

LONGEST CYCLES IN CERTAIN BIPARTITE GRAPHS

PAK-KEN WONG

Department of Mathematics and Computer Science
Seton Hall University
South Orange, NJ 07079 USA

(Received July 10, 1995 and in revised form October 25, 1995)

ABSTRACT. Let G be a connected bipartite graph with bipartition (X, Y) such that $|X| \geq |Y| (\geq 2)$, $n = |X|$ and $m = |Y|$. Suppose, for all vertices $x \in X$ and $y \in Y$, $\text{dist}(x, y) = 3$ implies $d(x) + d(y) \geq n + 1$. Then G contains a cycle of length $2m$. In particular, if $m = n$, then G is hamiltonian.

KEY WORDS AND PHRASES: Bipartite graphs, 2-connected graphs, hamiltonian graphs

1991 AMS SUBJECT CLASSIFICATION CODES: 05C38, 05C45

1. INTRODUCTION

We consider only finite undirected graphs without loops or multiple edges. Our terminology is standard and can be found in [1]. Let $G = (V, E)$ be a graph. For each vertex $x \in V$, let $D(x) = \{v \in V : v \text{ is adjacent to } x\}$. Then $d(x) = |D(x)|$ is the degree (valency) of x in G .

Let G be a 2-connected graph. Suppose, for all vertices, $x, y \in V$, $\text{dist}(x, y) = 2$ implies $\max\{d(x), d(y)\} \geq |V|/2$. Then it was shown in [2] that G is hamiltonian. Some generalizations of this result can be found in [3].

The purpose of this paper is to obtain a similar result for bipartite graphs. Let G be a connected bipartite graph with bipartition (X, Y) such that $|X| \geq |Y| (\geq 2)$, $n = |X|$ and $m = |Y|$. If $m \neq n$, then G cannot be hamiltonian. However, G may contain cycles. Suppose, for all vertices $x \in X$ and $y \in Y$, $\text{dist}(x, y) = 3$ implies $d(x) + d(y) \geq n + 1$. Then we show that G contains a cycle of length $2m$ (Theorem 7). It is also shown that G is 2-connected (Corollary 8).

As shown by an example in Section 3, the condition " $\text{dist}(x, y) = 3$ implies $d(x) + d(y) \geq n + 1$ " cannot be replaced by a weaker condition " $\text{dist}(x, y) = 3$ implies $\max(d(x), d(y)) \geq (n + 1)/2$ ". Also this condition cannot be replaced by " $\text{dist}(x, y) = 3$ implies $d(x) + d(y) \geq m + 1$," if $m \neq n$.

2. RESULTS

In this section, we assume that G is a connected bipartite graph with bipartition (X, Y) such that $|X| \geq |Y| (\geq 2)$. Let $n = |X|$ and $m = |Y|$. We also assume that, for all vertices $x \in X$ and $y \in Y$, $\text{dist}(x, y) = 3$ implies $d(x) + d(y) \geq n + 1$.

If S is a subgraph of G and v is a vertex of S , let $D_S(v) = \{u \in V(S) : u \text{ is adjacent to } v\}$ and $d_S(v) = |D_S(v)|$. Let $P = \{w_1, w_2, \dots, w_{2r}\}$ be a longest path of length $2r$ such that $w_1, w_3, \dots, w_{2r-1} \in X$ and $w_2, w_4, \dots, w_{2r} \in Y$. A path of even length is called an even path.

LEMMA 1. The minimum degree of G is at least two.

PROOF. Suppose, on the contrary, there exists a vertex $x \in X$ such that $d(x) = 1$. Since G is connected, it is easy to see that there exists some y in G such that $\text{dist}(x, y) = 3$ and so $d(x) + d(y) \geq n + 1$. Since y is not adjacent to x , $d(y) \leq n - 1$. But then $d(x) + d(y) \leq n$, which is impossible. Hence $d(x) \geq 2$ for all $x \in X$. Similarly, $d(y) \geq 2$ for all $y \in Y$.

