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ABSTRACT. We give a theorem for nonconvex topological vector spaces which yields the
classical fixed point theorems of Ky Fan, Kim, Kaczynski, Kelly and Namioka as immediate
consequences, and prove a new fixed point theorem for set-valued maps on arbitrary topological
vector spaces.
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1. INTRODUCTION.

In 1935, Tychonoff proved the following celebrated result.

THEOREM 1.1. If X is a nonempty convez and compact subset of a locally convez
topological vector space IE | then any continuous map f : X = X has a fized point.

Even though Theorem 1.1 has been the subject of extensive and sharp generalizations, the
question of whether Theorem 1.1 is true in general topological vector spaces still remains open.
Recently, the authors encountered papers that extend Theorem 1.1 to topological vector spaces
E having a separating dual E*. The purpose of this paper is to show that this assumption
implies local convexity of X and consequently the results follow from known results.

Let F be the scalar fields R or C and [E be a topological vector space over F with dual
E* (possibly E* = {0}). Let 7 and 7, denote the original and weak topologies of E. Note
that 7, is locally convex and if [E* separates points of [E , then 7, is Hausdorff. For a subset
X CE, (X,7,) (resp. (X, 7)) denotes X with the relative topology 7, (resp. 7).

2. SOMETHING OLD, SOMETHING NEW.

In what follows X compact means that X is compact in the topology of E .

PROPOSITION 2.1. Let X be a nonempty compact subset of E. If (X,7,) is Hausdorff,
then (X,7,) = (X, 7).

PROOF. By definition, 7,, C 7. Conversely, let A be a 7-closed subset of X. Then A4 is
T-compact, and hence 7,-compact. Since 7, is Hausdorfl, it follows that A is 7,-closed. Thus
(X,7) € (X, 7w) and hence (X,7) = (X, 7). O

Note that if E* separates the points of X, then (X,7,) is Hausdorff.
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Proposition 2.1 provides simple proofs of the following results. Original proofs of these
results make use of partitions of unity or other techniques.

COROLLARY 2.2 (Ky Fan [2]). Let X be a nonempty compact and conver subset of E .
If E* separates the points of X, then every continuous map f : X — X has a fized point.

PROOF. Since [E* separates the points of X, (X,,) is Hausdorff, hence by Proposition
2.1, (X,7) = (X, 7w), and thus f : (X,7,) = (X, 7,) is continuous. Since X is ,-compact, by
Theorem 1.1, f has a fixed point. m]

The following result is a generalization of Corollary 2.2.

COROLLARY 2.3. Let X be a nonempty compact and conver subset of E and f : X = E
be a continuous function. If E* separates the points of X, then either (a) f has a fized point,
or (b) there ezists 2o € X and a T-continuous seminorm p on & such that 0 < p(zo — f(z0)) =
min{p(z — f(z0)) : € X}.

PROOF. Since (X, 7,) is Hausdorf, by Proposition 2.1 it follows that (X,7) = (X, ).
Since 7, € 7, f : (X,7w) = (E,7,) is continuous. Since X is 7,, compact, it follows by Ky Fan
[2] that either (a) f has a fixed point, or (b) there exists zo € X and a 7,-continuous seminorm
pon E with 0 < p(zo — f(z0)) = min{p(z — f(z0)) : = € X}. Note that a 7, is continuous
seminorm on [ is a T-continuous seminorm on E. m]

As an immediate consequence of the above corollary, we have

COROLLARY 2.4 (Kaczynski [4]). Let X be a nonempty compact convez subset of E
and E* separate the points of X. If f : X = E is a continuous function such that for each
z € X, f(z) # z, there exist ) such that |A| <1 and

Az + (1= N f(z) € X, (1)

then f has a fized point.

PROOF. Assume that f has no fixed points. Then by Corollary 2.3, there exists zo € X
and a T-continuous seminorm p on E satisfying 0 < p(zo— f(z0)) = min{p(z — f(z0)) : z € X}.
By assumption, there exists A with |A| < 1 such that u = Az + (1 — A)f(z) € X. This implies
that

0 < p(z0 — f(20)) < p(u = f(20)) = [Alp(z0 — f(20)) < p(0 — f(20)),

a contradiction. Hence f has a fixed point. u]

DEFINITION 2.5. Let X CE. A mapping f : X = E is weakly continuous if for every
z* € E*, z*(f) : (X,7) = F is continuous.

PROPOSITION 2.6. If f : X — E is weakly continuous, then f: (X,7,) = (E,7,) is
continuous.

PROOF. For ¢ > 0 let N(0,¢) denote the open neighborhood of 0 of radius ¢ in . If V is
a 7,-basic neighborhood of 0 in [E, then V = N, (z¥)"}(N(0,¢,)) for some z?,---,z% € E*,
and &1, -+,€, > 0. Hence f~1(V) = N, f71(z})7(N(0,e)) = Nici (2X(£))7H(N(0,6.)) € 7o
Thus f: (X, 7w) = (E,7,) is continuous. O

Let X C E and z € X. The inward set of X is defined to be

Ix(z)={:€E :z2=z4+Xy—-1z):y€ X,A >0}
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COROLLARY 2.7 (Kim [6]; also see Singh [7], Theorem 4.53, p. 206). Let X be a
nonempty compact convez subset of E and E* separate the pownts of X. If f: X » E s
weakly continuous such that for each z € X with f(z) # z, f(z) € T — closure(Ix(z)), then f
has a fized point.

PROOF. By Proposition 2.1, (X,7,) is a compact convex subset of the locally convex
space (E ,7,) and by Proposition 2.6 f : (X,7,) = (E,7,) is continuous. Since the 7 —
closure(Ix(z)) C 7,—closure(Ix(z)), it follows that for any z # f(z), f(z) € T, —closure(Ix(z)).
The result now follows from Halpren [3]. O

COROLLARY 2.8 (Kelly-Namioka [5, p. 124]). Let X be a compact convez subset of E .
If for each nonzero r € X — X, there ezists z* € E* with z*(z) # 0 and f : X —» X is a
continuous mapping satisfying . .

f(zlaxzt) = zlatf(zl) (2)
for each positive integer n, z, € X fori € {1,2,---,n}, and a, > 0 with Y0, a, = 1, then f
has a fized point.

PROOF. Since [E* separates the points of X, (X,,) is Hausdorff, and hence (X, 7) =
(X,7w). Since (X,7,) is compact and f : (X,7,) = (X,7,) is continuous the result follows
from Theorem 1.1. ]

REMARK. Note that the condition (2) is redundant in the present proof.

The theorems of this section readily imply that the Hardy spaces H?, 0 < p < 1, have the
fixed point property.

3. A FIXED POINT THEOREM FOR MULTIFUNCTIONS.

Let 2E denote the family of nonempty subsets of E and let f : X — 2E be a multifunction.
f is upper semicontinuous if for any closed set F CE, f~(F) = {z € X : f(z) N F # 0}
is a closed subset of X; f is closed (resp. compact) valued if f(z) is closed (resp. compact)
subset of E for each z € X. It is easy to show that if f is closed-valued and if a net z, € X,
To = 70 € E, and y, € f(za) with y, — yo, then the upper semicontinuity of f implies
Yo € f(zo). Furthermore, if f: X — 2E is upper semicontinuous and compact-valued, then for
any compact set K, the image f(K) = U{f(z) : ¢ € K} is compact. For additional properties
of multifunctions see Dugundji and Granas [1] or Smithson [8], for example. The following
proposition, which clearly implies Theorem 11.4 of Dugundji and Granas (see [1], p. 97), is
equivalent to their theorem.

PROPOSITION 3.1. Let E be a topological vector space and let X be a nonempty compact
convez subset of E. If E* separates the points of X, and f: X — 2X is a closed-valued, upper
semicontinuous and convez-valued multifunction, then f has a fized point.

The following result is motivated by Corollary 2.8.

THEOREM 3.2. Let E be a topological vector space and let X be a closed subset of E
and f: X =2 bea closed-valued, upper semicontinuous, multifunction. If

(1) S={z—y:y€ f(z),z € X} is convex,

(ii) there exists a sequence (z,) € X with 2,4, € f(z,) forn =1,2,--,

(ii1) f(X) is compact,

then f has a fized point.
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REMARK. Condition (i) may be replaced by the somewhat more general hypothesis that
L1 Tk — Tk € S for every n € N, where (zx) are as in (ii).

PROOF. We first show that S is a closed subset of IE. Let u, beanetin S with ug = uo € E
in the 7-topology of E. Then by definition of S, us = T4 — yo Where y, € f(z,) and z, € X.
Since (ya) € f(X) and f(X) is compact, it follows that (y,) has a subnet yg — yo € E. Hence
zg = ug+Ys — uo + Yo, by definition. However, (z5) C X and X is closed. Hence uo+yo € X.
Now if zo = uo + yo, Zo € X, and since x5 — o, yg — Yo and yg € f(zp), it follows that
Yo € f(zo). Consequently, ug = o — yo € S and thus S is closed. By the definition of (z,) in
(ii), zn — Tn41 € S, and since S is convex, it follows that for any positive integer n,

1 n
=3 (zk — zk41) € S;
n k=1
that is,
1
;(31 — Tn41) €S (3)

By (ii), Tnt1 € f(X) for n = 1,2,---, and hence z; — Tny1 € z; — f(X) which is a compact
subset of [E. Consequently, for any neighborhood U of 0, z; — f(X) C kU for some k € N.
Thus 1(z; — f(X)) S U for all n > k. In particular, 2(z, — f(z,)) C U for all n > k. Letting
n — oo, since S is closed, by (3) we have 0 € S. Consequently, there is some zo,yo € f(zo)
with 2o — yo = 0. This implies z¢g = yo € f(zo)- ]
Note that condition (ii) is satisfied if f(z)NX # 0 for all z € X; in particular, if f(z) C X.
Further note that [E* in Theorem 3.2 may be just {0}. That is to say, no assumption on [E*
separating points of [E is made here. The following corollary follows immediately.
COROLLARY 3.3. Let X be a closed convez subset of a topological vector space and
f: X = X be continuous. If f(X) is compact and f satisfies (2) (see Corollary 2.8), then f
has a fized point. u]
It is interesting to note that the conditions on convexity of S can be replaced by various
other useful conditions on f and X. The remark and note following Theorem 3.2 and Corollary
3.3 provide some such conditions. The following proposition gives a condition on f which is
equivalent to the convexity assumption on S.
PROPOSITION 3.4. Let X be a closed convez subset of the topological vector space E
and f: X = 2E be a closed-valued, upper semicontinuous, multifunction such that f(X) is
compact. Then S ={z —y:y € f(z),z € X} is convez if and only if

S7(@) + 5F) € [(37 + 30) Vz,ye X. )

PROOF. Suppose S is convex. Then for z;,2, € S, %zl + %22 € S. In particular, if
z, = &, — Y, with z, € X, and y, € f(z.) for i = 1,2, we have 1(z1 + 72) — J(y1 +y2) € S.
That is, 3(y1 + ¥2) € f(j(z1 + 22)). Now, since this holds for every choice of y, € f(z,),
i € {1,2}, (4) readily follows. Conversely, suppose f satisfies (4), and let z1, 22, 21,22,¥1,9Y2
be chosen as above. Then since S is closed (by proof of Theorem 3.2), to show .S is convex it
is sufficient to show S is midpoint convex. Since 1z + 3z2 = L(z1 + 22) — 3(y1 + v2), by (4),
31 + y2) € f(3(z1 + 22)), and thus 1z + 1z, € S. Hence S is midpoint convex and thus
convex. o
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Note that a multifunction is midpoint convex if f(3z + 3y) € 3f(z) + 1f(y) and f is
midpoint concave if it satisfies (4). We conclude with a simple example.

EXAMPLE 3.5. Let X = [0,1] C R, ¢ : [0,00[— [0, 00| be a nondecreasing, continuous
function such that J(¢(z) + ¢(y)) < (i(z +y)) for all z,y € [0, 00[. For example, let (z) =
log(z + 1). Define f(z) = [0,¢(z)] for all z € X. Then fX = [0,¢(1)] is compact, and clearly
f is a closed-valued and upper semicontinuous multifunction. By the hypothesis on ¢, for
z,y € X,

SF@)+ 554) = 0, 5(6(2) + 0(u)] € [0,0(5(z +¥)] = F(5(= + 1),

hence by Proposition 3.4, S is convex. Since f(z) N X # 0 for any z € X, by Theorem 3.2, f
has a fixed point.
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