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Let �p be the class of certain analytic functions f (z) in the open unit disk U. For f (z)∈
�p, a subclass �p(α,β,γ, j) of �p is introduced. The object of the present paper is to
discuss some properties of functions f (z) belonging to class Ap(α,β,γ; j).
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1. Introduction

Let �p denote the class of functions f (z) of the form

f (z)= zp +
∞∑

k=p+1

akz
k
(
p ∈N= {1,2,3, . . .}) (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let �p(α,β,γ; j) be the
subclass of �p consisting of functions f (z) which satisfy

Re

{
α
f ( j)(z)
zp− j +β

f ( j+1)(z)
zp− j−1

}
> γ (z ∈ U), (1.2)

for some α (α > 0), β (β > 0), and γ (0 � γ < p!{α+ (p− j)β}/(p− j)!), where j = 0,1,
2, . . . , p− 1. If p = 1 and j = 0, then the class �1(α,β,γ;0) is defined by

Re

{
α
f (z)
z

+β f ′(z)

}
> γ (z ∈ U) (1.3)

for some α (α>0), β (β > 0), and γ (0 � γ<α+β). This class was studied by Wang et al. [1].
From the definition for the class �p(α,β,γ; j), we see the following.
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Remark 1.1. �p(α,β,γ; j) is convex.

Proof. For f (z)∈�p(α,β,γ; j) and g(z)∈�p(α,β,γ; j), we define

F(z)= (1− t) f (z) + tg(z) (0 � t � 1). (1.4)

Then,

Re

{
α
F( j)(z)
zp− j +β

F( j+1)(z)
zp− j−1

}

= Re

{
α

(1− t) f ( j)(z) + tg( j)(z)
zp− j +β

(1− t) f ( j+1)(z) + tg( j+1)(z)
zp− j−1

}

= (1− t)Re

{
α
f ( j)(z)
zp− j +β

f ( j+1)(z)
zp− j−1

}

+ tRe

{
α
g( j)(z)
zp− j +β

g( j+1)(z)
zp− j−1

}
> (1− t)γ+ tγ = γ;

(1.5)

therefore, F(z)∈�p(α,β,γ; j), that is, �p(α,β,γ; j) is convex. �

In the present paper, we consider some properties of functions f (z) belonging to class
�p(α,β,γ; j).

2. Properties of class �p(α,β,γ; j)

We begin with the statement and the proof of the following result.

Theorem 2.1. A function f (z)∈�p is in the class of �p(α,β,γ; j) if and only if

f (z)= zp + 2(δ− γ)
∫

|x|=1

( ∞∑

k=p+1

(k− j)!
k!
{
α+ (k− j)β

}xk−pzk
)
dμ(x), (2.1)

where μ(x) is the probability measure on X = {x ∈ C : |x| = 1} and δ = p!{α+ (p− j)β}/
(p− j)!.

Proof. For f (z)∈�p(α,β,γ; j), we define

F(z)= α
(
f ( j)(z)/zp− j

)
+β
(
f ( j+1)(z)/zp− j−1

)− γ

δ− γ
, (2.2)

where δ= p!{α+ (p− j)β}/(p− j)!. Then, F(z) is the Carathéodory function, since F(0)=
1 and Re F(z) > 0. Hence, we can write (see [2])

F(z)= α
(
f ( j)(z)/zp− j

)
+β
(
f ( j+1)(z)/zp− j−1

)− γ

δ− γ
=
∫

|x|=1

1 + xz

1− xz
dμ(x). (2.3)



Shigeyoshi Owa et al. 3

Since (2.3) is equivalent to

β

(
α

β
f ( j)(z) + z f ( j+1)(z)

)
= γzp− j + (δ− γ)zp− j

∫

|x|=1

(
1 +

∞∑

k=1

2xkzk
)
dμ(x), (2.4)

we have that

zα/β−1

(
α

β
f ( j)(z)+z f ( j+1)(z)

)
= 1
β
zα/β−1

{
δzp− j + (δ− γ)

∫

|x|=1

( ∞∑

k=1

2xkzk+p− j

)
dμ(x)

}
.

(2.5)

Integrating both sides of (2.5), we know that

∫ z

0
ζα/β−1

(
α

β
f ( j)(ζ) + ζ f ( j+1)(ζ)

)
dζ

= 1
β

∫

|x|=1

{∫ z

0

(
δζ p− j+α/β−1 + 2(δ− γ)

( ∞∑

k=1

xkζk+p− j+α/β−1

))
dζ

}
dμ(x),

(2.6)

that is,

zα/β f ( j)(z)= δ

α+ (p− j)β
zp− j+α/β + 2(δ− γ)

×
∫

|x|=1

( ∞∑

k=1

xk

α+ (k+ p− j)β
zk+p− j+α/β

)
dμ(x).

(2.7)

This implies that

f ( j)(z)= p!
(p− j)!

zp− j + 2(δ− γ)
∫

|x|=1

( ∞∑

k=1

xk

α+ (k+ p− j)β
zk+p− j

)
dμ(x). (2.8)

An integration of both sides in (2.8) gives us that

∫ z

0
f ( j)(ζ)dζ = p!

(p− j)!

∫ z

0
ζ p− jdζ + 2(δ− γ)

×
∫

|x|=1

{∫ z

0

( ∞∑

k=1

xk

α+ (k+ p− j)β
ζk+p− j

)
dζ

}
dμ(x),

(2.9)

or

f ( j−1)(z)− f ( j−1)(0)= p!
(p− j + 1)!

zp− j+1 + 2(δ− γ)

×
∫

|x|=1

( ∞∑

k=1

xk{
α+ (k+ p− j)β

}
(k+ p− j + 1)

zk+p− j+1

)
dμ(x).

(2.10)
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Therefore, we obtain that

f ( j−1)(z)= p!
(p− j + 1)!

zp− j+1 + 2(δ− γ)

×
∫

|x|=1

( ∞∑

k=p+1

xk−p{
α+ (k− j)β

}
(k− j + 1)

zk− j+1

)
dμ(x).

(2.11)

Applying the same method for (2.11), we see that

f ( j−2)(z)= p!
(p− j + 2)!

zp− j+2 + 2(δ− γ)

×
∫

|x|=1

( ∞∑

k=p+1

xk−p{
α+ (k− j)β

}
(k− j + 1)(k− j + 2)

zk− j+2

)
dμ(x).

(2.12)

Furthermore, integrating ( j − 2) times both sides in (2.12) and noting that f ( j)(0) = 0
( j = 0,1,2, . . . , p− 1), we conclude that

f (z)= zp + 2(δ− γ)
∫

|x|=1

( ∞∑

k=p+1

(k− j)!
k!
{
α+ (k− j)β

}xk−pzk
)
dμ(x). (2.13)

This completes the proof of Theorem 2.1. �

Taking p = 1 and j = 0 in Theorem 2.1, we have the following.

Corollary 2.2. A function f (z)∈�1 is in the class of �1(α,β,γ;0) if and only if

f (z)= z+ 2(α+β− γ)
∫

|x|=1

( ∞∑

k=2

1
α+ kβ

xk−1zk
)
dμ(x), (2.14)

where μ(x) is the probability measure on X = {x ∈ C : |x| = 1} and 0 � γ < α+β.

In view of Theorem 2.1, we have following corollary for ak.

Corollary 2.3. If f (z) is in the class �p(α,β,γ; j), then

∣∣ak
∣∣� 2(δ− γ)(k− j)!

k!
{
α+ (k− j)β

} (k ≥ p+ 1), (2.15)

where δ = p!{α+ (p− j)β}/(p− j)!. Equality holds for the function f (z) given by

f (z)= zp + 2(δ− γ)

( ∞∑

k=p+1

(k− j)!
k!
{
α+ (k− j)β

}zk
)
. (2.16)

Further, the following distortion inequality follows from Theorem 2.1.
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Corollary 2.4. If f (z) is in class �p(α,β,γ; j), then

max

{
0,

p!
(p− j)!

|z|p− j − 2(δ− γ)

( ∞∑

k=1

1
α+ (k+ p− j)β

|z|k+p− j

)}

�
∣∣ f ( j)(z)

∣∣� p!
(p− j)!

|z|p− j + 2(δ− γ)

( ∞∑

k=1

1
α+ (k+ p− j)β

|z|k+p− j

)
(z ∈ U),

(2.17)

where j = 0,1,2, . . . , p− 1.

Next we derive the following.

Theorem 2.5. A function f (z)∈�p(α,β,γ; j) satisfies

∣∣∣∣∣
z f ′(z)
f (z)

− p

∣∣∣∣∣ < p−μ (2.18)

for |z| < r0, where

r0 = inf
k�p+1

(
(k− 2)!p(p−μ)

{
α+ (k− j)β

}

(k− j)!2(δ− γ)(k−μ)

)1/(k−p)

, (2.19)

0 � μ < p, and 0 � γ < p!{α+ (p− j)β}/(p− j)!. Therefore, f (z) is p-valently starlike of
order μ for |z| < r0.

Proof. Note that

∣∣∣∣∣
z f ′(z)
f (z)

− p

∣∣∣∣∣=
∣∣∣∣∣
z f ′(z)− p f (z)

f (z)

∣∣∣∣∣=
∣∣∣∣∣

∑∞
k=p+1(k− p)akzk

zp +
∑∞

k=p+1 akzk

∣∣∣∣∣

�
∑∞

k=p+1(k− p)
∣∣ak
∣∣|z|k

|z|p−∑∞
k=p+1

∣∣ak
∣∣|z|k =

∑∞
k=p+1(k− p)

∣∣ak
∣∣|z|k−p

1−∑∞
k=p+1

∣∣ak
∣∣|z|k−p .

(2.20)

Now, if

∞∑

k=p+1

(k−μ)
∣∣ak
∣∣|z|k−p < p−μ, (2.21)

that is, using Corollary 2.3, if

∞∑

k=p+1

2(δ− γ)(k−μ)(k− j)!
k!
{
α+ (k− j)β

} |z|k−p < p−μ, (2.22)

then we see that
∑∞

k=p+1(k− p)
∣∣ak
∣∣|z|k−p

1−∑∞
k=p+1

∣∣ak
∣∣|z|k−p < p−μ. (2.23)
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Furthermore, considering that

p−μ= p(p−μ)

( ∞∑

k=p+1

1
k(k− 1)

)
, (2.24)

we know that the inequality (2.23) can be written by

∞∑

k=p+1

2(δ− γ)(k−μ)(k− j)!
k!
{
α+ (k− j)β

} |z|k−p < p(p−μ)

( ∞∑

k=p+1

1
k(k− 1)

)
. (2.25)

Thus, if

|z|k−p < (k− 2)!p(p−μ)
{
α+ (k− j)β

}

(k− j)!2(δ− γ)(k−μ)
(2.26)

for all k � p+ 1, then

∣∣∣∣∣
z f ′(z)
f (z)

− p

∣∣∣∣∣ < p−μ. (2.27)

Therefore, we obtain

|z| < inf
k�p+1

(
(k− 2)!p(p−μ)

{
α+ (k− j)β

}

(k− j)!2(δ− γ)(k−μ)

)1/(k−p)

. (2.28)

�

Letting p = 1 and j = 0 in Theorem 2.5, we have the following.

Corollary 2.6. If f (z) is in class �1(α,β,γ;0), then

∣∣∣∣∣
z f ′(z)
f (z)

− 1

∣∣∣∣∣ < 1−μ (2.29)

for

|z| < inf
k�2

(
(α+ kβ)(1−μ)

2k(k− 1)(k−μ)(α+β− γ)

)1/(k−1)

, (2.30)

where 0 � μ < 1 and 0 � γ < α+β.

3. Application of Jack’s lemma

We give an application of Jack’s lemma for class �p(α,β,γ; j). The next lemma was given
by Jack [3].
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Lemma 3.1. Let w(z) be analytic in U with w(0)= 0. If there are z0 ∈ U such that

max
|z|�|z0|

∣∣w(z)
∣∣= ∣∣w(z0

)∣∣, (3.1)

then

z0w
′(z0

)= kw
(
z0
)

(k � 1). (3.2)

Now we show the following.

Theorem 3.2. If f (z) belongs to class �p(α,β,γ; j + 1) for j = 0,1,2, . . . , p− 1, then

f (z)∈�p

(
α−β,β,

1 + 4γ
4(p− j)

; j

)
, (3.3)

where 0 < β < α and 0 � γ < p!{α+ (p− j− 1)β}/(p− j− 1)!.

Proof. For f (z)∈�p(α,β,γ; j + 1) and A= 1/2 + (1 + 4γ)/4(p− j), we define w(z) by

(α−β)
f ( j)(z)
zp− j +β

f ( j+1)(z)
zp− j−1 = w(z)

1−w(z)
+A

(
w(z) �= 1

)
. (3.4)

Then, we have that

(α−β) f ( j)(z) +βz f ( j+1)(z)= zp− jw(z)
1−w(z)

+Azp− j . (3.5)

It follows from (3.5) that

α f ( j+1)(z) +βz f ( j+2)(z)= (p− j)Azp− j−1 +
(p− j)zp− j−1w(z)

1−w(z)
+

zp− jw′(z)
(
1−w(z)

)2 , (3.6)

or

α
f ( j+1)(z)
zp− j−1 +β

f ( j+2)(z)
zp− j−2 = (p− j)A+

(p− j)w(z)
1−w(z)

+
zw′(z)

(
1−w(z)

)2 . (3.7)

Therefore, f (z)∈�p(α,β,γ; j + 1) satisfies

Re

{
α
f ( j+1)(z)
zp− j−1 +β

f ( j+2)(z)
zp− j−2

}

= (p− j)A+ (p− j)Re

(
w(z)

1−w(z)

)
+ Re

{
zw′(z)

(
1−w(z)

)2

}
> γ

(3.8)
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for z ∈ U. Since w(z) is analytic in U and w(0)= 0, if there are z0 ∈ U such that

max
|z|�|z0|

∣∣w(z)
∣∣= ∣∣w(z0

)∣∣= 1, (3.9)

then, we can write

w
(
z0
)= eiθ , z0w

′(z0
)= kw

(
z0
)= keiθ (k � 1) (3.10)

by Lemma 3.1. For such a point z0 ∈ U, we obtain that

Re

{
α
f ( j+1)

(
z0
)

z
p− j−1
0

+β
f ( j+2)

(
z0
)

z
p− j−2
0

}
= (p− j)A+ (p− j)Re

(
eiθ

1− eiθ

)
+ Re

(
keiθ

(
1− eiθ

)2

)

= (p− j)A− p− j

2
+

k

2(cosθ− 1)

� (p− j)A− p− j

2
+

1
2(cosθ− 1)

� (p− j)A− p− j

2
− 1

4
= γ,

(3.11)

which contradicts our assumption. Hence there is no z0 ∈ U such that |w(z0)| = 1. This
implies that |w(z)| < 1 for all z ∈ U. Noting that

Re

(
w(z)

1−w(z)

)
>−1

2
(z ∈ U) (3.12)

for |w(z)| < 1, we have

Re

{
(α−β)

f ( j)(z)
zp− j +β

f ( j+1)(z)
zp− j−1

}
>−1

2
+

1
2

+
1 + 4γ

4(p− j)
= 1 + 4γ

4(p− j)
, (3.13)

which shows that

f (z)∈�p

(
α−β,β,

1 + 4γ
4(p− j)

; j

)
. (3.14)

�

Letting p = 1 and j = 0 in Theorem 3.2, we see the following.

Corollary 3.3. If f (z) belongs to class �1(α,β,γ;1), then

f (z)∈�1

(
α−β,β,

1 + 4γ
4

;0

)
, (3.15)

where 0 < β < α and 0 � γ < α.
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