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ABSTRACT. Let G be a connected bpamte graph vath bpamtion (X, Y) such that IX[ >_ IY[ >_ 2), n

IX] and m [Y Suppose, for all vertmes x E X and 3/ E Y, dst(z,y) 3 mphes

d(x)+d(3/)_>n+l Then G contains a cycle of length 2m In partmular, fire=n, then G s

hamfltoman
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1. INTRODUCTION
We consider only fimte undirected graphs without loops or multiple edges. Our terminology is

standard and can be found m [1]. Let G (V,E) be a graph For each vertex x E V, let

D(x) {v E V v s adjacent to x}. Then d(x) ID(z)l s the degree (valency) ofx m G
Let G be a 2-connected graph. Suppose, for all vertices, x, 3/E V, dst(x,y)= 2 mphes

max{d(z),d(3/)} >_ IVI/2 Then it was shown in [2] that G s hamlltonian Some generahzatlons ofths

result can be found n [3]
The purpose of ths paper is to obtmn a similar result for bipamte graphs Let G be a connected

bipamte graph wth bipartition (X, Y) such that IXl > Igl >_ 2), n IXl and m Igl Ifm #= n, then

G cannot be hamfltoman However, G may contain cycles Suppose, for all vertices x E X and y E Y,
dlst (x, 3/)) 3 implies d(x)+ d(3/) _> n + 1 Then we show that G contains a cycle of length 2rn

(Theorem 7) It is also shown that G s 2-connected (Corollary 8)
As shown by an example m Section 3, the condition "dst (x, ) 3 mphes d(x) + d(3/) >_ n + 1"

cannot be replaced by a weaker condiuon "dist (x,3/)= 3 mphes max(d(x),d(3/)) >_ (n + 1)/2 Also

this condmon cannot be replaced by "dist (x, 3/) 3 implies d(x) + d(y) >_ m + 1," ffm # n

2. RESULTS
In ths section, we assume that G is a connected bparute graph vath bparution IX, Y/ such that

IX[ >_ ]Y[ _> 2) Let n IXl and m [YI We also assume that, for all vertices z E X and 3/ Y, dst

(x, y) 3 imphes d(x) + d(y) > n + 1

If S s a subgraph of G and v is a vertex of S, let Ds(v)= {u V(S):u is adjacentto v}
and ds(v)= [Ds(v)[ Let P= {w,w2,...,w2} be a longest path of length 2r such that

w, w3, w2-t E X and w2, w4, w2 E Y A path of even length is called an even path

LEMMA 1. The minimum degree ofG s at least two

PROOF. Suppose, on the contrary, there exists a vertex x E X such that d(x) Since G s

connected, t ts easy to see that there exists some y m G such that dst(x,y)= 3 and so

d(x) + d(y) > n + 1 Since y is not adjacent to x, d(y) < n But then d(x) + d(y) < n, whmh s

mposmble. Hence d(x) _> 2 for all x X. Similarly, d(y) _> 2 for all y E Y
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LEMMA 2. Ifdp(wl) + alp(w2,.) >_ r + 1, then the vertices ofP form a cycle
PROOF. Suppose this Is not true. Then w Is not ad.acent to w2r For each w, E Dp(w) (wth
2), we have w_ . Dp(w_,.), for otherwise (w, w,, w,/ w2, w:_l, w__, w2) s a cycle of

length 2r Since w . Dp(w2,.), we have

dp(w2) <_ (r-l) (dp(w)-l)
(take out wl) (take out 2)

Hence de(w) + dp(w2r) <__ r, which is a contradmtion.

LEMMA 3. Ifd(w) + d(w2r) >_ n + 1, then the vertices ofP form a cycle.

PROOF. Ifw Is adjacent to w2, the lemma s true. Hence we can assume that w Is not adjacent to

w2 By Lemma 2, t s sufficmnt to show that dp(w) + dp(w2r) >_ r -F Since P s a longest even

path, either d,(wl) d(w) or d,(w2) d(w2r)
CASE 1. Assume dR(w1) d(w) Then d(w2)-dp(w2) _<n- r and so dp(w2r) >_d(w2)-n+r

Hence d,(Wl) + dp(w2r) >_ d(Wl) + d(w) n + r >_ r +
CASE 2. Assume dp(w2r) d(w2) Then d(wl)-dp(Wl) _< m- r and so dp(wl) >_ d(wl)-m+r

Hence dp(w) + dp(w2) >_ d(wl) rn + r + d(w2r) >_ (n + 1) rn + r r + 1 + (n-m) >_ r + 1.

Therefore the lemma is true

In the following lemma, we assume that dp(wl) d(Wl) and w] s not adjacent to w2 Since, by

Lemma 1, dp(wl) d(Wl) >_ 2, there exists some k(2 < k < 2r) such that w is adjacent to w and k s

largest, ths means, if k > k, then w, s not adjacent to w].

LEMMA 4. Suppose that dp(Wl)= d(wl) and the vertmes of P do not form a cycle Then

dp(w,+l) + dp(w2) <_ r

PROOF. By Lemmas 2 and 3, d(w)+ d(w)<_ n and dp(Wl)+dp(w2r)<_ r. Hence

dst(w, w2r) > 3 and so k 2r 2 Thus k + 2 : 2r. By the chome of k, w+2 s not adjacent to w
and so dist(w,+2, Wl) 3 which implies d(Wl) + d(w+) _> n + 1 Hence by Lemma 3, the vertmes of

P cannot form a path of length 2r with ends wl and w,+2.

We claim that, for any w, E Dp(wk+l), w,-i

_
Dp(w2r) In fact, f 2, then w s not adjacent to

w If2 < < k and w,_ is adjacent to w2, then we have w, wk, w,_, w,, w,+, w,+2 w2, w,-,

w,-2, w This Is a cycle of length 2r, which is impossible If k, then w2 s not adjacent to w_,

because dist(w, w2r) > 3 If k + 2, then w2 s not adjacent to w., otherwise dlst(w, w2) 3 If

k + 4 _< <: 2r 2 and w2 s adjacent to w,_, then we have w, w2, W,+l, w,, w,+, w2,

w,_, w,_ w.2 Ths is a path of length 2r with ends w and w,+2, whmh s mpossible Therefore,

for any w, e Dp(w+), w,q

_
Dp(w2) and so dp(w2r) <_ r-dp(w,qa). Thus dp(w,/) + de(w2) _< r

LEMMA 5. Ifdp(w) d(wl) and dp(w2r) d(w2r), then the vertmes ofP form a cycle

PROOF. Suppose, on the contrary, that the vertmes of P do not form a cycle Let k be as m Lemma

4. From the proof of Lemma 4, we have dist(w, w2,) > : and so w,+ s not adjacent to w2 If

dist(w+, w2) 3, then d(w+) + d(w2) >_ n + 1 Since d(w_) dp(w), it follows from the proof

ofLemma 3 that d,(wk+) + dp(w2r) _> r -F 1. But this contradicts Lemma 4. Thus dst(wk+l, w2r) > 3

If there exists some vertex w, whmh s adjacent to both wk+2 and w2, then dlst(w/, w) 3, whmh s

Impossible Hence w+2 and w2 cannot have a common nmghbor on P and so d-(w,+2) + d(w2) <_ r

Therefore dp(wk+2) <_ r dp(w2r). Since dist(wl, w+2) 3, we have d(Wl) + d(w+2) :> n +
Since d(w) dp(Wl), by the proof of Lemma 3, dp(Wl) + dp(wk+2) :> r + 1. Hence, we have

r d,(w2) >_ dp(w.2) >_ r + 1 d,(wl) Therefore dp(w) d,(w2) >_ 1 and so d(w) > d(w)
By replacing w2 with w m the above argument, we can also show that d(w2) > d(w) Ths s

impossible Hence the vertmes ofP form a cycle.

LEIIMA li. There exists a cycle of length 2r m G
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PROOF. By Lemma 5, we can assume that, for each path P of length 2r, either d(wl) > dp(Wl) or

d(w2,.) > dp(w,.), otherwise the lemma s true. Let P be a path of length 2r vath d(w2) > alp(W2,.) (A
smilar argument holds for d(wt) > dp(wt).) Then, by the maxmahty of P, d(wl) dp(wl) Since

dp(wl) d(w) _> 2 (Lemma 1), there exists some wk E P such that Wk S adjacent to w and k =/= 2

Also, we can assume that k s the largest number among all such paths (vath d(w2) > dp(w)) We
clmm that ether k 2r or the vemces of P form a cycle. Suppose this is not true If k + 2 2r, then

dist(w, w2) 3 and so d(w) + d(w2) >_ n + 1 Hence by Lemma 3, the vertmes of P form a cycle,
whmh s mpossble. Thus k + 2 =/= 2r and so k =/= 2r- 2. Since k is the largest number, t follows that

k<2r-2 Hencek+2<2r.
We claim that, ifw E Dp(Wl) and 7 2, then w,_ Dp(wk+2) Suppose ths s not true Snce k s

the largest number, 4 _< _< k and so w_t, w-2, w2, wt, w,, w+l w2 s a path of length 2r Since

d(w2) > dp(w_), by the maxmahty of P, we have dp(w,-1) d(W,-l) But w,-1 s adjacent to win+2

Therefore k s not the largest number among all such paths, which is a contraction Hence, if

w e Dv(Wl) and 2, then w,-1 Dp(wk+2). Since wk+2 is not adjacent to w, we have

dp(w+2) <_ (r- 1) (dp(w) 1) r- dp(w).

Hence dp(Wl) + dp(wk+2) <_ r. Since dtst(w, w,+2) 3, we have d(w) + d(w,+2) _> n + 1 Since

dp(wl) d(Wl), the proof of Lemma 3, we have dp(Wl) + dp(wk+2) >_ r + 1, whmh is a contraction

Therefore either k 2r, m whmh case we have a cycle, or the vertices ofP form a cycle of length 2r

We now have the main result ofthis paper.

TI-IEOREII 7. Let G be a connected bipartite graph wtth bipartition (X,Y) such that

IX[ _> [Y[( _> 2). Let n IX[ and m [Y[ Suppose, for all vertmes x X and y Y, dst(x, y) 3

mplies d(x) + d(y) _> n + 1. Then G contains a cycle of length 2rn In particular, f rn n, then G
hamfltoman

PROOF. Let P (w, w w2) be a longest even path in G By Lemma 6, we can assume that w
s adjacent to w2 We show that r rn. Suppose that ths is not true Then r < rn and so

n _> m >_ r + 1. Let u X- P and v E Y- P Since G s connected, there exists a shortest path Q
from u to P If [Q[ > 1, then there exists an even path wth length greater than 2r m G, whtch
mpossble Hence [Q[ 1 and so dR(u) d(u) _> 2. Smflarly dR(v) d(v) _> 2 In partmular, u

not adjacent to v.

If there exists some w, P such that w, s adjacent to u and w,+ (or w,_) s adjacent to v, then we

have an even path of length greater than 2r, which is impossible. Therefore d(u) + d(v) <_ r and

dist(u, v) > 3 We can assume that d(u) >_ d(v) (A similar argument holds for d(v) >_ d(u) Since

d(u) >_ 2 and d(u) + d(v) <_ r, there exists some vertex, say wa, such that wa is adjacent to v and w
not adjacent to v Since dist(u,v)> 3, w2 is not adjacent to u Since dist(w,v)= 3,
d(w) + d(v) _> n + 1 Since d(v) dR(V), bythe proof ofLemma 3, dp(Wl) + dp(v) > r + Hence

dp(wt) + dR(u) >_ dp(wl) + de(v) >_ r + 1.

Thus there exists some vertex w, P such that w, is adjacent to both u and w. It follows that

dist(w, u) 3 andso d(w) + d(u) >_ n + 1 If d(w) > dp(w2), then we clearly have an even path of

length greater than 2r, because v s adjacent to w3. But this is impossible. Hence d(w2) dp(w2) and so

d,(w:)+dp(u)=d(w)+d(u)_>n+l. Since n_>r+l, we have dp(w)+dp(u)>_r+2
Therefore there exists some k and k’ with k’ > k such that w and w, are adjacent to u and ether w+l is

adjacent to w or we-1 is adjacent to w, otherwise dp(w) <_t-(alp(u)-1) and so

dp(w) + dp(u) <_ r + 1 Ifwk+ s adjacent to w, then we have w+, w,+, w, w, w+, w+,

w, u, w, w_, w, v and ths is a path of length 2r + 2, which is impossible. If w-i s adjacent

to w, then we have Wk+l, w+, w_l, w., w, we, u, w, w_, w3, v and ths s also a path of

length 2r + 2. This ts a contraction Hence r rn and ths completes the proof ofthe theorem
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We have the last result ofths section.

COROLLARY 8. G s 2-connected

PROOF. By Theorem 7, G contains a cycle P of length 2m Ifm n, then G is hamfltoman and so

G is 2-connected Suppose m < n For each vertex z E X P, we have dp(x) d(x) _> 2 Hence,
follows that G is also 2-connected.

3. SOME REMARKS
In this section, we give some remarks

REMARK 1. The con&tmn "dist(x, !/) 3 mphes d(x) + d(y) _> n + 1" n Theorem 7 cannot be

replaced by a weaker condition "dlst(x, y) 3 mphes max(d(x),d(t)) >_ (n + 1)/2. In fact, let G be the

graph gven in Fgure 1, where the vertex partition is re&cared by the filled and empty crcles

Figure

Then n m 9 Clearly G s not hamfltoman and G satisfies the condition dist(x, 1/) 3 mplies

max(d(x),d(y)) >_ (n + 1)/2
REMARK 2. The condtmn "dst(x, y) 3 mphes d(x) + d(y) _> n + 1" m Theorem 7 cannot be

replaced by the condition "dlst(x, y) 3 imphes d(x) + d(y) > m + 1," ff rn n In fact, let G be the

graph gven m Fgure 2

Fgure 2

Then n 4 and m 3. Also d(x) + d(y) _> m + 4 for all z E X and y E Y But G contains no

cycle of length 2m 6. Since G has a cut vertex, G s not 2-connected.
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