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ABSTRACT. In this paper, we determine the general solution of the functional equations

f(z+y+zy)=p(z)+9(y) +9(z)h(y), (Yz,yeR.)

and
flaz + by + czy) = f(z) + f(y) + f(=)f(y), (Vz,yeR)

which are generalizations of a functional equation studied by Pompeiu. We present a method
which is simple and direct to determine the general solutions of the above equations without
any regularity assumptions.
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1. INTRODUCTION

Let R be the set of all real numbers and R, denote the set of nonzero reals. Further, let
R, = R\ {1}, that is the set of real numbers except negative one. A function M : D — R
is said to be multiplicative if and only if M(zy) = M(z)M(y) for all z,y € D, where D = R
or ®,. A function E : ® — R is called ezponential if and only if E(z + y) = E(z) E(y) for all
z,y € R. A function L : R, — R is said to be logarithmic if and only if L(zy) = L(z) + L(y)
for all z,y € R,. A comprehensive treatment of these functions can be found in the book of
Aczel and Dhombres [1].

If G = R., then (G, 0) is an abelian group where the group operation is defined as

zoy=z+y+zy.

A characterization of the homomorphisms of the group (G, o) can be obtained by solving the
functional equation

fz+y+zy) = f(2)+ f(y) + f(2) f(v)- (PE)

This functional equation is known as the Pompeiu functional equation [3,4].
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Suppose that f : R — R satisfies (PE). Then the only solution f of the Pompeiu equation
(PE) is given by
fz)=M(z+1)-1, (1.1)

where M is multiplicative.

To see this, add 1 to both sides of (PE) and write F(z) = 1+ f(z). Then (PE) reduces
to F(z +y + zy) = F(z)F(y). Now replacing z by z — 1 and y by y — 1, we obtain M(zy) =
M(z)M(y), where M(z) = F(z — 1). Thus, M is multiplicative and f(z) = F(z) — 1
M(z +1) — 1, which is (1.1).

In a special case, f is an automorphism of the field . Suppose M is also additive. Then
M is a ring homomorphism of R. If M is a nontrivial homomorphism, then f(z) = M(z) =z,

that is, f is an automorphism of the field R.

In this paper, we determine the general solution of the functional equations

f(z+y+zy)=p(z) +9y) +9(z)h(y), (Yz,yeR.) (FE1)

and

flaz + by + czy) = f(z) + f(v) + f(2)f(y), (Vz,y€R) (FE2)

which are generalizations of the Pompeiu functional equation (PE). We present a method
which is simple and direct to determine the general solutions of (FE1) and (PE2) without any
regularity assumptions. For other related functional equations, the interested reader should
refer to [2] and [5].

2. SOME PRELIMINARY RESULTS
The following two lemmas will be instrumental for establishing the main result of this

paper.
LEMMA 1. Let g,h : R, — R satisfy the functional equation

9(zy) = 9(y) + 9(z) h(y) (2.1)

for all z,y € R,. Then for all z,y € R,, g(z) and h(y) are given by

g(z) =0, h(y) = arbitrary; (2.2)
9(z)=L(z), h(y)=1 (2.3)
9(z) = a[M(z)-1],  h(y) = M(y), (24)

where M : R, — R is a multiplicative map not identically one, L : ®, — R is a logarithmic

function not identically zero and a is an arbitrary nonzero constant.

PROOF. If g =0, then h is arbitrary and they satisfy the equation (2.1). Hence we have the
solution (2.2). We assume hereafter that g # 0.
Interchanging z with y in (2.1) and comparing the resulting equation to (2.1), we get

9(y) [h(z) — 1] = g(=) [A(y) — 1). (25)

Suppose h(z) = 1 for all z € R,. Then (2.1) yields g(zy) = g(v) + g(z) and hence the function
g : R, — R is logarithmic. This yields the solution (2.3).
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Finally, suppose h(y) # 1 for some y. Then from (2.5), we have
9(z) = a[h(z) -1}, (2.6)
where a is a nonzero constant, since g # 0. Using (2.6) in (2.1), and simplifying, we obtain
h(zy) = h(=) h(y). @7

Hence, h : R, — R is a multiplicative function. This gives the asserted solution (2.4) and the
proof of the lemma is now complete.

LEMMA 2. The general solutions f,g,h : R, — R of the functional equation

f(zy) = f(z) + f(y) + ag(z) + BR(y) + 9(x)h(y) (Vz,y €R,) (28)

where a and § are apriori chosen constants, have values f(z),g(z) and h(y) given, for all
z,y e &01 by
f(z) = L(z) + b

g(z) is arbitrary (2.9)
h(y) = —¢;

f(z) = L(z) + of

9(z)=-8 (2.10)

h(y) is arbitrary;

1(2) = Lo(#) + 5 ¢ L3(2) + B
9(z) =cLy(z) - B (211)
h(y) = Li(y) — o
f(z) = L(z) + v6 [M(z) - 1] + aB
9(z) =~[M(z)-1] -8 (2.12)
h(y) =6[M(y) —1] -,
where M : R, — R is a multiplicative map not identically one, L,,L;,L : ®, — R are

logarithmic functions with L; not identically zero, and c, §, v are arbitrary nonzero constants.

PROOF. Interchanging z with y in (2.8) and comparing the resulting equation to (2.8), we
obtain

[a+h(y)][B+9(z)] = [a+h()][B +9(y)]- (213)

Now we consider several cases.
Case 1. Suppose h(y) = —a for all y € R,. Then (2.8) yields

f(zy) = f(z) + f(y) - ofB. (2.14)

Hence
f(z) = L(z) + ap, (2.15)

where L : ®, — R is a logarithmic function. Hence we have the asserted solution (2.9).
Case 2. Suppose g(z) = —f for all z € ®,. Then (2.8) yields

f(zy) = f(z) + f(y) - aB.
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Hence, as before,
f(z) = L(z) + ap,

where L : ®, — R is a logarithmic function. Thus we have the asserted solution (2.10).
Case 3. Now we assume h(z) # —a for some z € R, and g(z) # —8 for some z € R,. From
(2.13), we get

B+9(y) = cla+h(v)}, (2.16)

where c is a nonzero constant.

Using (2.8), we compute

f(z-yz) = f(z) + f(y) + f(2) + @ 9(y) + Bh(2)

(2.17)
+ 9(y)h(2) + a g(z) + B h(yz) + g(z)h(y2).
Again, using (2.8), we have
f(zy-2) = f(z)+ f(y) + f(2) + @ g(z) + B h(y) (2.18)
+9(2)h(y) + ag(zy) + B h(2) + g(zy)h(2). '
From (2.17) and (2.18), we obtain
[e+ h(2)] {g(y) — 9(zy)] = [B + 9(2)] [A(y) — h(y2)], Vz,y€R,. (2.19)

Since g(z) # —p for some r € R,, there exists a z, € R, such that g(z,) + 8 # 0. Letting
z =z, in (2.19), we have

h(yz) = h(y) + [@ + h(z)] k(y), (2.20)
where (v24) ®)
_ 9\yTo) — gy

k(y) = CAFT R (2.21)

The general solution of (2.20) can be obtained from Lemma 1 (add a to both sides). Hence,
taking into consideration that h(y) + a # 0, we have

h(y) = Li(y) — a. (2.22)

or
h(y) = 6[M(y) = 1] — o, (2.23)

where L, is logarithmic not identically zero, M is multiplicative not identically one, and § is
an arbitrary constant.

Now we consider two subcases.
Subcase 3.1. From (2.22) and (2.16), we have

9(y) = cLi(y) - B (2.24)
Using (2.22) and (2.24) in (2.8), we get
f(zy) = f(2) + f(y) + c Lr(2) 1 (y) — @B. (2:25)

Defining
Lo(@) = f(z) - 5 c 13(z) - af, (2:26)
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we see that (2.25) reduces to
Lo(zy) = Lo(z) + Lo(y)

for all z,y € R,, that is, L, is logarithmic and from (2.26), we have
1
f(z) =Ly(z) + 3 cL(z) + af. (2.27)

Hence (2.27), (2.24) and (2.22) yield the asserted solution (2.11).
Subcase 3.2. Finally, from (2.23) and (2.16), we obtain

9(y)=6c[M(y) -1} - 5. (2.28)

With (2.23) and (2.28) in (2.8), we have

f(zy) = f(2) + f(y) — aB + c6” [M(z) - 1] [M(y) - 1]. (2.29)
Defining
L(z) = f(z) — c6* [M(z) — 1] — afB, (2-30)
we see that (2.29) reduces to
L(zy) = L(z) + L(y)

for all z,y € R,, that is, L is a logarithmic function. Using (2.30), we have
f(z) = L(z) + v6 [M(z) — 1] + ap, (2.31)

where v = cé. Hence (2.31), (2.28) and (2.23) yield the asserted solution (2.12). This completes
the proof of the lemma.

3. SOLUTION OF THE FUNCTIONAL EQUATION (FE1)
Now we are ready to present the general solution of (FE1) using Lemma 2.

THEOMEM 1. The functions f,p,q,g,h : R. — R satisfy the functional equation

f(z +y+2y) =p(z) + q(y) + 9(z) h(y) (FE1)
for all z,y € R, if and only if, for all z,y € R,,

f(zx)=Lz+1)+af+a+b

p(e) = L(z +1) +b

a(y) = L(y + 1) + af + a + Bh(y) (3.1)
9(z) = -8

h(y) is arbitrary;

f(z)=L(z+1)+aB+a+bd )
p(z) = L(z+ 1)+ +af + b+ ag(z)

qy)=Ly+1)+a (3:2)
g(z) is arbitrary

h(y) = —e;
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flz)=Lz+1)+v6[M(z+1)-1]+af+a+d
pz)=Lz+1)+(6+a)y[M(z+1)—-1]+b

(@) =Ly +1) + (v + A My + 1)~ 1] +a (33)
9(z)=yM(z+1)-1]-8

h(y) =6[M(y+1)-1] - o

f(z)=L.,(z+1)+%cL§(z+1)+aﬂ+a+b

p(z) = Lo(z +1) +%cL§(:c +1)+acLi(z+1)+b

a(y) = Lo(y + 1)+§cL§(y+1)+ﬂLl(y+1)+a (3.4)

g(z)=cLiy(z+1)-p
h(y) =Ll(y+l)_aa )
where M : 8, — R is a multiplicative function not identically one, L,,L;,L : 8, — R are

logarithmic maps with L; not identically zero, and a, 8,7, , a, b, c are arbitrary real constants.

PROOF. First, we substitute y = 0 in (FE1) and then we put z = 0 in (FE1) to obtain

p(z) = f(z) —a+ag(z) (3.5)
and

a(y) = f(y) — b+ Bh(y), (36)
where a := ¢(0), b := p(0), a := —h(0), B := —g(0). Using (3.5) and (3.6) in (FE1), we have

f(z+y+zy) = f(2) + f(y) —a—b+ag(z) + Bh(y) + 9(z) h(y) 3.7
for z,y € R,. Replacing z by u — 1 and y by v — 1 in (3.7) and then defining
F(u):=f(u—1)—a—b,  G(u):=g(u—1), H(u):=h(u—1) (3.8)
for all u € R,, we obtain
F(uv) = F(u) + F(v) + aG(u) + 8 H(v) + G(u) H(v) (3.9)

for all u,v € R,. The general solution of (3.9) can now be obtained from Lemma 2. The first
two solutions of Lemma 2 (see (2.9) and (2.10)) together with (3.5) and (3.6) yield the solutions
(3.1) and (3.2). The next two solutions of Lemma 2 (that is, solution (2.11) and (2.12)) yield
together with (3.5) and (3.6) the asserted solutions (3.3) and (3.4). This completes the proof
of the theorem.

4. SOLUTION OF THE FUNCTIONAL EQUATION (FE2)
Let a, b and c be real parameters. We consider the functional equation

flaz + by + czy) = f(z) + f(y) + f(2)f(y), Vz,yeR. (FE2)

The only constant solutions of (FE2) are f = 0 and f = —1. So we look for nonconstant
solutions of the functional equation (FE2).

Substitution of £ = 0 = y in (FE2) yields f(0) [f(0) + 1] = 0. Hence, either f(0) = 0 or
f(0) = =1, Now we consider two cases.
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Case 1. Suppose f(0) = —1. Then z = 0 in (FE2) gives f(by) = f(0), so that when b # 0, f
is a constant which is not the case. Similarly by putting y = 0 in (FE2), we get f is a constant
when a # 0.

Suppose a = 0 = b. If cis also zero, then (FE2) is [1+ f(z)] [1 + f(y)] = 0 since f(0) = —1.
That is f is a constant. So, assume ¢ # 0. Then replacing z by £ and y by 4 in (FE2), we
obtain

M(zy) = M(z) M(y), (41)

where M : ® — R is a multiplicative map with M(z) =1+ f (£). Hence
F(z) = M(cz) -1 (4.2)

is a solution of (FE2) with f(0)=—1,a=0=0b,c#0.
Case 2. Suppose f(0) =0. Let a = 0. Then y = 0 in (FE2) gives f = 0 which is not the case.
So, @ # 0. Similarly b # 0. Setting z = 0 and y = 0 separately in (FE2), we get

fy)=f(y) and  f(az) = f(2) (43)

$o that (FE2) becomes
f(az + by + czy) = f(az) + f(by) + f(az) f(by)- (44)
Suppose ¢ = 0. Then replacing z by £ and y by  in (4.4) we have
E(z +y) = E(z) E(y)

where E : ® — R given by
E(z) =1+ f(z) (4.5)

is an exponential map. Further, from (4.3) and (4.5), we get
E(az) = E(z) = E(bz)
and since E(z) E(—z) =1, so we get
E((a-b)z)=1= E((a - 1)z). (4.6)

If a # b, then E is a constant map and so f is also a constant function. If a # 1, then E and
so f is a constant. Hence a =1 = b. Thus by (4.5)

f(z) = B(z) -1

is a solution of (FE2) witha=b=1,c=0.
Finally, let a # 0, b # 0 and ¢ # 0. Set @ = 5. Replacing z by £ and y by ¢ in (4.4),
we obtain
F(z +y+zy) = F(z) F(y), (4.7

where
z
F(z)=1+f (;) . (4.8)
Changing z to ¢ — 1 and y to y — 1 in (4.7) we have

M(zy) = M(z) M(y),
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where M : ® — R is multiplicative and

M(z) = F(z - 1). (4.9)
Thus by (4.8) and (4.9), we have
f(z)=F(az)-1=M1 +az)-1. (4.10)
If we use (4.10) in (4.3), and recall that a = 35, we get
M(1+§:)=M(1+-§z)=M(l+-:—b:). (4.11)

Recall that, since M is multiplicative, M(z)M (1) =1 (otherwise if M(1) =0, then M =0 so
that f = —1). Changing separately z to 2% and z to °—c’ in (4.11), we obtain

z z
M(1+z)=M(l+Z)=M(1+E). (4.12)

Similarly, replacing z by L:‘ in (4.11), we have
M(1+z)=M(1+ az) = M(1+ bz). (4.13)

Replacing z by z — 1 in (4.13), we obtain M(z) = M(1 + a(z — 1)) which yields
M (“_“‘f_"f_) =1 ifz#0.

z
Suppose a # 1. Changing z to (1 — a)z, we have M (a + 1) = 1 and thus (again replacing =
by -1-) we have M(z) = 1 when z # a. Similarly, if b # 1, we get M(z) =1 when z # 0, b.

Hence, M(z) = 1 for all z which leads to f is a constant. Therefore a = 1 = b. Then from
(4.10), we obtain

fz)=M(1+cz)-1 (4.14)
where M : ® — R is multiplicative. Thus we have proved the following theorem.

THEOREM 2. The function f : 8 — R is a solution of (FE2) if and only if f(z), for every
z € R, is given by

M(cz) -1 fa=0=bc#0

f(z) = E(z)-1 fa=1=b¢c=0
M(cz+1)-1 fa=1=bc#0
k otherwise,

where M : ® — R is multiplicative, E : 8 — R is exponential, and k is a constant satisfying
k(k+1)=0.
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