3, 2n-2)(2n, 2n+1)$ is an odd permutation. Therefore the group $\theta(H_2)$ is the symmetric group S_{2n+1} . Hence $H_2 \cong \theta(H_2) \cong S_{2n+1}$.

The set Γ described above satisfies the conditions of the group G given in section 1. It is important to note that Γ must have exactly n elements each of order 2 to generate A_{2n+1} or S_{2n+1} . The following Theorem characterizes all groups obtained by removing m elements of the set Γ for some integer m .

THEOREM 5.2. Let T and X be the permutations described above and let $\Gamma = \{T_1, T_2, \dots, T_n\}$. Then, removing m elements of the set Γ for all $1 \leq m \leq n-3$, the resulting set generates $S_{2(n-m)+1}$, removing $m=(n-2)$ elements of the set Γ , the resulting set generates the dihedral group of order 10 (D_{10}), and removing $m=(n-1)$ elements of the set Γ , the resulting set generates the cyclic group C_2 .

PROOF. Using induction on $n-m$, if $n-m=1$, then $\Gamma_1 = \{T_1\}$. Since $T_1 = (1, n+1)(2, 2n+1)(3, n+3) \dots (n, 2n)$, then Γ_1 generates C_2 . If $n-m=2$, then $\Gamma_2 = \{T_1, T_2\}$. Since T_1 is the permutation described above, $T_2 = (1, n+1)(2, n+2)(3, 2n+1) \dots (n, 2n)$, and $T_1 T_2 = (2, 3, n+3, 2n+1, n+2)$, then it is clear that Γ_2 generates D_{10} . Now suppose that $1 \leq m \leq n-3$. If $n-m=k$, then $\Gamma_k = \{T_1, \dots, T_k\}$. Assuming $\alpha = T_1^{(T_2 T_3 \dots T_{k-1})} T_k$, then for k an even integer we have

$$\alpha = (2, 3, n+4, 5, n+6, 7, n+8, \dots, k-1, n+k, k+1, n+k+1, 2n+1, k, n+k-1, k-2, n+k-3, \dots, 4, n+3, n+2)$$

which is a permutation of length $2k+1$; while if k is an odd integer, then

$$\alpha = (2, n+2, 3, n+3, 4, n+5, 6, n+7, 8, n+9, \dots, k-1, n+k, k+1, n+k+1, 2n+1, k, n+k-1, k-2, n+k-3, \dots, 5, n+4, 3),$$

it is also a permutation of length $2k+1$. Let $\beta = T_1^{T_2} T_1 T_2 T_3$. Since $\beta = (2, n+3)(3, n+2)(4, n+4, 2n+1)$, then $\beta^3 = (2, n+3)(3, n+2)$. By Lemma 2.3, α and β^3 generate A_{2k+1} . Hence the group generated by α , β^3 and T_1 is the Symmetric group S_{2k+1} . Therefore the Theorem is true for all m .

REMARK. The above results are summarized in the following table

n	$G = \langle X, Y, T \rangle$	$\langle X, T \rangle$	$\langle \Gamma \rangle$
1	even	A_{2n+1}	A_{2n+1}
2	odd	S_{2n+1}	S_{2n+1}

where

$$A_{2n+1} = \langle X, Y, T \mid \langle X, Y \rangle = S_n, T^2 = [T, Y] = [T, X^{-2} Y X] = (XT)^{2n+1} = (YT_{n-2})^{10} \rangle.$$

$$S_{2n+1} = \langle X, Y, T \mid \langle X, Y \rangle = S_n, T^2 = [T, Y] = [T, X^{-2} Y X] = (XT)^{n(n+1)} = (YT_{n-2})^{10} \rangle.$$

From the above, we can see that the order of the element XT is $n(n+1)$ when n is an odd integer. As n gets larger, the order of XT becomes very large. For this reason, Hammas [1] had been unable to proceed for large odd values of n .

REFERENCES

- [1] HAMMAS, A. M.. "Symmetric Presentations of Some Finite Groups." Ph. D. Thesis, University of Birmingham, May 1991.
- [2] COXETER, H.S.M. and MOSER, W.O.J., "Generators and relations for Discrete Groups," third ed., Springer-Verlag, New York, 1972.
- [3] AI-AMRI, IBRAHIM R and HAMMAS, A. M., "Symmetric Generating Set of the Groups A_{kn+1} and S_{kn+1} ," To appear in Journal of King Abdulaziz University, Sciences.
- [4] AI-AMRI, IBRAHIM R., "Computational Methods in Permutation Group Theory," Ph. D. Thesis, University of St. Andrews, September 1992.
- [5] HAMMAS, A. M. and AI-AMRI, IBRAHIM R., "Symmetric Generating Set of the Alternating Groups A_{2n+1} ," Journal of King Abdulaziz University, Educ. Sci., Vol. 7(1994), 3-7.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk