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1. Introduction

Multiplication operators (also known as multipliers) and composition operators, on dif-
ferent spaces of analytic functions, have been actively appearing in different areas of
mathematical sciences like dynamical systems, theory of semigroups, isometries, and,
in turn, the theory of weighted composition operators besides their role in the theory
of operator algebras and operator spaces. Evard and Jafari [1] and Siskakis [2, 3] have
employed these operators to make a study of weighted composition semigroups and dy-
namical systems on Hardy Spaces. De Leeuw et al. [4] and Nagasawa [5] have described
isometries of Hardy spaces H!(D) and H*(D) as a product of multiplication operators
and composition operators. Isometries on H?-spaces and Bergman spaces are very much
related with multiplication operators and composition operators, and for details on these
isometries, we refer to Forelli [6], Cambern and Jarosz [7], Kolaski [8], Mazur [9], and
Lin [10]. In [11], Arveson has recently obtained Toeplitz C* -algebras and operator spaces
associated with these multiplication operators on Hardy Spaces.
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In recent years, many authors like Attele [12], Axler [13-16], Bercovici [17], Eschmeier
[18], Luecking [19], Vukoti¢ [20], and Zhu [21] have made a study of multiplication op-
erators on Bergman spaces, whereas Campbell and Leach [22], Feldman [23], Lin [10],
and Ohno and Takagi [24] have obtained a study of these operators on Hardy spaces. On
Bloch spaces, these operators are studied by Arazy [25], Axler [15] and Brown and Shields
[26]. Also, Axler and Shields [16] and Stegenga [27] have explored multiplication oper-
ators on Dirichlet spaces. On BMOA, these operators are studied by Ortega and Fabrega
[28]. Further, on Nevanlinna classes of analytic functions, these operators are studied
by Jarchow et al. [29] and Yanagihara [30]. Besides these well-known analytic function
spaces, a study of these operators on some other Banach spaces of analytic functions has
also been pursued by Bonet et al. [31-34], Contreras and Hernandez-Diaz [35], Ohno
and Takagi [24], and Shields and Williams [36, 37].

In [38], Contreras and Herndndez-Diaz have made a study of weighted composition
operators on Hardy spaces, whereas Mirzakarimi and Siddighi [39] have considered these
operators on Bergman and Dirichlet spaces. On Bloch and Block-type spaces, these op-
erators are studied by MacCluer and Zhao [40], Ohno [41], Ohno and Zhao [42], and
Ohno et al. [43]. In [24], Ohno and Takagi have obtained some properties of these oper-
ators on the disc algebra and the Hardy space H® (D). Also, recently, Montes-Rodriguez
[44] and Contreras and Hernandez-D{az [35] have studied the behaviour of these opera-
tors on weighted Banach spaces of analytic functions. The applications of these operators
can be found in the theory of semigroups and dynamical systems (see [2, 3, 45]). For
more information on composition operators on spaces of analytic functions, we refer to
three monographs (see Cowen and MacCluer [46], Shapiro [47], and Singh and Manhas
[48]).

In the present survey, we report on a recent study of composition operators and mul-
tiplication operators on the weighted spaces of analytic functions.

2. Weighted spaces of analytic functions

Let G be an open connected subset of CN (N > 1) and let H(G,E) be the space of all
vector-valued analytic functions from G into the Banach space E. Let V be a set of non-
negative upper semicontinuous functions on G. Then V is said to be directed upward, if
for every pair u;,u; € V and A > 0, there exists v € V such that Au; < v (pointwise on
G), for i = 1,2. If V is directed upward and for each z € G, there exists v € V such that
v(z) >0, then we call V as an arbitrary system of weights on G. If U and V are two arbi-
trary systems of weights on G such that for each u € U, there exists v € V for which u < v,
then we write U < V. If U < V and V < U, then we write U = V. Let V be an arbitrary
system of weights on G. Then we define

HVy(G,E) = {f € H(G,E) : vf(G) is bounded in E, for eachv € V},

2.1
HVy(G,E) = {f € H(G,E) : vf vanishes at infinity on G, for each v € V'}. @D

Forv e Vand f € H(G,E), we define

I fllve = sup {v(2)||f(2)]| : z € G}. (2.2)
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Clearly, the family {|| - |l,,z: v € V} of seminorms defines a Hausdorff locally convex
topology on each of theses spaces: HV,(G,E) and HV,(G,E). With this topology, the
spaces HV},(G,E) and HVy(G,E) are called the weighted locally convex spaces of vector-
valued analytic functions. These spaces have a basis of closed absolutely convex neigh-
bourhoods of the form

By = {f € HVy(G,E) (resp., HVo(G,E)) : | fll,.g < 1}. (2.3)
If E = C, then we write HV}(G,E) = HV(G), HVy(G,E) = HVy(G) and
= {f € HV}(G) (resp., HVo(G)) : I fIl, < 1}. (2.4)

Throughout the paper, we assume for each z € G, there exists f, € HV,(G) such that
f:(z) # 0.

If v:D — R* is a continuous weight and E = C, then the corresponding weighted
Banach spaces of analytic functions are defined as follows:

= {f € H(D):vf(D) is bounded},

, (2.5)
HO(D) = {f H(D): lim v()| f(2)] - o}.

Now, using the definitions of weights given in [32, 49-51], we give definitions of some
systems of weights which are required for characterizing some results in the remaining
sections.

Let V be an arbitrary system of weights on G and let v € V. Then define w : G — R* as

1
w(z) =sup{|f(2)|:lIfll, <1} = —,
X v(2) (2.6)
v(z) = TR for every z € G.

In case w(z) # 0, ¥ is an upper semicontinuous, and we call it an associated weight of
v. Let V denote the system of all associated weights of V. Then an arbitrary system of
weights V is called a reasonable system as it satisfies the following properties:

for each v € V, there exists ¥ € V such that v < % (2.7a)
foreachve V, | fll, <Liff [ flly <1,

(2.7b)
for every f € HV,(G);
if v € V, then for every z € G, there exists

(2.7¢)

1
f. € B, such that | f,(2) | = 5o
Let v € V. Then v is called essential if there exists a constant A >0 such that v(z) <
v(z) < Av(z), for each z € G. A reasonable system of weights V is called an essential sys-
tem if each v € V is an essential weight. If V is an essential system of weights, then we have
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vV = V. For example, let G D, the open unit disc, and let f € H(D) be nonzero. Then
define v¢(z) = [sup{ [f2): |zl =r}]" 1, for every z € D. Clearly, each v is a weight sat-
isfying vs = vy, and the family V ={vs: f € H{D), fisnonzero} is an essential system
of weights on D. For more details on these weights, we refer to [50]. Let G be any bal-
anced (i.e., Az € G, whenever z € G and A € C with |A| < 1) open subset of C¥ (N > 1).
Then a weight v € V is called radial and typical if v(z) = v(Az) forallz€ Gand A € C
with [A| = 1, and vanishes at the boundary dG. In particular, a weight v on D is radial
and typical if v(z) = v(|z|) and lim;—; v(z) = 0. For instance, in [35], it is shown that
vp(z) = (1 —1z]*)?, (0 < p < ), for every z € D, are essential typical weights. For more
details on the weighted Banach spaces of analytic functions and the weighted locally con-
vex spaces of analytic functions associated with these weights, we refer to [32, 49-54].
For basic definitions and facts in complex analysis and functional analysis, we refer to
[55-58].

Let F(G,E) be a topological vector space of vector-valued analytic functions from G
into E, and let L(G,E) be the vector space of all vector-valued functions from G into
E. Let B(E) be the Banach algebra of all bounded linear operators on E. Then for an
operator-valued map ¥ : G — B(E) and self-map ¢ : G — G, we define the linear map
Wy, : F(G,E) — L(G,E) as Wy 4(f) =¥ - f o ¢ for every f € F(G,E), where the prod-
uct ¥ - f o ¢ is defined pointwise on Gas (¥ - f o ¢)(z) = ¥V, (f(¢(2))) for every z € G.
In case Wy 4 takes F(G,E) into itself and is continuous, we call Wy 4, the weighted com-
position operator on F(G,E) induced by the symbols ¥ and ¢. If ¥(z) = I, the indentity
operator on E for every z € G, then Wy, is called the composition operator induced by ¢
and we denote it by Cy. In case ¢(z) = z for every z € G, Wy 4 is called the multiplication
operator induced by ¥, and we denote it by My.

3. Characterizations of multiplication operators

In this section, we give characterizations of multiplication operators on the weighted
spaces of analytic functions. We begin with the following straightforward observations
obtained by [31] on the weighted Banach spaces of scalar-valued analytic functions.

ProrosiTION 3.1. Let ¥: D — (C be analytic function. Then My : H? (D) — HX (D) is
bounded if and only if ¥ € H*® (D). If H)(D) # {0}, then the previous statement is equiva-
lent to that My : H)(D) — HO( ) is bounded Also, | Myl = [|¥|| .

ProposiTiON 3.2. If My : HY(D) — HY(D) is bounded and both v and w are radial weights
vanishing on the boundary, then My = My : H* (D) — Hy (D).

Proof. Ttis shown by [51, 59] that (HY(D))"” = H® (D) and (H(D))"” = HZ (D). In [32],
it is observed that the evaluation functional 8, : H)(D) — C defined as 8 (f)=f(2)is
also acting as the evaluation functional on H;*(D). It is obvious that My (8,) = ¥(z) &,.
Now, for f € H*(D), we have (My f, 8;) = (f,¥(z) 8;) = f(2)¥(2). O

Now, we present the generalizations of the above characterizations to the weighted
spaces of vector-valued analytic functions for general systems of weights, which was ob-
tained by Manhas in [60].
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ProrosritioN 3.3. Let U and V be arbitrary systems of weights on G, and let ¥ : G — B(E)
be an analytic map. Then My : HUy(G,E) — HVy(G,E) is a multiplication operator, if for
every v € V, there exists u € U such that v(z)||¥(2) || < u(z), for every z € G.

Remark 3.4. Proposition 3.3 makes it clear that every bounded analytic function ¥: G —
B(E) induces the multiplication operator My on HV}(G,E), for any system of weights
V on G. Also, if V = {Ayx : 1 = 0, K € G, K compact set}, then every operator-valued
analytic map ¥ : G — B(E) induces a multiplication operator My on HV,(G,E). This
makes it clear that even unbounded analytic operator-valued mappings generate multi-
plication operators on some of weighted locally convex spaces HV}(G,E), whereas it is
not true for other spaces of analytic functions. For instance, Arveson [11] and Axler [13]
have shown that only bounded analytic functions give rise to multiplication operators
on Hardy spaces and Bergman spaces, respectively. Also, the same behaviour has been
observed on the weighted Banach spaces of analytic functions H;* (D) defined by a single
continuous weights (see Proposition 3.1). Thus the behaviour of the multiplication oper-
ators on the weighted locally convex spaces of analytic functions is very much influenced
by different systems of weights V on G.

THEOREM 3.5. Let V be an arbitrary system of weights and U a reasonable system of weights
on G. Let ¥ : G — B(E) be an analytic map. Then My : HU,(G,E) — HV}(G,E) is a multi-
plication operator if and only if for every v € V, there exists u € U such that v(z)||¥(2) ]| <
U(z), forevery z € G.

Proof. The sufficient part follows from Proposition 3.3. Conversely, suppose My : H U (G,
E) — HV}(G,E) is a multiplication operator. Let v € V. Then by the continuity of My
at the origin, there exists o € U with u € U such that u < 7 and My (B;;g) < Byg. To
establish the inequality v(z)[[¥(2)|l < #i(z) for every z € G, it is enough to prove that
v(2)IIY(»)Il <u(2)llyll, foreveryz € Gand y € E. Fixzy € Gand y, € E. Then by (2.7¢),
there exists f;, € B, such that || f;, (z0) |l = 1/1(zp). Let go : G — E be defined as

go(z) = H)}%”fzg(z)yo, for every z € G. (3.1

Clearly, go € B,,g and [lgo(20)ll = 1/7i(2). Also, according to (2.7b), f;, € By and therefore
€0 € By p. Thus it follows that My(gy) € B, g. That is, v(2)|W,(g0(2)) Il < 1, for every z €
G. In particular, for z = zy, we have v(zp) I|'¥,, (y0) || < #i(20) || yo|l. This completes the proof
of the theorem. O

COROLLARY 3.6. Let V be an arbitrary system of weights and let U be an essential sys-
tem of weights on G. Let ¥ : G — B(E) be an operator-valued analytic map. Then My :
HUy(G,E) — HVy(G,E) is a multiplication operator if and only if for every v € V, there
exists u € U such that v(2) [V (2)|l < u(z), for every z € G.

Proof. It follows from Theorem 3.5 and from the relation that U = U. O

Remark 3.7. All the results proved above are also hold for the spaces HVy(G,E) and
HUy(G,E).
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4. Invertible multiplication operators

In this section, we present characterizations of invertible multiplication operators on the
weighted spaces of analytic functions. We begin with the following characterization of in-
vertible multiplication operators on the weighted Banach spaces of scalar-valued analytic
functions [31].

ProrositioN 4.1. Let ¥ € H®. Then My : H? (D) — H°(D) is invertible if and only if
1/¥Y € H® (or equivalently, there exists € > 0 such that |\¥(z)| > €, for all z € D). The same
is true for HO(D) if H)(D) # {0}.

Remark 4.2. Since A — My = M)_v, the above result shows that the spectrum of My sat-
isfies 0(My) = ¥(D). This shows that the multiplication operator My is not compact.

In [13], Axler has characterized the Fredholm multiplication operators on Bergman
spaces. Then on the spaces H° (D), the Fredholm multiplication operators and closed
range multiplication operators are characterized by [31]. Further, in [61], Cichon and
Seip have proved the following theorem related to closed range multiplication operators,
which was conjectured by [31].

Tueorem 4.3. Let v € C?(D) be a radial weight such that —(1 — |z?|)?Alogv(z) — +o0 as
llzll = 1-, where A denotes the Laplacian. Then My : H*(D) — H° (D) has closed range if
and only if ¥ = hb, where h is invertible in H® and b is finite Blaschke product.

Further, Manhas has extended in [60] the characterizations of invertible multiplica-
tion operators to the weighted spaces of vector-valued analytic functions. We begin with
stating an invertibility criterion on a Hausdorff topological vector space [62], which we
have used for characterizing invertible multiplication operators on the spaces HV}(G, E).

THEOREM 4.4. Let E be a complete Hausdor{f topological vector space and let T : E — E be
a continuous linear operator. Then T is invertible if and only if T is bounded below and
has dense range. Or, let E be a Hausdorff topological vector space and let T : E — E be a
continuous linear operator. Then T is invertible if and only if T is bounded below and onto.

In the above invertible criterion, a generalized definition of bounded below opera-
tors on Hausdorff topological vector spaces is used. Now, we give this definition as it is
needed for proving some of the results of this section. A continuous linear operator T on
a Hausdorff topological vector space E is said to be bounded below if for every neighbour-
hood N of the origin in E, there exists a neighbourhood M of the origin in E such that
T(N°¢) = M¢, where the symbol ¢ stands for the complement of the neighborhood in E.
We begin with the following proposition.

PropoSITION 4.5. Let V be an arbitrary system of weights on G and let ¥ : G — B(E) be an
analytic map such that My is a multiplication operator on HVy(G, E). Then My is invertible
if
(i) for each z € G, ¥(z) : E — E is onto;
(i) for each v € V, there exists u € V such that v(z)|lyll < u(2)II¥Y.(y)|l, for every
z€Gandy€E.
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Proof. Fixzy € G.Letv € V such that v(zy) > 0. Then by condition (ii), there exists u € V
such that v(zo) |yl < u(zo)|'¥4, (»)ll, forevery y € E. Thatis, ¥, (») Il = Aolly|l, for every
y € E, where Ay = v(zy)/u(zp) > 0. This proves that ¥(z,) is bounded below on E and
hence by condition (i), W(zy) is invertible in B(E). We denote the inverse of ¥(z;) by
V! Now, we define W' : G — B(E) as ¥~ (z) = V!, for every z € G. Clearly, ¥ ! is an
analytic map. Again, by condition (ii), it follows that

v ()|l <u@)llyll, foreveryz€G,y€E. (4.1)

That is, v(2) ¥~ (2)|| < u(z), for every z € G. Thus according to Proposition 3.3, ¥~!
induces the multiplication operator My-1 on H V},(G, E) such that MyMy-1 = My-1 My =
I, the identity operator. Hence My is invertible. O

COROLLARY 4.6. Let V be an arbitrary system of weights on G and let ¥ : G — B(E) be a
bounded analytic map. Then My is an invertible multiplication operator on HV,,(G,E) if
(i) for each z € G, ¥(2) : E — E is onto;
(i) Y is bounded away from zero.

Proof. Since ¥ : G — B(E) is a bounded analytic function, Proposition 3.3 implies that
My is a multiplication operator on HV}(G,E), for any arbitrary system of weights V'
on G. By condition (ii), there exists A >0 such that [[¥,(y)ll = Allyll, for every z € G
and y € E. Let v € V. Then v(2)llyll < (1/A)v(2)[I¥.(»)ll, for every z € G and y € E.
Further, it implies that there exists u € V such that v(2) ||yl < u(z)[|¥.(y)Il, for every
z € G and y € E. Thus according to Proposition 4.5, it follows that My is invertible on
HVy(G,E). 0

The converse of the above Corollary 4.6 may not be true. That is, if an analytic map
V¥ : G — B(E) is not bounded away from zero, even then My is invertible on some of the
weighted spaces HV;(G, E). This can be easily seen from the following corollary.

CororLrLarY 4.7. Let V = {AMx:A = 0 and K < G, K compact set}. Then every analytic map
YV : G — B(E) induces an invertible multiplication operator My on HVy(G,E) if Y(2) is
invertible for every z € G.

Remark 4.8. Let G={z€ C:z=x+iyandx >0} and let V= {Ayx:1 =20, K< G,
K compact set}. Let E = H*(G) be the Banach space of bounded analytic functions on
G. We define an analytic map ¥ : G — B(E) as ¥(z) = M, for z € G, where the bounded
operator M, : E — E is defined as M, f = zf, for every f € E. Clearly, each ¥(z) is invert-
ible in B(E) and hence by Corollary 4.7, My is an invertible multiplication operator on
HV,(G,E). But ¥ : G — B(E) is not bounded away from zero. Also, we note that invert-
ible multiplication operators on Bergman spaces of analytic functions [13] and weighted
Banach spaces of analytic functions (see Proposition 4.1) are generated only by the func-
tions which are bounded away from zero. Thus in general, the invertible behaviour is very
much controlled by different systems of weights V on G.

THEOREM 4.9. Let V be a reasonable system of weights on G and let ¥ : G — B(E) be an
operator-valued analytic map such that each Y (z) is one-to-one and My is a multiplication
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operator on HV},(G, E). Then My is invertible if and only if
(i) foreach z € G, ¥Y(2) : E — E is onto;
(i) for each v € V, there exists u € V such that v(2)|lyll < u(z)[I¥.(y)|l, for every
zeGandy€E.

Proof. 1f conditions (i) and (ii) hold, then from Proposition 4.5, it clearly follows that My
is invertible.

Conversely, suppose that My is invertible on H \N/';,(G,E). To establish condition (i),
letzo € Gandlet f,, e H \N/;,( G) such that f;(z9) = 1. Fix 0 # yo € E. Define an analytic
map g, : G — Eas g, (z) = f;,(2)y0, for every z € G. Clearly, g,, € H Vb(G E). Since My is
onto, there exists fy € H V;,(G,E) such that My(fy) = gz,. That is, ¥, (fo(20)) = yo. This
shows that each W(z) is onto. Now, to prove condition (ii), we fix v € V. Then there exists
¥ € V such that v < ¥. In view of Theorem 4.4, we conclude that My is bounded below
and onto. Further, it implies that there exists & € V with u € V such that My(B; ) =
Bf, ;. Now, we claim that VIV ()Il < u(z)llyll, for every z € G and y € E. We fix
zp € Gand y, € E. According to (2.7¢), there exists f,, € B, such that | f;,(z0)| = 1/1(zp).
Let go : G — E be defined as gy(z) = (1/llyoll) fz (2) yo, for every z € G. Clearly, go € B,g
and [Igo(20)ll = 1/2i(zp). Also, (2.7b) implies that f,, € By and hence g € Byg. Since
My is onto, there exists hy € HV,(G,E) such that My(hy) = go. That is, ¥, (ho(z0)) =
g0(z0). Since each ¥, is invertible, we have ho(z0) = ¥, (o) fz (20)1/ll yol. Again, since
ligollze < 1, we conclude that My (ho) & B . Further, it implies that hy ¢ Bj ;. That is,

V(2)llho(z)]l <1, for every z € G. In partlcular, for z = zy, we have v(zo)\lho(zo)ll < 1.
That is, (zo)II‘I’ZO1 (yo)ll < #(zo) ll yoll. This proves our claim. Since each ¥(z) is invert-
ible, we have v(z) |l yll < i(2)I'¥,(y)ll, for every z € G and y € E. This proves condition
(ii). With this, the proof of the theorem is complete. O

CoROLLARY 4.10. Let V be an essential system of weights on G and let ¥ : G — B(E) be
an analytic map such that each V(z) is one-to-one and My is a multiplication operator on
HV(G,E). Then My is invertible if and only if
(i) for each z € G, ¥(z) : E — E is onto;
(ii) for each v € V, there exists u € V such that v(z)|lyll < u(2)|I¥.(y)ll, for every
ze€Gandy€E.

Proof. Follows from Theorem 4.9 since V = V. O

THEOREM 4.11. Let V = {Ayx : A = 0, K = G, K compact set} and let ¥ € H(G) be non-
zero. Then My is not a compact multiplication operator on HV,(G).

Proof. Suppose that My is a compact multiplication operator on H V;,(G). Since Corollary
4.7 implies that My is invertible on HV;(G) if and only if ¥(z) # 0, for every z € G,
we conclude that the spectrum of My satisfies 0(My) = ¥(G). Now, from [57, Theo-
rem 4], it follows that each point in the spectrum of a compact operator on a locally
convex Hausdorff space is an isolated point which is a contradiction to the fact that
d(My) = Y(G) is a connected set. Thus there is no nonzero compact multiplication op-
erator on HVy(G). O
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Now, we will characterize quasicompact multiplication operators on weighted Banach
spaces of analytic functions. For this, we need to give some definitions: a continuous
linear operator S on a Banach space E is said to be quasicompact [63] if there exists an
integer n and a compact operator K on E such that [|S" — K|| < 1. The essential norm of
a continuous linear operator S on a Banach space E is defined by [|S]|. = inf{||S — K] :
K compact on E}. Clearly, S is compact if and only if ||S|l. = 0. The nth approximation
number of S is defined as a,,(S) = inf{||S — T, || : T, is bounded on E, rank T,, < n}. Now,
it readily follows that [|S|l. < a,,(S) < [IS||. For more details on the properties of the ap-
proximation numbers, we refer to [63].

THEOREM 4.12. Let v be a continuous weight on D and let ¥ € H®(D). Then the multipli-
cation operator My on Hvy (D) is quasicompact if and only if ||V ||« < 1.

Proof. If ||¥]l« < 1, then by choosing K as the zero operator on Hv,(D), it follows that
(IME — Ol = | Mgl = [|¥]|% < 1. Thus My is quasicompact. Conversely, suppose that My
is a quasicompact multiplication operator on Hvy(D). Then there exists an integer n and
a compact operator K on Hv,(D) such that ||Mg — K|l < 1. Now, from [31, Corollary
2.5], it follows that |[Myll. = Myl = |¥]l« = a,(My), for all n. Further, it implies that
1> My — Kl = Myl = [['P]I%- Thus [[¥]le < 1. 0

5. Dynamical systems and multiplication operators

Let g € H*(G,B(E)) and let [|gll = sup{llg(2)|l : z € G}. Then for each t € R, we de-
fine W; : G — B(E) as W¥;(z) = e, for every z € G. Clearly, ¥, is an operator-valued
bounded analytic map and hence by Proposition 3.3, My, is a multiplication operator on
HV,(G,E), for any arbitrary system of weights V on G.

THEOREM 5.1. Let V be an arbitrary system of weights on G and let I1: RxHV,(G,E) —
H(G,E) be defined as I1(t, f) = My, f, for every t € R and f € HV,(G,E). Then Il is a
linear dynamical system on HVy (G, E). Moreover, if V is a system of weights on G such that
HVy(G,E) is completely metrizable, then the family M = {My, : t € R} is locally equicon-
tinuous Co-group of multiplication operators in B(HV,(G,E)).

Proof. We have already observed that My, is a multiplication operator on HV}(G,E), for
every t € R. Thus it follows that I1(¢, f) € HV(G,E), forevery t € Rand f € HV}(G,E).
Clearly, II is linear and II(0, f) = f, for every f € HV}(G,E). Again, it is easy to see
that TI(¢ +s, f) = II(¢,II(s, f)), for every t,s € R and f € HV}(G,E). To show that ITis a
dynamical system, it is sufficient to prove that IT is jointly continuous. Let {(4, fy)} be a
net in R X HV}(G,E) such that (t,, fa) = (£, f) in RX HV,(G,E). Letv € V.

Then

ML (te fa) = TICE O],
=¥ fu = ¥ifll, 5 = sup {v(2)[[¥1,(2) ful2) = ¥e(2) f(2)]| : 2 € G}
< sup {v(2)|| (¥4, (2) — ¥:(2)) (ful2)) : 2 € G|}
+sup {v(2)||¥¢(2) (falz) - f(2))]| : 2 € G}
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< sup {||¥y,(2) = ¥e(2)||[v(2)|| fu(2)]| : z € G}
+sup {|[[¥(2)||[v(2)]| ful2) — f(2)]] : 2 € G}

< sup {eltllgl= (¢lte=t1gl= _ 1)y (2)||fa(2)]| : 2 € G}
+sup {e!18l=v(2)|| fu(2) — f(2)]| : 2 € G}

— e\tngHm (e\ta*t\l\gHm _ 1)||f06||v,E

+e“'”g”°"||fa—f||v,5 — 0 asl|ty—tl —0, ||ftx_f||v,E — 0.
(5.1)

This shows that IT is jointly continuous and hence IT is a (linear) dynamical system on
HV,(G,E). Further, it implies that the family Jil is a C,-group of multiplication opera-
tors on the weighted spaces HV},(G,E). Now, we will show that the family Jl is locally
equicontinuous in B(HV;(G,E)). For this, it is enough to see that for any fixed s € R,
the subfamily JM; = {My, : —s <t < s} is equicontinuous on H V},(G, E). Now, it is easy to
see that the subfamily .l is a bounded set in B(HV},(G,E)) because the map ¢t — My,
is continuous in the strong operator topology. Also, for each f € HV,(G,E), the set
Ms(f) = {My,f : —s < t < s} is bounded in HV}(G,E). Thus according to a corollary
of the Banach-Steinhaus theorem [58], it follows that the family Jl is locally equicontin-
uous. (I

6. Characterizations of composition operators

Every self-analytic map ¢ : D — D induces a composition operator on the Hardy space
H* (D). But these maps do not necessarily induce composition operators on the weighted
space H® (D), for general weights v (see [32]). For example, consider the weight v(z) =
e~0-1207" for z € D. Then v = ¥. Let ¢ : D — D be defined as ¢(z) = (z+ 1)/2, for every
z € D. Then for z = r € R, we have v(z)/v(¢(z)) = v(r)/v(¢(r)) = re="), for0 < r < 1.
Then as 7 — 1, v(r)/v(¢(r)) — o0, so Cy is not bounded on H;* (D).

In this section, we give characterizations of composition operators on the weighted
spaces of analytic functions. We begin with a characterization of composition operators
obtained in [32] on the weighted Banach spaces of scalar-valued analytic functions.

THEOREM 6.1. Let v and w be continuous bounded weights. Then the following are equiva-
lent:
(i) Cg : HX (D) — Hy (D) is bounded;
(ii) sup,cp(w(2)/¥(¢(2))) < oo;
(iii) sup,.p(W(2)/V($(2))) < 0.
If v and w are typical weights, then the above conditions are equivalent to
(iv) Cg : HY(D) — HY(D) is bounded.

Further, Garcia et al. [53] have generalized the above characterization to the weighted
Banach spaces of scalar-valued analytic functions defined on the open unit ball of a Ba-
nach space. For presenting this generalization, we need to fix some definitions and nota-
tions.
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Let X be a complex Banach space and By its open unit ball. Then clearly, the space
H*(Bx) (defined in the same way as H;*(D)) is a Banach space. By B,, we denote the
closed unit ball of H;°(Bx). It is well known that in H;*(Bx), the 7, (norm) topology is
finer than the 7y (compact-open) topology and that B, is 7o-compact [64]. A weight v
satisfies Condition-I if inf ., v(x) > 0, for every 0 < r < 1 [65]. If v satisfies Condition-I,
then H;°(Bx) € H*(Byx) [65]. If X is finite dimensional, then all weights on By satisty
Condition-1.

Now, we can present the extended version of the above theorem [53].

THEOREM 6.2. Let By and By be open unit balls of the Banach spaces X and Y, respectively.
Let w and v be weights on Bx and By, respectively, satisfying Condition-1. Let ¢ : By — By
be a holomorphic map. Then the following are equivalent:

(i) Cg : H®(By) — H,; (Bx) is bounded;

(ii) sup,ep, (W(x)/V(¢p(x))) < oo;
(i) sup, ., (W(x)/F($(x))) < o0;
(iv) sup‘|¢(x)H>,“(w(x)/$(¢(x))) < o0, for some 0 < ry < 1.

Proof. (iii :(11) is obvious because w < .

(i)=(i) let f € H>(By). Then we have w(x)|f(¢(x))] = (w(x)/v(¢(x)))V($(x))x
|f(¢(x))| <Ml flly = Ml fl,, for all x. Hence Cy is bounded.

(i)=(iii) if (iii) does not hold, then there exists a sequence (x,,),,eN c By such that
limy,— o W(x,)/ V(¢(x,)) = 0. Fixn € N. Let f,, € B, be such that | f,((x,))| = t(¢p(x,)) =
1/v(¢(x4)). Hence | f,(¢(x0)) |W(x) = W(xn)/V($(x)), which is a contradlctlon to the
fact that Cy is bounded.

(ii)=(iv) is straightforward.

(iv)=(i) let M = SUP 4 x)H>ro(W )/ V(p(x) ) ). Let x € X. If ||¢p(x) || > ry, then we have

w() | f((x))] = (w(x)/V(¢(x dx))| f(¢ | < M| fll,. I llp(x) |l < 1o, then we have
w(x)| f(¢(x))] < (sup,cp, (x))(supxemsy | f |) because f is bounded in 7yp,. Thus we
have sup, 5 w(x)| f($(x))| < 0o and Cy(f) € H;’,"(BX), for all f € H;®(By). Hence Cy is
bounded. |

Remark 6.3. In the above theorem, the first three conditions are equivalent even if Condi-
tion-I does not holds. On the other hand, in [53], Garcia et al. have given an example,
which shows that Condition-I is necessary to prove that (iv) implies (i).

Also, Manhas [66] has further generalized Theorem 6.1 and related results of [32] to
the general weighted spaces of analytic functions, which are given below.

THEOREM 6.4. Let U and V be arbitrary systems of weights on G. Let ¢ € H(G) be such that
¢(G) < G. Then Cy : HU(G) — HV4,(G) is a composition operator if V< U o ¢.

Remark 6.5. The condition V < U o ¢ in the above theorem is not a sufficient condition
for Cy to be a composition operator from HUy(G) — HV,(G). For instance, let G = {z €
C:z=x+1iy, x>0} be the right half plane. Let U = V be the system of constant weights
on G. Let ¢ : G — G be defined as ¢(z) = zy, for every z € G, where z; € G is fixed. Then,
clearly, the inequality V < U o ¢ is true. But Cy : HUy(G) — HV;(G) is not even an into
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map. For instance, if we take f(z) = 1/z, for every z € G, then f € HUy(G) but Cy(f) &
HVy(G). So, in order to show that Cy : HUp(G) — HV(G) is a composition operator, we
need an additional condition on ¢. Let v € V and € > 0. Then consider the set F(v,¢) =
{z € G; v(z) = €}. Clearly F(v,¢) is a closed subset of G. In the next theorem, we have
obtained a sufficient condition for Cy to be a composition operator from HU,(G) into
HVy(G).

THEOREM 6.6. Let U and V be arbitrary systems of weights on G. Let ¢ € H(G) be such that
¢(G) € G. Then Cy : HUy(G) — HV(G) is a composition operator if

(1) V=Uo¢;

(i) for everyv € V, £ >0, and compact set K < G, the set ¢ "1 (K) N F(v,¢) is compact.

Proof. In view of Theorem 6.4, condition (i) implies that Cy : HU(G) — HV,(G) is a
composition operator. To show that Cy : HUy(G) — HV,(G) is a composition operator,
it is enough to prove that Cy is an into map. Let f € HUy(G). Let v € V and £ > 0. Then
we consider the set K = {z € G:v(2)| f(¢(2))| = €}. We will show that K is a compact
subset of G. By condition (i), there exists u € U such that v(z) < u(¢(z)), for every z € G.
Let S={z€ G:u(z)|f(2)| = e}. Then clearly, S is a compact subset of G and ¢(K) < S.
Let M = sup{|f(z)| : z € S}. Then M >0 and S < F(u,e/M). By condition (ii), the set
¢1(S) N F(v,e/M) is compact. Since K is a closed subset of the set ¢ ~1(S) N F(v,e/M), it
follows that K is compact. Thus Cy(f) € HV,(G). This completes the proof. O

CoROLLARY 6.7. Let U and V be arbitrary systems of weights on G. Let ¢ € H(G) be such
that ¢(G) < G. Then
(i) Cy : HUy(G) — HVy(G) is a composition operator if V < U o ¢;
(ii) Cy : HUY(G) — HVy(G) is a composition operator if V. < U o ¢ and ¢ is a confor-
mal mapping of G onto itself.

The converse of the above corollary may not be true. That is, if Cy is a composition
operator on HV,(G) and HV,(G), then ¢ € H(G) may not be conformal mapping of G
onto itself. For example, let V = {Ayx : 1 = 0, K < G, K is compact}, then it can be easily
seen that Cy is a composition operator on HV,(G) if and only if ¢ : G — G is an analytic
map.

In the next theorem, Manhas [66] has obtained a necessary and sufficient condition
for Cy to be a composition operator on HV;(G) in terms of the inducing map ¢ and the
system of weights V.

THEOREM 6.8. Let V be an arbitrary system of weights on G and let U be a reasonable system
of weights on G. Let ¢ € H(G) be such that $(G) < G. Then Cy : HUyp(G) — HV(G) is a
composition operator if and only if V < U o ¢.

Proof. Suppose that Cg : HUy(G) — HV,(G) is a composition operator. Let v € V. Then
by the continuity of Cy at the origin, there exists u € U and a neighbourhood B, of the
origin in H U, (G) such that C¢(B,) < B,. Let I be the associated weight of u. Then i € .
Now, we claim that v < 7 o ¢. Fix zg € G. Then by (2.7c), there exists fy € B, such that
| fo(¢(20))] = 1/1(¢(20)). Further, it implies that C4( fo) € B,. That is, v(2)| fo(¢(2))| < 1,
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for every z € G. In particular, for z = zj, we have v(zy) < U(¢(2p)). This proves our claim
and hence V < U o ¢.

Conversely, suppose that the condition is true. To show that Cy : HU,(G) — HV,,(G)
is a composition operator, it is sufficient to show that Cy is continuous at the origin. Let
v € V and B, be a neighbourhood of the origin in HV}(G). Then by the given condition,
there exists % € U with u € U such that v < o ¢. That s, v(z) < u(¢(2)), foreveryz € G.
Now, we claim that C¢(B,) € B,. Let f € B,. Then by (2.7b), || fll, <1 if and only if
[l fllz < 1. Now,

ICs f1], = sup V(Z)|f $(2)) |:zeG}
<sup{u(¢(2)) | f(¢(2))| :z € G} (6.1)
< sup {u(2) | f(z |12€G}=||f||ﬁﬁl-

This proves that Cy f € B, and hence Cy is a composition operator. This completes the
proof of the theorem. O

COROLLARY 6.9. Let U and V be reasonable systems of weights on G. Let ¢ € H(G) be such
that (G) < G. Then the following statements are equivalent:
(i) Cg : HUW(G) — HVy(G) is a composition operator;
(i) V< Uo¢;
(iii) V < U o ¢.

COROLLARY 6.10. Let V be an arbitrary system of weights on G and let U be an essential
system of weights on G. Let ¢ € H(G) be such that ¢(G) = G. Then Cy : HUy(G) — HV,,(G)
is a composition operator if and only if V.< U o ¢.

THEOREM 6.11. Let V be an arbitrary system of weights on G and let U be an essential
system of weights on G such that each weight of V and U vanishes at infinity. Let ¢ € H(G)
be such that ¢(G) = G. Then Cy : HUy(G) — HV(G) is a composition operator if and only
ifV<Uboc¢.

Example 6.12. Let G = D, the open unit disc, and let v be a weight defined as v(z) =
1 — |z|?, for every z € G. Let V = {Av: 1 > 0}. Then clearly, V is an essential system of
weights on G. Let ¢ : G — G be an analytic map defined by ¢(z) = (z+ 1)/2, for every
z € G. Now, by the Pick-Schwarz lemma, it follows that

(1-1z13)|¢'(2)| <1-|¢(z)|°, foreveryzeG. (6.2)

That is, v(z) < 2v(¢(z)), for ever z € G. Hence by Theorem 6.4, C is a composition op-
erator on HV,(G).

Remark 6.13. If G=D and U and V consist of single continuous weights only, then
Corollaries 6.9, 6.10 and Theorem 6.11 reduce to the results of [32, Proposition 2.1 and
Corollary 2.2].
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7. Compact and weakly compact composition operators

In [67], Aron et al. have characterized the compact composition operators on the Banach
algebra of bounded analytic functions. This is recorded in the following theorem.

TuEOREM 7.1. Let Cy: H*(By) — H*(Bx) be a composition operator. Then the following
statements are equivalent:
(i) Cy is compact;
(ii) Cy is weakly compact and ¢(Bx) is relatively compact in Y;
(iii) ¢(Bx) lies strictly inside By and ¢(Bx) is relatively compact in Y.

Further, Galindo et al. [68] have obtained a characterization of weakly compact com-
position operators in terms of the inducing map ¢ : Bx — By, which is stated below.

Tueorem 7.2. The Composition operator Cy : H* (By) — H®(By) is weakly compact if (i)
¢(Bx) C rBy, for some 0 < r < 1 and (ii) ¢(Bx) is relatively compact in (Y,o(Y,P(Y))).
The converse holds, if moreover, Y has the approximation property. (By (Y,o(Y,P(Y))),
we mean the space Y endowed with the weakest topology, making all p € P(Y) continuous,
where P(Y') denote the algebra of all continuous polynomials on Y.)

Recently, Garcia et al. [53] has obtained characterizations of compact composition
operators on weighted Banach spaces of analytic functions, which generalizes the above
Theorem 7.1 and [32, Theorem 3.3]. This generalization is presented in the following
theorem.

THEOREM 7.3. Let v and w be weights on By and By, respectively, with limy - w(x) = 0.
Let ¢ : Bx— By be a holomorphic map. Then Cy : Hy* (By) — Hyy (Bx) is compact if and only
if

(1) limye—1- (w(x)/V($(x))) = 0;

(i) ¢(rBx) is relatively compact, for every 0 <r < 1.

It has been observed in [32, 50] that many weights do not satisfy this condition on the
limit. In [32], Bonet et al. have characterized compact composition operators for general
weights when X = Y = C. This characterization is given in terms of an analytic condition
(see (A) below in part (¢)). Then by using a topological condition, Garcia et al. [53] have
obtained a characterization of compact composition operators for general Banach spaces
X and Y. This is presented in the following theorem.

THEOREM 7.4. Let v and w be weights on By and By, respectively, with Condition-1. Let
¢ : Bx— By be a holomorphic map. Then the following hold.
(a) If Cy : Hy(By) — Hy (Bx) is compact, then ¢(rBx) is relatively compact, for every
O<r<l1.
(b) Suppose that ||$ll < 1. If §(Bx) is relatively compact, then Cy : Hy*(By) — H;; (Bx)
is compact.
(c) Suppose that ||$|le = 1.
(i) If Cg : H?(By) — H,; (Bx) is compact, then
w(x)

li = =0. A
T i S0 W
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(ii) If ¢(Bx) N rBy is relatively compact, for every 0 <r < 1, and

li v 7.1
’LIR |\¢S(Ll)l\:|)>r V(¢(x)) -0

then Cy : H® (By) — H,; (Bx) is compact.

In part (b) of the above theorem, if the space H;y (Bx) is replaced by H® (Byx), then the
improved result is as follows.

ProposITION 7.5. Let v be a weight on Y and Let ¢ : Bx — By be a holomorphic map. Then
Cy : Hy*(By) — H®(By) is compact if and only if ¢(Bx) is relatively compact and ||¢|| < 1.

Further, if w is taken as a norm-radial weight (i.e., w(x) = w(y), for every x, y, such
that ||lx|| = [/ y|l), then the compactness of Cy is better and given in the following corollary.

COROLLARY 7.6. Let v and w be weights on By and By, respectively, such that w is norm-
radial. Let ¢ : Bx—By be a holomorphic map. Then we have the following:
(@) If w(x) — 0 as |lx|| — 17, then Cy : H*(By) — Hyy (Bx) is compact if and only if
@(rBx) is relatively compact, for every 0 < r < 1 and limxj~1- (w(x)/V(¢(x))) = 0.
(b) If w(x) = 0 as ||lx|| — 17, then Cy : H*(By) — H,; (Bx) is compact if and only if
¢(Bx) is relatively compact and ||$ll - < 1.

If Y is finite dimensional, then ¢(Bx) is always relatively compact and in this case, the
following corollary reduces to [32, Theorem 3.3], whenever X = Y = C.

COROLLARY 7.7. Let Y be a finite dimensional Banach space and X a complex Banach space.
Let v, w be weights and let ¢ : Bx — By be a holomorphic map. Then we have the following.
(@) If l¢llw < 1, then Cy : Hi*(By) — Hyy (Bx) is compact.
(b) Ifll¢ll = 1, then Cy : Hy*(By) — H,; (Bx) is compact if and only if

lim sup w(x) =0. (7.2)

=1 golsr V(@)

Remark 7.8. Garcia et al. [53] have given examples to show that the converse of (a), (b),
and (c)(i) or (c)(ii) in Theorem 7.4 does not hold in general.

In [34], Bonet et al. have further generalized Theorem 7.2 to the Weighted Banach
spaces of vector-valued analytic functions besides characterizing weakly compact com-
position operators on vector-valued Hardy spaces, Bergman spaces, and Bloch spaces.
Here, we present a vector-valued version of Theorem 7.2.

TueoREM 7.9. Let v be an essential weight. Then Cy: Hy(D,E) — Hy (D, E) is weakly
compact if and only if the Banach space E is reflexive and

. v(z)
lim sup

=1 g0 5 V($(2)) =0 or gl <t (7.3)

Remark 7.10. Recently in 2002, Bonet and Friz [69] have extended the above character-
ization of weakly compact composition operators to the weighted locally convex spaces
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HV(D,E) of vector-valued analytic functions, where V = {v,} is an increasing sequence
of strictly positive, radial, continuous, bounded weights and E is a complete, barralled
locally convex space.

8. Composition operators and homomorphisms

In this section, we present a few results which relate homomorphisms with composition
operators [66]. We will begin with a characterization of all continuous linear operators on
HV3(G), which are composition operators and this parallels a standard result for func-
tional Hilbert spaces.

For each z € G, the point evaluation §, defines a continuous linear functional on
HV,(G). If we put A(G) = {§,:z € G}, then A(G) is a subset of the continuous dual
HV,(G)*.

THEOREM 8.1. Let © : HV},(G) — HV,,(G) be a linear transformation. Then there exists
¢ : G — G such that ® = Cy if and only if the transpose mapping @' from HV,,(G)* into the
algebraic dual HVy(G)' leaves A(G) invariant. In case V is a reasonable system of bounded
weights on G and @' (A(G)) C A(G), ¢ is necessarily analytic and ® = Cy is continuous if
and only if V < \N/O(p.

Proof. Suppose that @ = Cy, for some ¢ : G — G. Let z € Gand f € HV}(G). Then

(@’52)(]() = (520(13)(f) = 82(®(f)) = 6Z(C¢f) = f(¢(z)) = 6¢(z)(f)- (8.1)

This implies that ®'6, = d4(,). Conversely, let us suppose that ®'(A(G)) C A(G). For z €
G if we define ¢(z) to be the unique element of G such that @5, = dy(,). Let f € HV(G).
Then

O(f)(2) = 6:(D(f)) = (8:0D) (f) = (®'8:) (f) = 8p)(f) = £ (¢(2)) = Cy(f)(2).
(8.2)

Thus @ = Cy. Also, since the identity function f(z) = z belongs to HV}(G) and the range
of Cy is contained in H(G), ¢ is necessarily an analytic map. Also, in view of Corollary 6.9,
® = Cy is continuous when V' < Voo. O

THEOREM 8.2. Let G be an open connected bounded subset of C and let V be a system of
bounded weights on G such that V < V2. Let ® : HV},(G) — C be a nonzero multiplicative
linear functional. Then there exists zo € G such that ® = §,.

Proof. Let A € Cand let K) denote the constant function K (z) = A, for every z € G. Since
each weight v € V is bounded, it follows that each constant function K € HV,(G). Let
@ : HVy(G) — C be a nonzero multiplicative linear functional. Then we have ®(K;) =
DO(K; - K;y) = O(K;)D(K;). That is, O(K;) is equal to zero or one. In case ®(K;) =0, it
follows that @(f) = O(f - K1) = ®(f)P(K;) = 0, for every f € HV}(G). Thus @ =0, a
contradiction. This shows that ®(K;) = 1. Further, it implies that ®(K)) = ®(K) - K;) =
DL - K;) =AD(K;) = A. Let f: G — C be defined as f(z) = z, for every z € G. Then
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clearly, f € HV},(G). Now, we fix zp = O(f). We will show that z, € G. Suppose that z; &
G. Then we define the function h,, : G — C as hy (z) = 1/(z — 2y), for every z € G. Again,
since each weight v € V is bounded and G is a bounded domain, it follows that h,, €
H Vb(G) Also, from the definition of h,,, we have (z — zo) h,, (z) = 1, for every z € G. That
is, (f(z) z() )hZO (z) = 1 for every z € G. Thus (f — Kg,)h,, = K. Further, it implies
that CD(K1 O(f - D(hy,) = (D(f) — D(K,,))D(hy) = (20 — 20)D(hy) = 0, which is
a contradiction because CD(KI) = 1. This proves that zy € G. Now, let g € HV},(G). Then
we define the function h: G — C as

h(z) = hy(2)(g(2) —g(20)), forz # z, h(z) =g (z0), forz = z,. (8.3)

It can be easily seen that h € HV}(G). Now, it readily follows that (f — K;)h = g — Ky(z))-

Further, we have ®((f — K;,)h) = ®(g — Kg(z,)). That is, 0 = O(g) — O(Ky(z,)). Thus it
follows that ®(g) = g(zo) = &,,(g). This proves that ® = §,,. With this, the proof of the
theorem is complete. O

THEOREM 8.3. Let Gy and G, be open connected bounded subsets of C. Let V and U be
sytems of bounded weights on Gy and G, respectively, such that V. < V? and U < U?. Let
@ : HV,(Gy) — HVy(G,) be a nonzero algebra homomorphism. Then there exists a holo-
morphic map ¢ : Gy — Gy such that © = Cy.

Proof. Since HV},(G;) and HV}(G,) contains constant functions, it follows that K; €
HV,(G;) and ®(K;) = ®(K;) - O(K;). Then using connectedness of G, we can conclude
that ®(K;) = K;. Further, it implies that ®(K)) = K), for every A € C. Now, let zp € G,.
Then define 6,, : HV},(G;) — Cas 6, (f) = (O f)(2p). Clearly, &, is a multiplicative linear
functional on HVy(G;). Hence by Theorem 8.2, there exists & € G; such that §,,(f) =

0.(f) = f(a), for every f € HVy(Gy). Let g: G; — C be defined as g(z) = z, for every
z € Gy. Then clearly, g € HV,(G) and 6;,(g) = g(«). Thus it follows that (Og)(zy) = a.
Let us define ¢ = O(g). Thus ¢ : G, — G is an analytic map such that (O f)(z) = f(a) =
f(®g)(z0) = (fod)(20), 20 € Ga. This shows that D(f) = Cy(f), for every f € HV,(Gy).
Hence ® = Cy. With this, the proof of the theorem is complete. O

THEOREM 8.4. Let G be an open connected bounded subset of C and let V be a system of
bounded weights on G such that V < V2. Then a composition transformation Cg on HV;,(G)
is invertible if and only if ¢ : G — G is a conformal mapping.

Proof. If ¢ is a conformal mapping, then obviously, Cy is invertible on HV}(G). On the
other hand, suppose A is the inverse of Cy. Then we have ACy = C4A = I. For f and g
in HV}(G), we have C4A(fg) = fg. Further, it implies that A(fg)o¢ = fg = (C4Af) -
(CyAg) = (Af)og - (Ag)og = (Af - Ag)og. Thatis, (A(fg) —Af - Ag)od = 0. Since Cy is
invertible, ¢ is nonconstant and hence the range of ¢ is an open set. Thus it follows that
A(fg) =Af - Ag. According to Theorem 8.3, there exists an analytic map y : G — G such
that A = Cy. Let f(z) = z, for every z € G. Then f € HV},(G) and we have (C,Cy f)(2) =
(fogoy)(z) = (poy)(2), for every z € G. Also, (C4Cy)(2) = (foyod)(z) = (yo¢)(z), for
every z € G. From this, we conclude that ¢ is invertible with an analytic inverse map as
y. Hence ¢ is a conformal mapping of G onto itself. O
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