LEMMA 2. If $d_P(w_1) + d_P(w_{2r}) \geq r + 1$, then the vertices of P form a cycle

PROOF. Suppose this is not true. Then w_1 is not adjacent to w_{2r} . For each $w_i \in D_P(w_1)$ (with $i \neq 2$), we have $w_{i-1} \notin D_P(w_{2r})$, for otherwise $(w_1, w_1, w_{i+1}, \dots, w_{2r}, w_{i-1}, w_{i-2}, \dots, w_2)$ is a cycle of length $2r$. Since $w_1 \notin D_P(w_{2r})$, we have

$$\begin{array}{ll} d_P(w_{2r}) & \leq (r-1) - (d_P(w_1) - 1) \\ & \quad (\text{take out } w_1) \quad (\text{take out } i = 2) \end{array}$$

Hence $d_P(w_1) + d_P(w_{2r}) \leq r$, which is a contradiction.

LEMMA 3. If $d(w_1) + d(w_{2r}) \geq n + 1$, then the vertices of P form a cycle.

PROOF. If w_1 is adjacent to w_{2r} , the lemma is true. Hence we can assume that w_1 is not adjacent to w_{2r} . By Lemma 2, it is sufficient to show that $d_P(w_1) + d_P(w_{2r}) \geq r + 1$. Since P is a longest even path, either $d_P(w_1) = d(w_1)$ or $d_P(w_{2r}) = d(w_{2r})$.

CASE 1. Assume $d_P(w_1) = d(w_1)$. Then $d(w_{2r}) - d_P(w_{2r}) \leq n - r$ and so $d_P(w_{2r}) \geq d(w_{2r}) - n + r$. Hence $d_P(w_1) + d_P(w_{2r}) \geq d(w_1) + d(w_{2r}) - n + r \geq r + 1$.

CASE 2. Assume $d_P(w_{2r}) = d(w_{2r})$. Then $d(w_1) - d_P(w_1) \leq m - r$ and so $d_P(w_1) \geq d(w_1) - m + r$. Hence $d_P(w_1) + d_P(w_{2r}) \geq d(w_1) - m + r + d(w_{2r}) \geq (n+1) - m + r = r + 1 + (n-m) \geq r + 1$.

Therefore the lemma is true.

In the following lemma, we assume that $d_P(w_1) = d(w_1)$ and w_1 is not adjacent to w_{2r} . Since, by Lemma 1, $d_P(w_1) = d(w_1) \geq 2$, there exists some k ($2 < k < 2r$) such that w_1 is adjacent to w_k and k is largest, this means, if $k' > k$, then $w_{k'}$ is not adjacent to w_1 .

LEMMA 4. Suppose that $d_P(w_1) = d(w_1)$ and the vertices of P do not form a cycle. Then $d_P(w_{k+1}) + d_P(w_{2r}) \leq r$.

PROOF. By Lemmas 2 and 3, $d(w_1) + d(w_{2r}) \leq n$ and $d_P(w_1) + d_P(w_{2r}) \leq r$. Hence $\text{dist}(w_1, w_{2r}) > 3$ and so $k \neq 2r-2$. Thus $k+2 \neq 2r$. By the choice of k , w_{k+2} is not adjacent to w_1 and so $\text{dist}(w_{k+2}, w_1) = 3$ which implies $d(w_1) + d(w_{k+2}) \geq n+1$. Hence by Lemma 3, the vertices of P cannot form a path of length $2r$ with ends w_1 and w_{k+2} .

We claim that, for any $w_i \in D_P(w_{k+1})$, $w_{i-1} \notin D_P(w_{2r})$. In fact, if $i = 2$, then w_{2r} is not adjacent to w_1 . If $2 < i < k$ and w_{i-1} is adjacent to w_{2r} , then we have $w_1, w_k, w_{k-1}, \dots, w_i, w_{k+1}, w_{k+2}, \dots, w_{2r}, w_{i-1}, w_{i-2}, \dots, w_2$. This is a cycle of length $2r$, which is impossible. If $i = k$, then w_{2r} is not adjacent to w_{k-1} , because $\text{dist}(w_1, w_{2r}) > 3$. If $i = k+2$, then w_{2r} is not adjacent to w_{k+1} , otherwise $\text{dist}(w_1, w_{2r}) = 3$. If $k+4 \leq i \leq 2r-2$ and w_{2r} is adjacent to w_{i-1} , then we have $w_1, w_2, \dots, w_{k+1}, w_i, w_{i+1}, \dots, w_{2r}, w_{i-1}, w_{i-2}, \dots, w_{k+2}$. This is a path of length $2r$ with ends w_1 and w_{k+2} , which is impossible. Therefore, for any $w_i \in D_P(w_{k+1})$, $w_{i-1} \notin D_P(w_{2r})$ and so $d_P(w_{2r}) \leq r - d_P(w_{k+1})$. Thus $d_P(w_{k+1}) + d_P(w_{2r}) \leq r$.

LEMMA 5. If $d_P(w_1) = d(w_1)$ and $d_P(w_{2r}) = d(w_{2r})$, then the vertices of P form a cycle.

PROOF. Suppose, on the contrary, that the vertices of P do not form a cycle. Let k be as in Lemma 4. From the proof of Lemma 4, we have $\text{dist}(w_1, w_{2r}) > 3$ and so w_{k+1} is not adjacent to w_{2r} . If $\text{dist}(w_{k+1}, w_{2r}) = 3$, then $d(w_{k+1}) + d(w_{2r}) \geq n+1$. Since $d(w_{2r}) = d_P(w_{2r})$, it follows from the proof of Lemma 3 that $d_P(w_{k+1}) + d_P(w_{2r}) \geq r+1$. But this contradicts Lemma 4. Thus $\text{dist}(w_{k+1}, w_{2r}) > 3$. If there exists some vertex w_i which is adjacent to both w_{k+2} and w_{2r} , then $\text{dist}(w_{k+1}, w_{2r}) = 3$, which is impossible. Hence w_{k+2} and w_{2r} cannot have a common neighbor on P and so $d_P(w_{k+2}) + d_P(w_{2r}) \leq r$. Therefore $d_P(w_{k+2}) \leq r - d_P(w_{2r})$. Since $\text{dist}(w_1, w_{k+2}) = 3$, we have $d(w_1) + d(w_{k+2}) \geq n+1$. Since $d(w_1) = d_P(w_1)$, by the proof of Lemma 3, $d_P(w_1) + d_P(w_{k+2}) \geq r+1$. Hence, we have $r - d_P(w_{2r}) \geq d_P(w_{k+2}) \geq r+1 - d_P(w_1)$. Therefore $d_P(w_1) - d_P(w_{2r}) \geq 1$ and so $d(w_1) > d(w_{2r})$. By replacing w_{2r} with w_1 in the above argument, we can also show that $d(w_{2r}) > d(w_1)$. This is impossible. Hence the vertices of P form a cycle.

LEMMA 6. There exists a cycle of length $2r$ in G .

PROOF. By Lemma 5, we can assume that, for each path P of length $2r$, either $d(w_1) > d_P(w_1)$ or $d(w_{2r}) > d_P(w_{2r})$, otherwise the lemma is true. Let P be a path of length $2r$ with $d(w_{2r}) > d_P(w_{2r})$ (A similar argument holds for $d(w_1) > d_P(w_1)$.) Then, by the maximality of P , $d(w_1) = d_P(w_1)$. Since $d_P(w_1) = d(w_1) \geq 2$ (Lemma 1), there exists some $w_k \in P$ such that w_k is adjacent to w_1 and $k \neq 2$. Also, we can assume that k is the largest number among all such paths (with $d(w_{2r}) > d_P(w_{2r})$). We claim that either $k = 2r$ or the vertices of P form a cycle. Suppose this is not true. If $k + 2 = 2r$, then $\text{dist}(w_1, w_{2r}) = 3$ and so $d(w_1) + d(w_{2r}) \geq n + 1$. Hence by Lemma 3, the vertices of P form a cycle, which is impossible. Thus $k + 2 \neq 2r$ and so $k \neq 2r - 2$. Since k is the largest number, it follows that $k < 2r - 2$. Hence $k + 2 < 2r$.

We claim that, if $w_i \in D_P(w_1)$ and $i \neq 2$, then $w_{i-1} \notin D_P(w_{k+2})$. Suppose this is not true. Since k is the largest number, $4 \leq i \leq k$ and so $w_{i-1}, w_{i-2}, \dots, w_2, w_1, w_i, w_{i+1}, \dots, w_{2r}$ is a path of length $2r$. Since $d(w_{2r}) > d_P(w_{2r})$, by the maximality of P , we have $d_P(w_{i-1}) = d(w_{i-1})$. But w_{i-1} is adjacent to w_{k+2} . Therefore k is not the largest number among all such paths, which is a contraction. Hence, if $w_i \in D_P(w_1)$ and $i \neq 2$, then $w_{i-1} \notin D_P(w_{k+2})$. Since w_{k+2} is not adjacent to w_1 , we have

$$d_P(w_{k+2}) \leq (r-1) - (d_P(w_1) - 1) = r - d_P(w_1).$$

Hence $d_P(w_1) + d_P(w_{k+2}) \leq r$. Since $\text{dist}(w_1, w_{k+2}) = 3$, we have $d(w_1) + d(w_{k+2}) \geq n + 1$. Since $d_P(w_1) = d(w_1)$, the proof of Lemma 3, we have $d_P(w_1) + d_P(w_{k+2}) \geq r + 1$, which is a contraction. Therefore either $k = 2r$, in which case we have a cycle, or the vertices of P form a cycle of length $2r$.

We now have the main result of this paper.

THEOREM 7. Let G be a connected bipartite graph with bipartition (X, Y) such that $|X| \geq |Y| (\geq 2)$. Let $n = |X|$ and $m = |Y|$. Suppose, for all vertices $x \in X$ and $y \in Y$, $\text{dist}(x, y) = 3$ implies $d(x) + d(y) \geq n + 1$. Then G contains a cycle of length $2m$. In particular, if $m = n$, then G is hamiltonian.

PROOF. Let $P = (w_1, w_2, \dots, w_{2r})$ be a longest even path in G . By Lemma 6, we can assume that w_1 is adjacent to w_{2r} . We show that $r = m$. Suppose that this is not true. Then $r < m$ and so $n \geq m \geq r + 1$. Let $u \in X - P$ and $v \in Y - P$. Since G is connected, there exists a shortest path Q from u to P . If $|Q| > 1$, then there exists an even path with length greater than $2r$ in G , which is impossible. Hence $|Q| = 1$ and so $d_P(u) = d(u) \geq 2$. Similarly $d_P(v) = d(v) \geq 2$. In particular, u is not adjacent to v .

If there exists some $w_i \in P$ such that w_i is adjacent to u and w_{i+1} (or w_{i-1}) is adjacent to v , then we have an even path of length greater than $2r$, which is impossible. Therefore $d(u) + d(v) \leq r$ and $\text{dist}(u, v) > 3$. We can assume that $d(u) \geq d(v)$. (A similar argument holds for $d(v) \geq d(u)$.) Since $d(u) \geq 2$ and $d(u) + d(v) \leq r$, there exists some vertex, say w_3 , such that w_3 is adjacent to v and w_1 is not adjacent to v . Since $\text{dist}(u, v) > 3$, w_2 is not adjacent to u . Since $\text{dist}(w_1, v) = 3$, $d(w_1) + d(v) \geq n + 1$. Since $d(v) = d_P(v)$, by the proof of Lemma 3, $d_P(w_1) + d_P(v) \geq r + 1$. Hence

$$d_P(w_1) + d_P(u) \geq d_P(w_1) + d_P(v) \geq r + 1.$$

Thus there exists some vertex $w_i \in P$ such that w_i is adjacent to both u and w_1 . It follows that $\text{dist}(w_2, u) = 3$ and so $d(w_2) + d(u) \geq n + 1$. If $d(w_2) > d_P(w_2)$, then we clearly have an even path of length greater than $2r$, because v is adjacent to w_3 . But this is impossible. Hence $d(w_2) = d_P(w_2)$ and so $d_P(w_2) + d_P(u) = d(w_2) + d(u) \geq n + 1$. Since $n \geq r + 1$, we have $d_P(w_2) + d_P(u) \geq r + 2$. Therefore there exists some k and k' with $k' > k$ such that w_k and $w_{k'}$ are adjacent to u and either w_{k+1} is adjacent to w_2 or w_{k-1} is adjacent to w_2 , otherwise $d_P(w_2) \leq r - (d_P(u) - 1)$ and so $d_P(w_2) + d_P(u) \leq r + 1$. If w_{k+1} is adjacent to w_2 , then we have $w_{k+1}, w_{k+2}, \dots, w_1, w_2, w_{k+1}, w_{k+2}, \dots, w_{k'}, u, w_k, w_{k-1}, \dots, w_3, v$ and this is a path of length $2r + 2$, which is impossible. If w_{k-1} is adjacent to w_2 , then we have $w_{k+1}, w_{k+2}, \dots, w_{k'-1}, w_2, w_1, \dots, w_{k'}, u, w_k, w_{k-1}, \dots, w_3, v$ and this is also a path of length $2r + 2$. This is a contraction. Hence $r = m$ and this completes the proof of the theorem.

We have the last result of this section.

COROLLARY 8. G is 2-connected

PROOF. By Theorem 7, G contains a cycle P of length $2m$. If $m = n$, then G is hamiltonian and so G is 2-connected. Suppose $m < n$. For each vertex $x \in X - P$, we have $d_P(x) = d(x) \geq 2$. Hence, it follows that G is also 2-connected.

3. SOME REMARKS

In this section, we give some remarks

REMARK 1. The condition " $\text{dist}(x, y) = 3$ implies $d(x) + d(y) \geq n + 1$ " in Theorem 7 cannot be replaced by a weaker condition " $\text{dist}(x, y) = 3$ implies $\max(d(x), d(y)) \geq (n + 1)/2$ ". In fact, let G be the graph given in Figure 1, where the vertex partition is indicated by the filled and empty circles

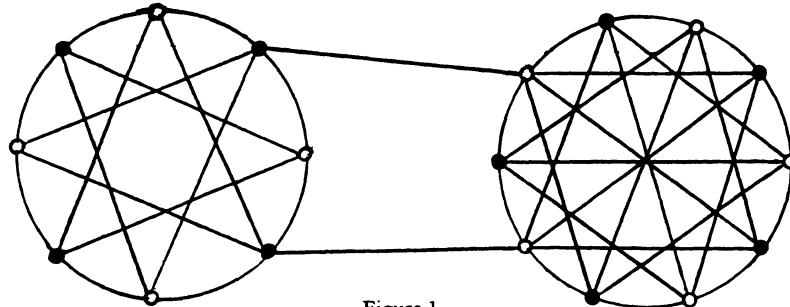


Figure 1

Then $n = m = 9$. Clearly G is not hamiltonian and G satisfies the condition $\text{dist}(x, y) = 3$ implies $\max(d(x), d(y)) \geq (n + 1)/2$.

REMARK 2. The condition " $\text{dist}(x, y) = 3$ implies $d(x) + d(y) \geq n + 1$ " in Theorem 7 cannot be replaced by the condition " $\text{dist}(x, y) = 3$ implies $d(x) + d(y) \geq m + 1$," if $m \neq n$. In fact, let G be the graph given in Figure 2

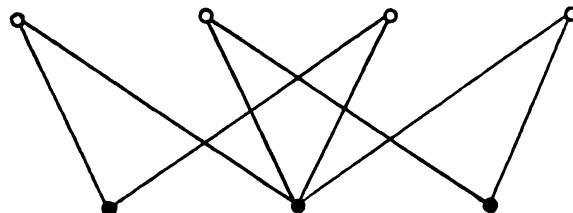


Figure 2

Then $n = 4$ and $m = 3$. Also $d(x) + d(y) \geq m + 1 = 4$ for all $x \in X$ and $y \in Y$. But G contains no cycle of length $2m = 6$. Since G has a cut vertex, G is not 2-connected.

REFERENCES

- [1] BONDY, J.A. and MURTY, U.S.R., *Graph Theory with Applications*, MacMillan & Co., London and Amer Elsevier, New York, 1976
- [2] GAN, G.H., New sufficient conditions for cycles in graphs, *J. Combin. Theory, Ser. B*, 37 (1984), 221-227.
- [3] GOULD, R.J., Updating the hamiltonian problem - a survey, *J. Graph Theory*, 15 (1991), 121-157

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru