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ABSTRACT. Let G be a connected bipartite graph with bipartition (X,Y) such that | X| > |Y|( > 2), n

= |X| and m = |Y| Suppose, for all vertices z € X and y € Y, dist(z,y) = 3 implies
d(z)+d(y) >n+1 Then G contains a cycle of length 2m In particular, if m = n, then G 1s
hamiltonian
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1. INTRODUCTION

We consider only finite undirected graphs without loops or multiple edges. Our terminology 1s
standard and can be found in [1]. Let G=(V,E) be a graph For each vertex z € V, let
D(z) = {ve V :visadjacentto z}. Thend(z) = |D(z)]| 1s the degree (valency) of z in G

Let G be a 2-connected graph. Suppose, for all vertices, z,y € V, dist(z,y) =2 implies
max{d(z),d(y)} > |V|/2 Then it was shown in [2] that G 1s hamiltonian Some generalizations of this
result can be found 1n [3]

The purpose of this paper is to obtain a similar result for bipartite graphs Let G be a connected
bipartite graph with bipartition (X,Y) such that | X| > |Y|( > 2), n = |X| and m = |Y| If m # n, then
G cannot be hamiltomian However, G may contain cycles Suppose, for all vertices z € X andy € Y,
dist(z,y)) = 3 implies d(z) +d(y) >n+1 Then we show that G contains a cycle of length 2m
(Theorem 7) It is also shown that G 1s 2-connected (Corollary 8)

As shown by an example in Section 3, the condition "dist (z,y) = 3 imphes d(z) + d(y) > n+ 1"
cannot be replaced by a weaker condition "dist (z,y) = 3 implies max(d(z),d(y)) > (n+1)/2" Also
this condition cannot be replaced by "dist (z,y) = 3 imphes d(z) + d(y) > m+ 1,"if m # n
2. RESULTS

In this section, we assume that G 1s a connected bipartite graph with bipartition (X,Y’) such that
|X| > Y] (>2) Letn=|X|andm = |Y| We also assume that, for all vertices z € X andy € Y, dist
(z,y) = 3imphes d(z) + d(y) >2n+1

If S 1s a subgraph of G and v is a vertex of S, let Dg(v) = {u € V(S) : u is adjacent to v}
and ds(v) = |Ds(v)] Let P = {w;,wy,.., wor} be a longest path of length 2r such that
wy, W3, ..., War—; € X and wo, Wy, ..., wor € Y A path of even length is called an even path

LEMMA 1. The mimimum degree of G 1s at least two

PROOF. Suppose, on the contrary, there exists a vertex z € X such that d(z) =1 Since G 1s
connected, 1t 1s easy to see that there exists some y in G such that dist(z,y) =3 and so
d(z) +d(y) >n+1 Since y is not adjacent to z, d(y) < n—1 But then d(z) + d(y) < n, which 1s
impossible. Hence d(z) > 2 forall z € X. Similarly, d(y) > 2 forally e Y
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LEMMA 2. If dp(w1) + dp(ws,) > r+ 1, then the vertices of P form a cycle

PROOF. Suppose this 1s not true. Then w; 1s not adjacent to wy, For each w, € Dp(w;) (with
i # 2), we have w,_; ¢ Dp(ws,), for otherwise (wy, Wy, Wit1, -.ey Wor, Wemi, Wi—2, ..., Wo) 15 a cycle of
length 2r Since w; ¢ Dp(ws,), we have

dp(wy) < (r—1) — (dp(w1) —1)
(take out wy)  (take outz = 2)

Hence dp(w;) + dp(ws,) < r, which is a contradiction.
LEMMA 3. If d(w;) + d(we-) > n + 1, then the vertices of P form a cycle.

PROOF. If w, 1s adjacent to wo,, the lemma 1s true. Hence we can assume that w) 1s not adjacent to
wor By Lemma 2, 1t 1s sufficient to show that dp(w;) + dp(ws,) > 7+ 1 Since P 1s a longest even
path, erther dp(w;) = d(w;) or dp(wy,) = d(wy,)

CASE 1. Assume dp(w;) = d(w;) Then d(wsy,) —dp(ws.) <n—r and so dp(wy,) > d(wy,) —n+r
Hence dp(w;) + dp(wer) > d(wy) + d(wer) —n+r>r+1

CASE 2. Assume dp(wsy,) = d(wy,) Thend(w;)—dp(w1) < m—randsodp(w,) > d(w;)—m+r
Hence dp(w;) + dp(wer) > d(wy)) —m+r+d(we,) > (n+1)—m+r=r+1+(n-m)>r+1.
Therefore the lemma is true

In the following lemma, we assume that dp(w;) = d(w;) and w) 1s not adjacent to wy, Since, by
Lemma 1, dp(w;) = d(w;) > 2, there exists some k(2 < k < 2r) such that w, is adjacent to wy and k 1s
largest, this means, if k' > k, then wy, 1s not adjacent to w;.

LEMMA 4. Suppose that dp(w;) = d(w;) and the vertices of P do not form a cycle Then
dp(wik+1) + dp(wer) <7

PROOF. By Lemmas 2 and 3, d(w) + d(we,) < n and dp(w;) + dp(wy,) <r. Hence
dist(wy, wer) > 3 and so k # 2r — 2 Thus k + 2 # 2r. By the choice of k, wk.2 1s not adjacent to w;
and so dist(wg+2, w;) = 3 which implies d(w;) + d(wk42) > n+ 1 Hence by Lemma 3, the vertices of
P cannot form a path of length 2 with ends w; and wyo.

We claim that, for any w, € Dp(wk+1), wi—1 € Dp(we,) In fact, 1if i = 2, then wy, 1s not adjacent to
w; If2 < i< kand w,—, is adjacent to wy,, then we have wy, Wi, We—_1, ..., Wy, Wk1, W42, -+, Wor, Wa—1,
W,-g,...,we This is a cycle of length 2r, which is impossible If i = k, then we, 1s not adjacent to w1,
because dist(wy, wer) > 3 Ifi = k + 2, then wo, 1s not adjacent to wi.;, otherwise dist(w;, wo,) = 3 If
k+4<i<2r—2 and wy 1s adjacent to w,_;, then we have w;,ws, ..., Wki1,Ws, Wiil, .-, Wor,
W,_1, Wi—2, ..., Wk+2 This 1s a path of length 27 with ends w; and w9, which is impossible Therefore,
for any w, € Dp(wk41), Wi € Dp(wo-) and so dp(we,) <T—dp(wk+). Thus dp(wk+1) + dp(wyr) <7

LEMMA 5. If dp(w;) = d(w;) and dp(ws,) = d(ws,), then the vertices of P form a cycle

PROOF. Suppose, on the contrary, that the vertices of P do not form a cycle Let k be as in Lemma
4. From the proof of Lemma 4, we have dist(w;, wy,) > 3 and so w4 1s not adjacent to we, If
dist(wg1, wor) = 3, then d(wi41) + d(wer) > n+1 Since d(ws,) = dp(wsy), it follows from the proof
of Lemma 3 that dp(w+1) + dp(ws,) > 7+ 1. But this contradicts Lemma 4. Thus dist(wk.1, wr) > 3
If there exists some vertex w, which 1s adjacent to both w2 and wo,, then dist(wi41, wor) = 3, which 1s
impossible Hence w2 and wy, cannot have a common neighbor on P and so dp(wik+2) + dp(wa,) <7
Therefore dp(wk+2) < 7 —dp(wy,). Since dist(w;, wk+2) = 3, we have d(w) + d(wis2) 2 n+1
Since d(w;) = dp(w), by the proof of Lemma 3, dp(w;) + dp(wks2) =7+ 1. Hence, we have
r —dp(wy,) > dp(wki2) > 7+ 1 —dp(w;) Therefore dp(w;) — dp(wer) > 1 and so d(w;) > d(wer)
By replacing wo, with w; in the above argument, we can also show that d(wy,) > d(w;) This 1s
impossible Hence the vertices of P form a cycle.

LEMMA 6. There exists a cycle of length 2r in G
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PROOF. By Lemma 5, we can assume that, for each path P of length 2r, either d(w;) > dp(w;) or
d(wg,) > dp(ws,), otherwise the lemma 1s true. Let P be a path of length 2r with d(ws,) > dp(we,) (A
similar argument holds for d(w;) > dp(w;).) Then, by the maximality of P, d(w;) = dp(w;) Since
dp(w;) = d(w;) > 2 (Lemma 1), there exists some wi € P such that wy 1s adjacent to w; and k # 2
Also, we can assume that k 1s the largest number among all such paths (with d(we,) > dp(we,)) We
claim that either k = 2r or the vertices of P form a cycle. Suppose this is not true If k + 2 = 27, then
dist(w;, wor) = 3 and so d(w) + d(wz;) > n+ 1 Hence by Lemma 3, the vertices of P form a cycle,
which 1s impossible. Thus k + 2 # 2r and so k # 2r — 2. Since k 1s the largest number, 1t follows that
k<2r—2 Hencek+2 < 2r.

We claim that, if w, € Dp(w;) and i # 2, then w,—; ¢ Dp(wk+2) Suppose this 1s not true  Since k 15
the largest number, 4 < i < k and 5o wy—1, W,-9, ..., We, W1, Wy, Wy+1, ..., Wor 15 a path of length 2r Since
d(war) > dp(wer), by the maximality of P, we have dp(w,—1) = d(w,—;) But w,_, 1s adjacent to w9
Therefore k 1s not the largest number among all such paths, which is a contraction Hence, if
w, € Dp(w;) and i # 2, then w,_; ¢ Dp(wk+2). Since wi.2 1s not adjacent to w;, we have

dp(wiye) < (r—1) — (dp(‘wl) —1) =r—dp(w).

Hence dp(w;) + dp(wk+2) < 7. Since dist(wy, wi42) = 3, we have d(w;) + d(wks2) > n+1 Since
dp(w;) = d(w;), the proof of Lemma 3, we have dp(w;) + dp(wk42) > 7 + 1, which is a contraction
Therefore either k = 2r, 1n which case we have a cycle, or the vertices of P form a cycle of length 2r

‘We now have the main result of this paper.

THEOREM 7. Let G be a connected bipartite graph with bipartition (X,Y) such that
[X]>|Y[(>2). Letn=|X|and m = |Y| Suppose, for all vertices z € X and y € Y, dist(z,y) = 3
implies d(z) + d(y) > n+ 1. Then G contains a cycle of length 2m In particular, if m = n, then G 1s
hamiltonian

PROOF. Let P = (w;,wy, ..., wz,) be a longest even path in G By Lemma 6, we can assume that w,
1s adjacent to wo, We show that r =m. Suppose that this is not true Then r <m and so
n>m2>r+1 Letu€e X—Pandv€eY — P Since G 1s connected, there exists a shortest path Q
from u to P If |Q| > 1, then there exists an even path with length greater than 2r in G, which 1s
impossible Hence |Q| = 1 and so dp(u) = d(u) > 2. Similarly dp(v) = d(v) > 2 In particular, u 1s
not adjacent to v.

If there exists some w, € P such that w, 1s adjacent to v and w,,, (or w,_;) 1s adjacent to v, then we
have an even path of length greater than 2r, which is impossible. Therefore d(u) + d(v) < r and
dist(u,v) >3 We can assume that d(u) > d(v) (A similar argument holds for d(v) > d(u)) Since
d(u) > 2 and d(u) + d(v) < r, there exists some vertex, say wj, such that wj is adjacent to v and w, 15
not adjacent to v Since dist(u,v) > 3, wy is not adjacent to u  Since dist(w;,v) =3,
d(w;) +d(v) >n+1 Sinced(v) = dp(v), by the proof of Lemma 3, dp(w;) + dp(v) > r+ 1 Hence

dp(w1) + dp(u) > dp(w1) +dp(v) 2 7+ 1.

Thus there exists some vertex w, € P such that w, is adjacent to both v and w;. It follows that
dist(wg,u) = 3andso d(wg) + d(u) >n+1 If d(ws) > dp(ws), then we clearly have an even path of
length greater than 27, because v 1s adjacent to w3. But this is impossible. Hence d(ws) = dp(ws) and so
dp(wz) + dp(u) = d(wyp) +d(u) >n+1 Since n>r+1, we have dp(wy)+dp(u)>r1+2
Therefore there exists some k and k' with k' > k such that wy and wy are adjacent to u and either wi.; 1s
adjacent to wp; or wp-; is adjacent to ws, otherwise dp(wq) <7 — (dp(u) —1) and so
dp(wy) + dp(u) <7+ 1 Ifwky 1s adjacent to wo, then we have wp 41, Wi, ..., W1, W2, Wit1, Wk42,
ey Wi, U, Wk, W—1, ..., W3, v and this is a path of length 2 + 2, which is impossible. If wy_ 1s adjacent
to ws, then we have wii1, W42, ..., Wy -1, We, W1, ..., Wi, U, Wk, Wk—1, --., W3, U and this 1s also a path of
length 2r + 2. This 1s a contraction Hence r = m and this completes the proof of the theorem



106 P-K WONG

We have the last result of this section.

COROLLARY 8. G 1s 2-connected

PROOF. By Theorem 7, G contains a cycle P of length 2m If m = n, then G is hamiltonian and so
G is 2-connected Suppose m < n For each vertex z € X — P, we have dp(z) = d(z) > 2 Hence, 1t
follows that G is also 2-connected.
3. SOME REMARKS

In this section, we give some remarks

REMARK 1. The condition "dist(z,y) = 3 imples d(z) + d(y) > n + 1" 1n Theorem 7 cannot be
replaced by a weaker condition "dist(z,y) = 3 implies max(d(z),d(y)) > (n+ 1)/2. Infact, let G be the
graph given in Figure 1, where the vertex partition is indicated by the filled and empty circles

Figure 1

Thenn=m =9 Clearly G 1s not hamiltonan and G satisfies the condition dist(z,y) = 3 implies
max(d(z),d(y)) = (n+1)/2
REMARK 2. The condition "dist(z,y) = 3 imphes d(z) + d(y) > n+ 1" in Theorem 7 cannot be

replaced by the condition "dist(z,y) = 3 implies d(z) + d(y) 2 m+ 1," f m # n In fact, let G be the
graph given 1n Figure 2

Figure 2

Thenn=4andm =3. Alsod(z)+d(y) >m+1=4forallz € Xandy € Y ButG contains no
cycle of length 2m = 6. Since G has a cut vertex, G 1s not 2-connected.
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