

ON GENERALIZATIONS OF THE POMPEIU FUNCTIONAL EQUATION

PL. KANNAPPAN

Department of Pure Mathematics
University of Waterloo, Waterloo, Ontario, N2L 3G1, CANADA

P.K. SAHOO

Department of Mathematics
University of Louisville, Louisville, Kentucky, 40292, USA

(Received October 25, 1995 and in revised form January 15, 1997)

ABSTRACT. In this paper, we determine the general solution of the functional equations

$$f(x + y + xy) = p(x) + q(y) + g(x)h(y), \quad (\forall x, y \in \mathbb{R}_*)$$

and

$$f(ax + by + cxy) = f(x) + f(y) + f(x)f(y), \quad (\forall x, y \in \mathbb{R})$$

which are generalizations of a functional equation studied by Pompeiu. We present a method which is simple and direct to determine the general solutions of the above equations without any regularity assumptions.

KEY WORDS AND PHRASES: Pompeiu functional equation, multiplicative function, logarithmic function, exponential function.

1991 AMS SUBJECT CLASSIFICATION CODES: 39B22.

1. INTRODUCTION

Let \mathbb{R} be the set of all real numbers and \mathbb{R}_0 denote the set of nonzero reals. Further, let $\mathbb{R}_* = \mathbb{R} \setminus \{-1\}$, that is the set of real numbers except negative one. A function $M : \mathcal{D} \rightarrow \mathbb{R}$ is said to be *multiplicative* if and only if $M(xy) = M(x)M(y)$ for all $x, y \in \mathcal{D}$, where $\mathcal{D} = \mathbb{R}$ or \mathbb{R}_0 . A function $E : \mathbb{R} \rightarrow \mathbb{R}$ is called *exponential* if and only if $E(x + y) = E(x)E(y)$ for all $x, y \in \mathbb{R}$. A function $L : \mathbb{R}_0 \rightarrow \mathbb{R}$ is said to be *logarithmic* if and only if $L(xy) = L(x) + L(y)$ for all $x, y \in \mathbb{R}_0$. A comprehensive treatment of these functions can be found in the book of Aczel and Dhombres [1].

If $\mathbf{G} = \mathbb{R}_*$, then (\mathbf{G}, \circ) is an abelian group where the group operation is defined as

$$x \circ y = x + y + xy.$$

A characterization of the homomorphisms of the group (\mathbf{G}, \circ) can be obtained by solving the functional equation

$$f(x + y + xy) = f(x) + f(y) + f(x)f(y). \quad (\text{PE})$$

This functional equation is known as the *Pompeiu functional equation* [3,4].

Suppose that $f : \mathfrak{R} \rightarrow \mathfrak{R}$ satisfies (PE). Then the only solution f of the Pompeiu equation (PE) is given by

$$f(x) = M(x + 1) - 1, \quad (1.1)$$

where M is multiplicative.

To see this, add 1 to both sides of (PE) and write $F(x) = 1 + f(x)$. Then (PE) reduces to $F(x + y + xy) = F(x)F(y)$. Now replacing x by $x - 1$ and y by $y - 1$, we obtain $M(xy) = M(x)M(y)$, where $M(x) = F(x - 1)$. Thus, M is multiplicative and $f(x) = F(x) - 1 = M(x + 1) - 1$, which is (1.1).

In a special case, f is an automorphism of the field \mathfrak{R} . Suppose M is also additive. Then M is a ring homomorphism of \mathfrak{R} . If M is a nontrivial homomorphism, then $f(x) = M(x) = x$, that is, f is an automorphism of the field \mathfrak{R} .

In this paper, we determine the general solution of the functional equations

$$f(x + y + xy) = p(x) + q(y) + g(x)h(y), \quad (\forall x, y \in \mathfrak{R}_*) \quad (\text{FE1})$$

and

$$f(ax + by + cxy) = f(x) + f(y) + f(x)f(y), \quad (\forall x, y \in \mathfrak{R}) \quad (\text{FE2})$$

which are generalizations of the Pompeiu functional equation (PE). We present a method which is simple and direct to determine the general solutions of (FE1) and (PE2) without any regularity assumptions. For other related functional equations, the interested reader should refer to [2] and [5].

2. SOME PRELIMINARY RESULTS

The following two lemmas will be instrumental for establishing the main result of this paper.

LEMMA 1. Let $g, h : \mathfrak{R}_o \rightarrow \mathfrak{R}$ satisfy the functional equation

$$g(xy) = g(y) + g(x)h(y) \quad (2.1)$$

for all $x, y \in \mathfrak{R}_o$. Then for all $x, y \in \mathfrak{R}_o$, $g(x)$ and $h(y)$ are given by

$$g(x) = 0, \quad h(y) = \text{arbitrary}; \quad (2.2)$$

$$g(x) = L(x), \quad h(y) = 1; \quad (2.3)$$

$$g(x) = \alpha [M(x) - 1], \quad h(y) = M(y), \quad (2.4)$$

where $M : \mathfrak{R}_o \rightarrow \mathfrak{R}$ is a multiplicative map not identically one, $L : \mathfrak{R}_o \rightarrow \mathfrak{R}$ is a logarithmic function not identically zero and α is an arbitrary nonzero constant.

PROOF. If $g \equiv 0$, then h is arbitrary and they satisfy the equation (2.1). Hence we have the solution (2.2). We assume hereafter that $g \not\equiv 0$.

Interchanging x with y in (2.1) and comparing the resulting equation to (2.1), we get

$$g(y)[h(x) - 1] = g(x)[h(y) - 1]. \quad (2.5)$$

Suppose $h(x) = 1$ for all $x \in \mathfrak{R}_o$. Then (2.1) yields $g(xy) = g(y) + g(x)$ and hence the function $g : \mathfrak{R}_o \rightarrow \mathfrak{R}$ is logarithmic. This yields the solution (2.3).

Finally, suppose $h(y) \neq 1$ for some y . Then from (2.5), we have

$$g(x) = \alpha [h(x) - 1], \quad (2.6)$$

where α is a nonzero constant, since $g \not\equiv 0$. Using (2.6) in (2.1), and simplifying, we obtain

$$h(xy) = h(x)h(y). \quad (2.7)$$

Hence, $h : \mathfrak{R}_o \rightarrow \mathfrak{R}$ is a multiplicative function. This gives the asserted solution (2.4) and the proof of the lemma is now complete.

LEMMA 2. The general solutions $f, g, h : \mathfrak{R}_o \rightarrow \mathfrak{R}$ of the functional equation

$$f(xy) = f(x) + f(y) + \alpha g(x) + \beta h(y) + g(x)h(y) \quad (\forall x, y \in \mathfrak{R}_o) \quad (2.8)$$

where α and β are apriori chosen constants, have values $f(x), g(x)$ and $h(y)$ given, for all $x, y \in \mathfrak{R}_o$, by

$$\left. \begin{array}{l} f(x) = L(x) + \alpha\beta \\ g(x) \text{ is arbitrary} \\ h(y) = -\alpha; \end{array} \right\} \quad (2.9)$$

$$\left. \begin{array}{l} f(x) = L(x) + \alpha\beta \\ g(x) = -\beta \\ h(y) \text{ is arbitrary}; \end{array} \right\} \quad (2.10)$$

$$\left. \begin{array}{l} f(x) = L_o(x) + \frac{1}{2} c L_1^2(x) + \alpha\beta \\ g(x) = c L_1(x) - \beta \\ h(y) = L_1(y) - \alpha; \end{array} \right\} \quad (2.11)$$

$$\left. \begin{array}{l} f(x) = L(x) + \gamma\delta [M(x) - 1] + \alpha\beta \\ g(x) = \gamma [M(x) - 1] - \beta \\ h(y) = \delta [M(y) - 1] - \alpha, \end{array} \right\} \quad (2.12)$$

where $M : \mathfrak{R}_o \rightarrow \mathfrak{R}$ is a multiplicative map not identically one, $L_o, L_1, L : \mathfrak{R}_o \rightarrow \mathfrak{R}$ are logarithmic functions with L_1 not identically zero, and c, δ, γ are arbitrary nonzero constants.

PROOF. Interchanging x with y in (2.8) and comparing the resulting equation to (2.8), we obtain

$$[\alpha + h(y)][\beta + g(x)] = [\alpha + h(x)][\beta + g(y)]. \quad (2.13)$$

Now we consider several cases.

Case 1. Suppose $h(y) = -\alpha$ for all $y \in \mathfrak{R}_o$. Then (2.8) yields

$$f(xy) = f(x) + f(y) - \alpha\beta. \quad (2.14)$$

Hence

$$f(x) = L(x) + \alpha\beta, \quad (2.15)$$

where $L : \mathfrak{R}_o \rightarrow \mathfrak{R}$ is a logarithmic function. Hence we have the asserted solution (2.9).

Case 2. Suppose $g(x) = -\beta$ for all $x \in \mathfrak{R}_o$. Then (2.8) yields

$$f(xy) = f(x) + f(y) - \alpha\beta.$$

Hence, as before,

$$f(x) = L(x) + \alpha\beta,$$

where $L : \mathbb{R}_o \rightarrow \mathbb{R}$ is a logarithmic function. Thus we have the asserted solution (2.10).

Case 3. Now we assume $h(x) \neq -\alpha$ for some $x \in \mathbb{R}_o$ and $g(x) \neq -\beta$ for some $x \in \mathbb{R}_o$. From (2.13), we get

$$\beta + g(y) = c[\alpha + h(y)], \quad (2.16)$$

where c is a nonzero constant.

Using (2.8), we compute

$$\begin{aligned} f(x \cdot yz) &= f(x) + f(y) + f(z) + \alpha g(y) + \beta h(z) \\ &\quad + g(y)h(z) + \alpha g(x) + \beta h(yz) + g(x)h(yz). \end{aligned} \quad (2.17)$$

Again, using (2.8), we have

$$\begin{aligned} f(xy \cdot z) &= f(x) + f(y) + f(z) + \alpha g(x) + \beta h(y) \\ &\quad + g(x)h(y) + \alpha g(xy) + \beta h(z) + g(xy)h(z). \end{aligned} \quad (2.18)$$

From (2.17) and (2.18), we obtain

$$[\alpha + h(z)][g(y) - g(xy)] = [\beta + g(x)][h(y) - h(yz)], \quad \forall x, y \in \mathbb{R}_o. \quad (2.19)$$

Since $g(x) \neq -\beta$ for some $x \in \mathbb{R}_o$, there exists a $x_o \in \mathbb{R}_o$ such that $g(x_o) + \beta \neq 0$. Letting $x = x_o$ in (2.19), we have

$$h(yz) = h(y) + [\alpha + h(z)]k(y), \quad (2.20)$$

where

$$k(y) = \frac{g(yx_o) - g(y)}{g(x_o) + \beta}. \quad (2.21)$$

The general solution of (2.20) can be obtained from Lemma 1 (add α to both sides). Hence, taking into consideration that $h(y) + \alpha \not\equiv 0$, we have

$$h(y) = L_1(y) - \alpha. \quad (2.22)$$

or

$$h(y) = \delta[M(y) - 1] - \alpha, \quad (2.23)$$

where L_1 is logarithmic not identically zero, M is multiplicative not identically one, and δ is an arbitrary constant.

Now we consider two subcases.

Subcase 3.1. From (2.22) and (2.16), we have

$$g(y) = cL_1(y) - \beta. \quad (2.24)$$

Using (2.22) and (2.24) in (2.8), we get

$$f(xy) = f(x) + f(y) + cL_1(x)L_1(y) - \alpha\beta. \quad (2.25)$$

Defining

$$L_o(x) := f(x) - \frac{1}{2}cL_1^2(x) - \alpha\beta, \quad (2.26)$$

we see that (2.25) reduces to

$$L_o(xy) = L_o(x) + L_o(y)$$

for all $x, y \in \mathfrak{R}_o$, that is, L_o is logarithmic and from (2.26), we have

$$f(x) = L_o(x) + \frac{1}{2} c L_1^2(x) + \alpha\beta. \quad (2.27)$$

Hence (2.27), (2.24) and (2.22) yield the asserted solution (2.11).

Subcase 3.2. Finally, from (2.23) and (2.16), we obtain

$$g(y) = \delta c [M(y) - 1] - \beta. \quad (2.28)$$

With (2.23) and (2.28) in (2.8), we have

$$f(xy) = f(x) + f(y) - \alpha\beta + c\delta^2 [M(x) - 1] [M(y) - 1]. \quad (2.29)$$

Defining

$$L(x) := f(x) - c\delta^2 [M(x) - 1] - \alpha\beta, \quad (2.30)$$

we see that (2.29) reduces to

$$L(xy) = L(x) + L(y)$$

for all $x, y \in \mathfrak{R}_o$, that is, L is a logarithmic function. Using (2.30), we have

$$f(x) = L(x) + \gamma\delta [M(x) - 1] + \alpha\beta, \quad (2.31)$$

where $\gamma = c\delta$. Hence (2.31), (2.28) and (2.23) yield the asserted solution (2.12). This completes the proof of the lemma.

3. SOLUTION OF THE FUNCTIONAL EQUATION (FE1)

Now we are ready to present the general solution of (FE1) using Lemma 2.

THEOREM 1. The functions $f, p, q, g, h : \mathfrak{R}_* \rightarrow \mathfrak{R}$ satisfy the functional equation

$$f(x + y + xy) = p(x) + q(y) + g(x)h(y) \quad (\text{FE1})$$

for all $x, y \in \mathfrak{R}_*$ if and only if, for all $x, y \in \mathfrak{R}_*$,

$$\left. \begin{array}{l} f(x) = L(x + 1) + \alpha\beta + a + b \\ p(x) = L(x + 1) + b \\ q(y) = L(y + 1) + \alpha\beta + a + \beta h(y) \\ g(x) = -\beta \\ h(y) \text{ is arbitrary;} \end{array} \right\} \quad (3.1)$$

$$\left. \begin{array}{l} f(x) = L(x + 1) + \alpha\beta + a + b \\ p(x) = L(x + 1) + a\alpha\beta + b + \alpha g(x) \\ q(y) = L(y + 1) + a \\ g(x) \text{ is arbitrary} \\ h(y) = -\alpha; \end{array} \right\} \quad (3.2)$$

$$\left. \begin{array}{l} f(x) = L(x+1) + \gamma \delta [M(x+1) - 1] + \alpha \beta + a + b \\ p(x) = L(x+1) + (\delta + \alpha) \gamma [M(x+1) - 1] + b \\ q(y) = L(y+1) + (\gamma + \beta) \delta [M(y+1) - 1] + a \\ g(x) = \gamma [M(x+1) - 1] - \beta \\ h(y) = \delta [M(y+1) - 1] - \alpha; \end{array} \right\} \quad (3.3)$$

$$\left. \begin{array}{l} f(x) = L_o(x+1) + \frac{1}{2} c L_1^2(x+1) + \alpha \beta + a + b \\ p(x) = L_o(x+1) + \frac{1}{2} c L_1^2(x+1) + \alpha c L_1(x+1) + b \\ q(y) = L_o(y+1) + \frac{1}{2} c L_1^2(y+1) + \beta L_1(y+1) + a \\ g(x) = c L_1(x+1) - \beta \\ h(y) = L_1(y+1) - \alpha, \end{array} \right\} \quad (3.4)$$

where $M : \mathfrak{R}_o \rightarrow \mathfrak{R}$ is a multiplicative function not identically one, $L_o, L_1, L : \mathfrak{R}_o \rightarrow \mathfrak{R}$ are logarithmic maps with L_1 not identically zero, and $\alpha, \beta, \gamma, \delta, a, b, c$ are arbitrary real constants.

PROOF. First, we substitute $y = 0$ in (FE1) and then we put $x = 0$ in (FE1) to obtain

$$p(x) = f(x) - a + \alpha g(x) \quad (3.5)$$

and

$$q(y) = f(y) - b + \beta h(y), \quad (3.6)$$

where $a := q(0)$, $b := p(0)$, $\alpha := -h(0)$, $\beta := -g(0)$. Using (3.5) and (3.6) in (FE1), we have

$$f(x+y+xy) = f(x) + f(y) - a - b + \alpha g(x) + \beta h(y) + g(x)h(y) \quad (3.7)$$

for $x, y \in \mathfrak{R}_*$. Replacing x by $u-1$ and y by $v-1$ in (3.7) and then defining

$$F(u) := f(u-1) - a - b, \quad G(u) := g(u-1), \quad H(u) := h(u-1) \quad (3.8)$$

for all $u \in \mathfrak{R}_o$, we obtain

$$F(uv) = F(u) + F(v) + \alpha G(u) + \beta H(v) + G(u)H(v) \quad (3.9)$$

for all $u, v \in \mathfrak{R}_o$. The general solution of (3.9) can now be obtained from Lemma 2. The first two solutions of Lemma 2 (see (2.9) and (2.10)) together with (3.5) and (3.6) yield the solutions (3.1) and (3.2). The next two solutions of Lemma 2 (that is, solution (2.11) and (2.12)) yield together with (3.5) and (3.6) the asserted solutions (3.3) and (3.4). This completes the proof of the theorem.

4. SOLUTION OF THE FUNCTIONAL EQUATION (FE2)

Let a, b and c be real parameters. We consider the functional equation

$$f(ax+by+cxy) = f(x) + f(y) + f(x)f(y), \quad \forall x, y \in \mathfrak{R}. \quad (\text{FE2})$$

The only constant solutions of (FE2) are $f \equiv 0$ and $f \equiv -1$. So we look for nonconstant solutions of the functional equation (FE2).

Substitution of $x = 0 = y$ in (FE2) yields $f(0)[f(0) + 1] = 0$. Hence, either $f(0) = 0$ or $f(0) = -1$. Now we consider two cases.

Case 1. Suppose $f(0) = -1$. Then $x = 0$ in (FE2) gives $f(by) = f(0)$, so that when $b \neq 0$, f is a constant which is not the case. Similarly by putting $y = 0$ in (FE2), we get f is a constant when $a \neq 0$.

Suppose $a = 0 = b$. If c is also zero, then (FE2) is $[1 + f(x)][1 + f(y)] = 0$ since $f(0) = -1$. That is f is a constant. So, assume $c \neq 0$. Then replacing x by $\frac{x}{c}$ and y by $\frac{y}{c}$ in (FE2), we obtain

$$M(xy) = M(x)M(y), \quad (4.1)$$

where $M : \mathbb{R} \rightarrow \mathbb{R}$ is a multiplicative map with $M(x) = 1 + f\left(\frac{x}{c}\right)$. Hence

$$f(x) = M(cx) - 1 \quad (4.2)$$

is a solution of (FE2) with $f(0) = -1$, $a = 0 = b$, $c \neq 0$.

Case 2. Suppose $f(0) = 0$. Let $a = 0$. Then $y = 0$ in (FE2) gives $f \equiv 0$ which is not the case. So, $a \neq 0$. Similarly $b \neq 0$. Setting $x = 0$ and $y = 0$ separately in (FE2), we get

$$f(by) = f(y) \quad \text{and} \quad f(ax) = f(x) \quad (4.3)$$

so that (FE2) becomes

$$f(ax + by + cxy) = f(ax) + f(by) + f(ax)f(by). \quad (4.4)$$

Suppose $c = 0$. Then replacing x by $\frac{x}{a}$ and y by $\frac{y}{b}$ in (4.4) we have

$$E(x + y) = E(x)E(y)$$

where $E : \mathbb{R} \rightarrow \mathbb{R}$ given by

$$E(x) = 1 + f(x) \quad (4.5)$$

is an exponential map. Further, from (4.3) and (4.5), we get

$$E(ax) = E(x) = E(bx)$$

and since $E(x)E(-x) = 1$, so we get

$$E((a - b)x) = 1 = E((a - 1)x). \quad (4.6)$$

If $a \neq b$, then E is a constant map and so f is also a constant function. If $a \neq 1$, then E and so f is a constant. Hence $a = 1 = b$. Thus by (4.5)

$$f(x) = E(x) - 1$$

is a solution of (FE2) with $a = b = 1$, $c = 0$.

Finally, let $a \neq 0$, $b \neq 0$ and $c \neq 0$. Set $\alpha = \frac{c}{ab}$. Replacing x by $\frac{x}{a\alpha}$ and y by $\frac{y}{b\alpha}$ in (4.4), we obtain

$$F(x + y + xy) = F(x)F(y), \quad (4.7)$$

where

$$F(x) = 1 + f\left(\frac{x}{\alpha}\right). \quad (4.8)$$

Changing x to $x - 1$ and y to $y - 1$ in (4.7) we have

$$M(xy) = M(x)M(y),$$

where $M : \mathbb{R} \rightarrow \mathbb{R}$ is multiplicative and

$$M(x) = F(x - 1). \quad (4.9)$$

Thus by (4.8) and (4.9), we have

$$f(x) = F(ax) - 1 = M(1 + ax) - 1. \quad (4.10)$$

If we use (4.10) in (4.3), and recall that $\alpha = \frac{c}{ba}$, we get

$$M\left(1 + \frac{c}{a}x\right) = M\left(1 + \frac{c}{b}x\right) = M\left(1 + \frac{c}{ab}x\right). \quad (4.11)$$

Recall that, since M is multiplicative, $M(x)M\left(\frac{1}{x}\right) = 1$ (otherwise if $M(1) = 0$, then $M \equiv 0$ so that $f \equiv -1$). Changing separately x to $\frac{ax}{c}$ and x to $\frac{bx}{c}$ in (4.11), we obtain

$$M(1 + x) = M\left(1 + \frac{x}{b}\right) = M\left(1 + \frac{x}{a}\right). \quad (4.12)$$

Similarly, replacing x by $\frac{abx}{c}$ in (4.11), we have

$$M(1 + x) = M(1 + ax) = M(1 + bx). \quad (4.13)$$

Replacing x by $x - 1$ in (4.13), we obtain $M(x) = M(1 + a(x - 1))$ which yields

$$M\left(\frac{1 - a + ax}{x}\right) = 1 \quad \text{if } x \neq 0.$$

Suppose $a \neq 1$. Changing x to $(1 - a)x$, we have $M(a + \frac{1}{x}) = 1$ and thus (again replacing x by $\frac{1}{x-a}$) we have $M(x) = 1$ when $x \neq a$. Similarly, if $b \neq 1$, we get $M(x) = 1$ when $x \neq 0, b$.

Hence, $M(x) = 1$ for all x which leads to f is a constant. Therefore $a = 1 = b$. Then from (4.10), we obtain

$$f(x) = M(1 + cx) - 1 \quad (4.14)$$

where $M : \mathbb{R} \rightarrow \mathbb{R}$ is multiplicative. Thus we have proved the following theorem.

THEOREM 2. The function $f : \mathbb{R} \rightarrow \mathbb{R}$ is a solution of (FE2) if and only if $f(x)$, for every $x \in \mathbb{R}$, is given by

$$f(x) = \begin{cases} M(cx) - 1 & \text{if } a = 0 = b, c \neq 0 \\ E(x) - 1 & \text{if } a = 1 = b, c = 0 \\ M(cx + 1) - 1 & \text{if } a = 1 = b, c \neq 0 \\ k & \text{otherwise,} \end{cases}$$

where $M : \mathbb{R} \rightarrow \mathbb{R}$ is multiplicative, $E : \mathbb{R} \rightarrow \mathbb{R}$ is exponential, and k is a constant satisfying $k(k + 1) = 0$.

ACKNOWLEDGMENTS. We are thankful to the referee for suggestions that improved the presentation of this paper. This research is partially supported by a grant from the Graduate Programs and Research of the University of Louisville.

REFERENCES

- [1] ACZEL, J. and DHOMBRES, J., *Functional Equations in Several Variables*, Cambridge University Press, Cambridge, 1989.
- [2] CHUNG, J.K., EBANKS, B.R., NG, C.T. and SAHOO, P.K., On a quadratic-trigonometric functional equation and some applications, *Trans. Amer. Math. Soc.* **347** (1995), 1131-1161.
- [3] KOH, E.L., The Cauchy functional equations in distributions, *Proc. Amer. Math. Soc.* **106** (1989), 641-646.
- [4] NEAGU, M., About the Pompeiu equation in distributions, *Inst. Politehn. "Traian Vuia" Timisoara. Lucrar. Sem. Mat. Fiz.* (1984) May, 62-66.
- [5] VINCZE, E., Eine allgemeinere methode in der theorie der funktional gleichungen-I, *Publ. Math. Debrecen* **9** (1962), 149-163.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk