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ABSTRACT. We give a theorem for nonconvex topological vector spaces which yields the

classical fixed point theorems of Ky Fan, Kim, Kaczynski, Kelly and Namioka as immediate

consequences, and prove a new fixed point theorem for set-valued maps on arbitrary topological
vector spaces.
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1. INTRODUCTION.
In 1935, Tychonoff proved the following celebrated result.

THEOREM 1.1. If X is a nonempty convex and compact subset of a locally convex

topological vector space E, then any continuous map f" X -+ X has a fixed point.
Even though Theorem 1.1 has been the subject of extensive and sharp generalizations, the

question of whether Theorem 1.1 is true in general topological vector spaces still remains open.

Recently, the authors encountered papers that extend Theorem 1.1 to topological vector spaces
]E having a separating dual ]E*. The purpose of this paper is to show that this assumption

implies local convexity of X and consequently the results follow from known results.
Let IF be the scalar fields or C and E be a topological vector space over F with dual

* (possibly E* {0)). Let T and r denote the original and weak topologies of ]E. Note
that r is locally convex and if ]E* separates points of , then r is Hausdorff. For a subset

X C_ ]E, (X, r,) (resp. (X, r)) denotes X with the relative topology r, (resp. r).

2. SOMETHING OLD, SOMETHING NEW.
In what follows X compact means that X is compact in the topology of ]E.

PROPOSITION 2.1. Let X be a nonempty compact subset of If(X, r) is Hausdorff,
the,,, (x, -,) (x, -).

PROOF. By definition, ’, _c -. Conversely, let A be a r-closed subset of X. Then A is

--compact, and hence r-compact. Since ’, is Hausdorff, it follows that A is r-closed. Thus

(X, r) C (X, r) and hence (X,
Note that if ]* separates the points of X, then (X, r) is Hausdorff.
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Proposition 2.1 provides simple proofs of the following results. Original proofs of these
results make use of partitions of unity or other techniques.
COROLLARY 2.2 (Ky Fan [2]). Let X be a nonempty compact and convex subset of _..

If IE* separates the points of X, then ever9 continuous map f X --+ X has a fixed poznt.
PROOF. Since * separates the points of X, (X, r) is Hausdorff, hence by Proposition

2.1, (X, r)= (X, r,o), and thus f: (X, r) -+ (X, r)is continuous. Since X is r-compact, by
Theorem 1.1, f has a fixed point.

The following result is a generalization of Corollary 2.2.

COROLLARY 2.3. Let X be a nonempty compact and convex subset ore and f X -->
be a continuous function. If IE* separates the points of X, then ezther (a) f has a fixed point,

or (b) there exists :co E X and a v-continuous seminorm p on IE such that 0 < p(zo f(xo))
min{p(z- f(zo)) z X}.

PROOF. Since (X,r,o) is Hausdorff, by Proposition 2.1 it follows that (X, r) (X,r).
Since % C_ r, f (X, %) -+ (E, %) is continuous. Since X is r compact, it follows by Ky Fan
[2] that either (a) f has a fixed point, or (b) there exists z0 X and a r-continuous seminorm

p on IE with 0 < p(zo- I(zo)) min{p(z- f(xo)):z X}. Note that a r is continuous

seminorm on E is a r-continuous seminorm on E. o
As an immediate consequence of the above corollary, we have

COROLLARY 2.4 (Kaczynski [4]). Let X be a nonempty compact convex subset of E
and IE* separate the points of X. If f X --4 E is a continuous function such that for each

z e X, f(z) # z, there ez,st A such that lal < and

x + (I A)f(x) E X, (i)

then f has a fixed point.

PROOF. Assume that f has no fixed points. Then by Corollary 2.3, there exists z0 E X
and a v-continuous seminorm p on IE satisfying 0 < p(xo-f(xo)) min{p(x-f(zo))" x X}.
By assumption, there exists A with IAI < such that u Sx + (1 $)f(x) X. This implies
that

0 < p(xo f(xo)) <_ p(u f(xo)) [Alp(x0 f(xo)) < p(xo f(xo)),

a contradiction. Hence f has a fixed point.

DEFINITION 2.5. Let X _C ]E. A mapping f X - ]E is weakly continuous if for every

z* E E*, x*(f)’(X, r,o) -- IF is continuous.

PROPOSITION 2.6. If f" X --> IF_, is weakly continuous, then f (X, r,) --+ (E, r,) is

continuous.

PROOF. For e > 0 let N(0, e) denote the open neighborhood of 0 of radius e in IF. If V is

a r-basic neighborhood of 0 in IE, then V f’l,=l(x’)-l(N(0, e,)) for some z,-.-,x
and 1,.--,e > 0. Hence f-(V) ,=, f-(x*,)-l(N(O,,)) ,%,(x*,(f))-(N(O,e,))
Thus f (X, r) (IE, r,,) is continuous.

Let X C IE and z e X. The inward set of X is defined to be

zx(,) {z e E z : + ,(v- :)u s x, , > o)
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COROLLARY 2.7 (Kim [6]; also see Singh [7], Theorem 4.53, p. 206). Let X be a

nonempty compact convex subset of and E* separate the points of X. If f" X --> IE zs

weakly continuous such that for each x X with f(x) 5 x, f(x) 7 closure(Ix(x)), then f
has a fixed point.

PROOF. By Proposition 2.1, (X,r) is a compact convex subset of the locally convex

space (E,T) and by Proposition 2.6 f (X, rw) -+ (E,r,o) is continuous. Since the r-

closure(Ix(x)) C_ r-closure(Ix(x)), it follows that for any x # f(x), f(x) r,o-closure(Ix(x)).
The result now follows from Halpren [3]. []

COROLLARY 2.8 (Kelly-Namioka [5, p. 124]). Let X be a compact convex subset of E.
If/or each nonzero z X- X, there exists z* 6 I* with z*(z) 0 and f" X -+ X is a

continuous mappin9 satisfyzn9

f(] a,z,)= a,f(z,) (2)
z=l t--1

for each positive integer n, z, 6 X for e {1,2,-", n}, and a, > 0 with ], a, 1, then f
has a fixed poznt.

PROOF. Since E* separates the points of X, (X, r) is Hausdorff, and hence (X,r)
(X, rw). Since (X,r) is compact and f (X,r,o) --+ (X,r)is continuous the result follows
from Theorem 1.1.

REMARK. Note that the condition (:2) is redundant in the present proof.
The heorems of this section readily imply that he Hardy spaces H, 0 < p < 1, have the

fixed point property.

3. A FIXED POINT THEOREM FOR MULTIFUNCTIONS.
Let 2E denote the family of nonempty subsets of and let f X - 2E be a multifunction.

f is upper semicontinuous if for any closed set F C_ ]E, f-l(F) {x q X f(x) N F 0}
is a closed subset of X; f is closed (resp. compact) valued if f(x) is closed (resp. compact)
subset of for each x X. It is easy to show that if f is closed-valued and if a net x X,
xo --4 x0 , and y f(x,) with y -+ y0, then the upper semicontinuity of f implies
yo f(xo). Furthermore, if f X -+ 2E is upper semicontinuous and compact-valued, then for
any compact set K, the image f(K) (J{f(x)’x K} is compact. For additional properties
of multifunctions see Dugundji and Granas [1] or Smithson [8], for example. The following
proposition, which clearly implies Theorem 11.4 of Dugundji and Granas (see [1], p. 97), is

equivalent to their theorem.

PROPOSITION 3.1. Let ] be a topological vector space and let X be a nonempty compact
convex subset of. If]E* separates the points of X, and f" X -- 2x is a closed-valued, upper

semicontinuous and convex-valued multi/unction, then f has a fixed point.
The following result is motivated by Corollary 2.8.
THEOREM 3.2. Let ]E be a topological vector space and let X be a closed subset of

and f" X --+ 2E be a closed-valued, upper semicontinuous, multi/unction. If
(i) S {x y y 6 f(x),x 6 X} is convex,
(ii) there exists a sequence (x,) C_ X with x,,+x e f(x,) for n 1,2,...,
(iii) f(X) is compact,
then f has a fixed point.
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REMARK. Condition (i) may be replaced by the somewhat more general hypothesis that
! =1 zk zk+l E S for every n E N where (z) are as in (ii)

PROOF. We first show that S is a closed subset of. Let u be a net in S with uo -+ u0 ]E
in the ’-topology of ]E. Then by definition of S, u xo y where yo f(xo) and x X.
Since (y) _C f(X) and f(X) is compact, it follows that (yo) has a subnet yz -- y0 e E. Hence

xz uz + Yz -> Uo + yo, by definition. However, (xz) C_ X and X is closed. Hence uo + y0 E X.
Now if Xo u0 + y0, x0 X, and since xz -+ x0, yz --+ y0 and y f(x), it follows that

yo f(Zo). Consequently, u0 z0- y0 S and thus S is closed. By the definition of (x) in

(ii), x xn+l E S, and since S is convex, it follows that for any positive integer n,

k=l

that is,

i(, +,) e s. (3)

By (ii), x,+l f(X) for n 1,2,.--, and hence x,- z,+, x,- f(X) which is a compact
subset of ]E. Consequently, for any neighborhood U of 0, xx f(X) C_ kU for some k N.
Thus -(xl f(X))

_
U for all n >_ k. In particular, (x- f(x,,)) C_ U for all n >_ k. Letting

n oc, since S is closed, by (3) we have 0 S. Consequently, there is some x0, y0 E f(x0)
with x0 y0 0. This implies Xo yo f(xo), r

Note that condition (ii) is satisfied if f(x)C X ( for all z X; in particular, if f(z) C_ X.
Further note that I* in Theorem 3.2 may be just {0}. That is to say, no assumption on *
separating points of E is made here. The following corollary follows immediately.

COROLLARY 3.3. Let X be a closed convex subset of a topological vector space and

f" X --> X be continuous. If f(X) is compact and f satisfies (2) (see Corollary .8), then f
has a fixed point. []

It is interesting to note that the conditions on convexity of S can be replaced by various

other useful conditions on f and X. The remark and note following Theorem 3.2 and Corollary
3.3 provide some such conditions. The following proposition gives a condition on f which is

equivalent to the convexity assumption on S.
PROPOSITION ;3.4. Let X be a closed convex subset of the topological vector space ]

and f X -- 2E be a closed-valued, upper semicontinuous, multifunction such that f(X) is

compact. Then S {x y y f(z),x X} is convez if and only if

1/2f(x) + f(y) C_f(x + y) vx, ye x. (4)

PROOF. Suppose S is convex. Then for z,z2 S, 7zl + z2 S. In particular, if

z, x,- y,, with x, X, and y, f(x,) for 1,2, we have (xl + zz)- 1/2(yx + y) S.
That is, 7(y + y) f((x + x)). Now, since this holds for every choice of y, f(x,),
E {1,2}, (4) readily follows. Conversely, suppose f satisfies (4), and let z,z2, x,x,yx,y

be chosen as above. Then since S is closed (by proof of Theorem 3.2), to show S is convex it

is sufficient to show S is midpoint convex. Since z + z 7(xl + z_)- (y + y), by (4),
21-(yl-" Y2) e f(1/2(X, + X2)) and thus 1/2zx + iz= S. Hence S is midpoint convex and thus
convex. []
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Note that a multifunction is midpoint convex if f(1x + y) C_ 1/2f(x) + 1/2f(y) and f is

midpoint concave if it satisfies (4). We conclude with a simple example.
EXAMPLE 3.i. Let X [0, 1] C_ I, : [0, cxz[- [0, oc[ be a nondecreasing, continuous

function such that (o(x)+ (y)) < (1/2(x + y)) for all x,y e [0, cxz[. For example, let (x)=
log(x + 1). Define f(x)= [0, T(x)] for all z e X. Then fX [0,p(1)] is compact, and clearly

f is a closed-valued and upper semicontinuous multifunction. By the hypothesis on , for

x, y E X,

l(x +y))f(x) + -f(y) [0, ((x) + (y))]

_
[0, ((x + y))] f(

hence by Proposition 3.4, S is convex. Since f(x)N X # 0 for any x E X, by Theorem 3.2, f
has a fixed point.
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