

Research Article

Some Properties of Certain Analytic Functions

Shigeyoshi Owa, Toshio Hayami, and Kazuo Kuroki

Received 3 December 2006; Revised 23 January 2007; Accepted 24 January 2007

Recommended by Teodor Bulboaca

Let \mathcal{A}_p be the class of certain analytic functions $f(z)$ in the open unit disk \mathbb{U} . For $f(z) \in \mathcal{A}_p$, a subclass $\mathcal{A}_p(\alpha, \beta, \gamma, j)$ of \mathcal{A}_p is introduced. The object of the present paper is to discuss some properties of functions $f(z)$ belonging to class $\mathcal{A}_p(\alpha, \beta, \gamma; j)$.

Copyright © 2007 Shigeyoshi Owa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let \mathcal{A}_p denote the class of functions $f(z)$ of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad (p \in \mathbb{N} = \{1, 2, 3, \dots\}) \quad (1.1)$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Let $\mathcal{A}_p(\alpha, \beta, \gamma; j)$ be the subclass of \mathcal{A}_p consisting of functions $f(z)$ which satisfy

$$\operatorname{Re} \left\{ \alpha \frac{f^{(j)}(z)}{z^{p-j}} + \beta \frac{f^{(j+1)}(z)}{z^{p-j-1}} \right\} > \gamma \quad (z \in \mathbb{U}), \quad (1.2)$$

for some α ($\alpha > 0$), β ($\beta > 0$), and γ ($0 \leq \gamma < p! \{\alpha + (p-j)\beta\} / (p-j)!$), where $j = 0, 1, 2, \dots, p-1$. If $p = 1$ and $j = 0$, then the class $\mathcal{A}_1(\alpha, \beta, \gamma; 0)$ is defined by

$$\operatorname{Re} \left\{ \alpha \frac{f(z)}{z} + \beta f'(z) \right\} > \gamma \quad (z \in \mathbb{U}) \quad (1.3)$$

for some α ($\alpha > 0$), β ($\beta > 0$), and γ ($0 \leq \gamma < \alpha + \beta$). This class was studied by Wang et al. [1].

From the definition for the class $\mathcal{A}_p(\alpha, \beta, \gamma; j)$, we see the following.

Remark 1.1. $\mathcal{A}_p(\alpha, \beta, \gamma; j)$ is convex.

Proof. For $f(z) \in \mathcal{A}_p(\alpha, \beta, \gamma; j)$ and $g(z) \in \mathcal{A}_p(\alpha, \beta, \gamma; j)$, we define

$$F(z) = (1-t)f(z) + tg(z) \quad (0 \leq t \leq 1). \quad (1.4)$$

Then,

$$\begin{aligned} & \operatorname{Re} \left\{ \alpha \frac{F^{(j)}(z)}{z^{p-j}} + \beta \frac{F^{(j+1)}(z)}{z^{p-j-1}} \right\} \\ &= \operatorname{Re} \left\{ \alpha \frac{(1-t)f^{(j)}(z) + tg^{(j)}(z)}{z^{p-j}} + \beta \frac{(1-t)f^{(j+1)}(z) + tg^{(j+1)}(z)}{z^{p-j-1}} \right\} \\ &= (1-t) \operatorname{Re} \left\{ \alpha \frac{f^{(j)}(z)}{z^{p-j}} + \beta \frac{f^{(j+1)}(z)}{z^{p-j-1}} \right\} \\ &+ t \operatorname{Re} \left\{ \alpha \frac{g^{(j)}(z)}{z^{p-j}} + \beta \frac{g^{(j+1)}(z)}{z^{p-j-1}} \right\} > (1-t)\gamma + t\gamma = \gamma; \end{aligned} \quad (1.5)$$

therefore, $F(z) \in \mathcal{A}_p(\alpha, \beta, \gamma; j)$, that is, $\mathcal{A}_p(\alpha, \beta, \gamma; j)$ is convex. \square

In the present paper, we consider some properties of functions $f(z)$ belonging to class $\mathcal{A}_p(\alpha, \beta, \gamma; j)$.

2. Properties of class $\mathcal{A}_p(\alpha, \beta, \gamma; j)$

We begin with the statement and the proof of the following result.

THEOREM 2.1. *A function $f(z) \in \mathcal{A}_p$ is in the class of $\mathcal{A}_p(\alpha, \beta, \gamma; j)$ if and only if*

$$f(z) = z^p + 2(\delta - \gamma) \int_{|x|=1} \left(\sum_{k=p+1}^{\infty} \frac{(k-j)!}{k! \{\alpha + (k-j)\beta\}} x^{k-p} z^k \right) d\mu(x), \quad (2.1)$$

where $\mu(x)$ is the probability measure on $X = \{x \in \mathbb{C} : |x| = 1\}$ and $\delta = p! \{\alpha + (p-j)\beta\} / (p-j)!$.

Proof. For $f(z) \in \mathcal{A}_p(\alpha, \beta, \gamma; j)$, we define

$$F(z) = \frac{\alpha(f^{(j)}(z)/z^{p-j}) + \beta(f^{(j+1)}(z)/z^{p-j-1}) - \gamma}{\delta - \gamma}, \quad (2.2)$$

where $\delta = p! \{\alpha + (p-j)\beta\} / (p-j)!$. Then, $F(z)$ is the Carathéodory function, since $F(0) = 1$ and $\operatorname{Re} F(z) > 0$. Hence, we can write (see [2])

$$F(z) = \frac{\alpha(f^{(j)}(z)/z^{p-j}) + \beta(f^{(j+1)}(z)/z^{p-j-1}) - \gamma}{\delta - \gamma} = \int_{|x|=1} \frac{1+xz}{1-xz} d\mu(x). \quad (2.3)$$

Since (2.3) is equivalent to

$$\beta \left(\frac{\alpha}{\beta} f^{(j)}(z) + zf^{(j+1)}(z) \right) = \gamma z^{p-j} + (\delta - \gamma) z^{p-j} \int_{|x|=1} \left(1 + \sum_{k=1}^{\infty} 2x^k z^k \right) d\mu(x), \quad (2.4)$$

we have that

$$z^{\alpha/\beta-1} \left(\frac{\alpha}{\beta} f^{(j)}(z) + zf^{(j+1)}(z) \right) = \frac{1}{\beta} z^{\alpha/\beta-1} \left\{ \delta z^{p-j} + (\delta - \gamma) \int_{|x|=1} \left(\sum_{k=1}^{\infty} 2x^k z^{k+p-j} \right) d\mu(x) \right\}. \quad (2.5)$$

Integrating both sides of (2.5), we know that

$$\begin{aligned} & \int_0^z \zeta^{\alpha/\beta-1} \left(\frac{\alpha}{\beta} f^{(j)}(\zeta) + \zeta f^{(j+1)}(\zeta) \right) d\zeta \\ &= \frac{1}{\beta} \int_{|x|=1} \left\{ \int_0^z \left(\delta \zeta^{p-j+\alpha/\beta-1} + 2(\delta - \gamma) \left(\sum_{k=1}^{\infty} x^k \zeta^{k+p-j+\alpha/\beta-1} \right) \right) d\zeta \right\} d\mu(x), \end{aligned} \quad (2.6)$$

that is,

$$\begin{aligned} z^{\alpha/\beta} f^{(j)}(z) &= \frac{\delta}{\alpha + (p-j)\beta} z^{p-j+\alpha/\beta} + 2(\delta - \gamma) \\ &\quad \times \int_{|x|=1} \left(\sum_{k=1}^{\infty} \frac{x^k}{\alpha + (k+p-j)\beta} z^{k+p-j+\alpha/\beta} \right) d\mu(x). \end{aligned} \quad (2.7)$$

This implies that

$$f^{(j)}(z) = \frac{p!}{(p-j)!} z^{p-j} + 2(\delta - \gamma) \int_{|x|=1} \left(\sum_{k=1}^{\infty} \frac{x^k}{\alpha + (k+p-j)\beta} z^{k+p-j} \right) d\mu(x). \quad (2.8)$$

An integration of both sides in (2.8) gives us that

$$\begin{aligned} \int_0^z f^{(j)}(\zeta) d\zeta &= \frac{p!}{(p-j)!} \int_0^z \zeta^{p-j} d\zeta + 2(\delta - \gamma) \\ &\quad \times \int_{|x|=1} \left\{ \int_0^z \left(\sum_{k=1}^{\infty} \frac{x^k}{\alpha + (k+p-j)\beta} \zeta^{k+p-j} \right) d\zeta \right\} d\mu(x), \end{aligned} \quad (2.9)$$

or

$$\begin{aligned} f^{(j-1)}(z) - f^{(j-1)}(0) &= \frac{p!}{(p-j+1)!} z^{p-j+1} + 2(\delta - \gamma) \\ &\quad \times \int_{|x|=1} \left(\sum_{k=1}^{\infty} \frac{x^k}{\{\alpha + (k+p-j)\beta\}(k+p-j+1)} z^{k+p-j+1} \right) d\mu(x). \end{aligned} \quad (2.10)$$

Therefore, we obtain that

$$\begin{aligned} f^{(j-1)}(z) &= \frac{p!}{(p-j+1)!} z^{p-j+1} + 2(\delta - \gamma) \\ &\times \int_{|x|=1} \left(\sum_{k=p+1}^{\infty} \frac{x^{k-p}}{\{\alpha + (k-j)\beta\}(k-j+1)} z^{k-j+1} \right) d\mu(x). \end{aligned} \quad (2.11)$$

Applying the same method for (2.11), we see that

$$\begin{aligned} f^{(j-2)}(z) &= \frac{p!}{(p-j+2)!} z^{p-j+2} + 2(\delta - \gamma) \\ &\times \int_{|x|=1} \left(\sum_{k=p+1}^{\infty} \frac{x^{k-p}}{\{\alpha + (k-j)\beta\}(k-j+1)(k-j+2)} z^{k-j+2} \right) d\mu(x). \end{aligned} \quad (2.12)$$

Furthermore, integrating $(j-2)$ times both sides in (2.12) and noting that $f^{(j)}(0) = 0$ ($j = 0, 1, 2, \dots, p-1$), we conclude that

$$f(z) = z^p + 2(\delta - \gamma) \int_{|x|=1} \left(\sum_{k=p+1}^{\infty} \frac{(k-j)!}{k! \{\alpha + (k-j)\beta\}} x^{k-p} z^k \right) d\mu(x). \quad (2.13)$$

This completes the proof of Theorem 2.1. \square

Taking $p = 1$ and $j = 0$ in Theorem 2.1, we have the following.

COROLLARY 2.2. *A function $f(z) \in \mathcal{A}_1$ is in the class of $\mathcal{A}_1(\alpha, \beta, \gamma; 0)$ if and only if*

$$f(z) = z + 2(\alpha + \beta - \gamma) \int_{|x|=1} \left(\sum_{k=2}^{\infty} \frac{1}{\alpha + k\beta} x^{k-1} z^k \right) d\mu(x), \quad (2.14)$$

where $\mu(x)$ is the probability measure on $X = \{x \in \mathbb{C} : |x| = 1\}$ and $0 \leq \gamma < \alpha + \beta$.

In view of Theorem 2.1, we have following corollary for a_k .

COROLLARY 2.3. *If $f(z)$ is in the class $\mathcal{A}_p(\alpha, \beta, \gamma; j)$, then*

$$|a_k| \leq \frac{2(\delta - \gamma)(k-j)!}{k! \{\alpha + (k-j)\beta\}} \quad (k \geq p+1), \quad (2.15)$$

where $\delta = p! \{\alpha + (p-j)\beta\} / (p-j)!$. Equality holds for the function $f(z)$ given by

$$f(z) = z^p + 2(\delta - \gamma) \left(\sum_{k=p+1}^{\infty} \frac{(k-j)!}{k! \{\alpha + (k-j)\beta\}} z^k \right). \quad (2.16)$$

Further, the following distortion inequality follows from Theorem 2.1.

COROLLARY 2.4. If $f(z)$ is in class $\mathcal{A}_p(\alpha, \beta, \gamma; j)$, then

$$\begin{aligned} \max \left\{ 0, \frac{p!}{(p-j)!} |z|^{p-j} - 2(\delta - \gamma) \left(\sum_{k=1}^{\infty} \frac{1}{\alpha + (k+p-j)\beta} |z|^{k+p-j} \right) \right\} \\ \leq |f^{(j)}(z)| \leq \frac{p!}{(p-j)!} |z|^{p-j} + 2(\delta - \gamma) \left(\sum_{k=1}^{\infty} \frac{1}{\alpha + (k+p-j)\beta} |z|^{k+p-j} \right) \quad (z \in \mathbb{U}), \end{aligned} \quad (2.17)$$

where $j = 0, 1, 2, \dots, p-1$.

Next we derive the following.

THEOREM 2.5. A function $f(z) \in \mathcal{A}_p(\alpha, \beta, \gamma; j)$ satisfies

$$\left| \frac{zf'(z)}{f(z)} - p \right| < p - \mu \quad (2.18)$$

for $|z| < r_0$, where

$$r_0 = \inf_{k \geq p+1} \left(\frac{(k-2)!p(p-\mu)\{\alpha + (k-j)\beta\}}{(k-j)!2(\delta-\gamma)(k-\mu)} \right)^{1/(k-p)}, \quad (2.19)$$

$0 \leq \mu < p$, and $0 \leq \gamma < p! \{\alpha + (p-j)\beta\} / (p-j)!$. Therefore, $f(z)$ is p -valently starlike of order μ for $|z| < r_0$.

Proof. Note that

$$\begin{aligned} \left| \frac{zf'(z)}{f(z)} - p \right| &= \left| \frac{zf'(z) - pf(z)}{f(z)} \right| = \left| \frac{\sum_{k=p+1}^{\infty} (k-p)a_k z^k}{z^p + \sum_{k=p+1}^{\infty} a_k z^k} \right| \\ &\leq \frac{\sum_{k=p+1}^{\infty} (k-p) |a_k| |z|^k}{|z|^p - \sum_{k=p+1}^{\infty} |a_k| |z|^k} = \frac{\sum_{k=p+1}^{\infty} (k-p) |a_k| |z|^{k-p}}{1 - \sum_{k=p+1}^{\infty} |a_k| |z|^{k-p}}. \end{aligned} \quad (2.20)$$

Now, if

$$\sum_{k=p+1}^{\infty} (k-\mu) |a_k| |z|^{k-p} < p - \mu, \quad (2.21)$$

that is, using Corollary 2.3, if

$$\sum_{k=p+1}^{\infty} \frac{2(\delta-\gamma)(k-\mu)(k-j)!}{k! \{\alpha + (k-j)\beta\}} |z|^{k-p} < p - \mu, \quad (2.22)$$

then we see that

$$\frac{\sum_{k=p+1}^{\infty} (k-p) |a_k| |z|^{k-p}}{1 - \sum_{k=p+1}^{\infty} |a_k| |z|^{k-p}} < p - \mu. \quad (2.23)$$

Furthermore, considering that

$$p - \mu = p(p - \mu) \left(\sum_{k=p+1}^{\infty} \frac{1}{k(k-1)} \right), \quad (2.24)$$

we know that the inequality (2.23) can be written by

$$\sum_{k=p+1}^{\infty} \frac{2(\delta - \gamma)(k - \mu)(k - j)!}{k! \{ \alpha + (k - j)\beta \}} |z|^{k-p} < p(p - \mu) \left(\sum_{k=p+1}^{\infty} \frac{1}{k(k-1)} \right). \quad (2.25)$$

Thus, if

$$|z|^{k-p} < \frac{(k-2)!p(p-\mu)\{\alpha+(k-j)\beta\}}{(k-j)!2(\delta-\gamma)(k-\mu)} \quad (2.26)$$

for all $k \geqq p+1$, then

$$\left| \frac{zf'(z)}{f(z)} - p \right| < p - \mu. \quad (2.27)$$

Therefore, we obtain

$$|z| < \inf_{k \geqq p+1} \left(\frac{(k-2)!p(p-\mu)\{\alpha+(k-j)\beta\}}{(k-j)!2(\delta-\gamma)(k-\mu)} \right)^{1/(k-p)}. \quad (2.28)$$

□

Letting $p = 1$ and $j = 0$ in Theorem 2.5, we have the following.

COROLLARY 2.6. *If $f(z)$ is in class $\mathcal{A}_1(\alpha, \beta, \gamma; 0)$, then*

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 - \mu \quad (2.29)$$

for

$$|z| < \inf_{k \geqq 2} \left(\frac{(\alpha+k\beta)(1-\mu)}{2k(k-1)(k-\mu)(\alpha+\beta-\gamma)} \right)^{1/(k-1)}, \quad (2.30)$$

where $0 \leqq \mu < 1$ and $0 \leqq \gamma < \alpha + \beta$.

3. Application of Jack's lemma

We give an application of Jack's lemma for class $\mathcal{A}_p(\alpha, \beta, \gamma; j)$. The next lemma was given by Jack [3].

LEMMA 3.1. Let $w(z)$ be analytic in \mathbb{U} with $w(0) = 0$. If there are $z_0 \in \mathbb{U}$ such that

$$\max_{|z| \leq |z_0|} |w(z)| = |w(z_0)|, \quad (3.1)$$

then

$$z_0 w'(z_0) = kw(z_0) \quad (k \geq 1). \quad (3.2)$$

Now we show the following.

THEOREM 3.2. If $f(z)$ belongs to class $\mathcal{A}_p(\alpha, \beta, \gamma; j+1)$ for $j = 0, 1, 2, \dots, p-1$, then

$$f(z) \in \mathcal{A}_p\left(\alpha - \beta, \beta, \frac{1+4\gamma}{4(p-j)}; j\right), \quad (3.3)$$

where $0 < \beta < \alpha$ and $0 \leq \gamma < p! \{ \alpha + (p-j-1)\beta \} / (p-j-1)!$.

Proof. For $f(z) \in \mathcal{A}_p(\alpha, \beta, \gamma; j+1)$ and $A = 1/2 + (1+4\gamma)/4(p-j)$, we define $w(z)$ by

$$(\alpha - \beta) \frac{f^{(j)}(z)}{z^{p-j}} + \beta z \frac{f^{(j+1)}(z)}{z^{p-j-1}} = \frac{w(z)}{1 - w(z)} + A \quad (w(z) \neq 1). \quad (3.4)$$

Then, we have that

$$(\alpha - \beta) f^{(j)}(z) + \beta z f^{(j+1)}(z) = \frac{z^{p-j} w(z)}{1 - w(z)} + A z^{p-j}. \quad (3.5)$$

It follows from (3.5) that

$$\alpha f^{(j+1)}(z) + \beta z f^{(j+2)}(z) = (p-j) A z^{p-j-1} + \frac{(p-j) z^{p-j-1} w(z)}{1 - w(z)} + \frac{z^{p-j} w'(z)}{(1 - w(z))^2}, \quad (3.6)$$

or

$$\alpha \frac{f^{(j+1)}(z)}{z^{p-j-1}} + \beta \frac{f^{(j+2)}(z)}{z^{p-j-2}} = (p-j) A + \frac{(p-j) w(z)}{1 - w(z)} + \frac{z w'(z)}{(1 - w(z))^2}. \quad (3.7)$$

Therefore, $f(z) \in \mathcal{A}_p(\alpha, \beta, \gamma; j+1)$ satisfies

$$\begin{aligned} \operatorname{Re} \left\{ \alpha \frac{f^{(j+1)}(z)}{z^{p-j-1}} + \beta \frac{f^{(j+2)}(z)}{z^{p-j-2}} \right\} \\ = (p-j) A + (p-j) \operatorname{Re} \left(\frac{w(z)}{1 - w(z)} \right) + \operatorname{Re} \left\{ \frac{z w'(z)}{(1 - w(z))^2} \right\} > \gamma \end{aligned} \quad (3.8)$$

for $z \in \mathbb{U}$. Since $w(z)$ is analytic in \mathbb{U} and $w(0) = 0$, if there are $z_0 \in \mathbb{U}$ such that

$$\max_{|z| \leq |z_0|} |w(z)| = |w(z_0)| = 1, \quad (3.9)$$

then, we can write

$$w(z_0) = e^{i\theta}, \quad z_0 w'(z_0) = kw(z_0) = ke^{i\theta} \quad (k \geq 1) \quad (3.10)$$

by Lemma 3.1. For such a point $z_0 \in \mathbb{U}$, we obtain that

$$\begin{aligned} \operatorname{Re} \left\{ \alpha \frac{f^{(j+1)}(z_0)}{z_0^{p-j-1}} + \beta \frac{f^{(j+2)}(z_0)}{z_0^{p-j-2}} \right\} &= (p-j)A + (p-j) \operatorname{Re} \left(\frac{e^{i\theta}}{1-e^{i\theta}} \right) + \operatorname{Re} \left(\frac{ke^{i\theta}}{(1-e^{i\theta})^2} \right) \\ &= (p-j)A - \frac{p-j}{2} + \frac{k}{2(\cos \theta - 1)} \\ &\leq (p-j)A - \frac{p-j}{2} + \frac{1}{2(\cos \theta - 1)} \\ &\leq (p-j)A - \frac{p-j}{2} - \frac{1}{4} = \gamma, \end{aligned} \quad (3.11)$$

which contradicts our assumption. Hence there is no $z_0 \in \mathbb{U}$ such that $|w(z_0)| = 1$. This implies that $|w(z)| < 1$ for all $z \in \mathbb{U}$. Noting that

$$\operatorname{Re} \left(\frac{w(z)}{1-w(z)} \right) > -\frac{1}{2} \quad (z \in \mathbb{U}) \quad (3.12)$$

for $|w(z)| < 1$, we have

$$\operatorname{Re} \left\{ (\alpha - \beta) \frac{f^{(j)}(z)}{z^{p-j}} + \beta \frac{f^{(j+1)}(z)}{z^{p-j-1}} \right\} > -\frac{1}{2} + \frac{1}{2} + \frac{1+4\gamma}{4(p-j)} = \frac{1+4\gamma}{4(p-j)}, \quad (3.13)$$

which shows that

$$f(z) \in \mathcal{A}_p \left(\alpha - \beta, \beta, \frac{1+4\gamma}{4(p-j)}; j \right). \quad (3.14)$$

□

Letting $p = 1$ and $j = 0$ in Theorem 3.2, we see the following.

COROLLARY 3.3. *If $f(z)$ belongs to class $\mathcal{A}_1(\alpha, \beta, \gamma; 1)$, then*

$$f(z) \in \mathcal{A}_1 \left(\alpha - \beta, \beta, \frac{1+4\gamma}{4}; 0 \right), \quad (3.15)$$

where $0 < \beta < \alpha$ and $0 \leq \gamma < \alpha$.

References

- [1] Z.-G. Wang, C.-Y. Gao, and S.-M. Yuan, “On the univalency of certain analytic functions,” *Journal of Inequalities in Pure and Applied Mathematics*, vol. 7, no. 1, article 9, pp. 4, 2006.
- [2] D. J. Hallenbeck and T. H. MacGregor, *Linear Problems and Convexity Techniques in Geometric Function Theory*, vol. 22 of *Monographs and Studies in Mathematics*, Pitman, Boston, Mass, USA, 1984.
- [3] I. S. Jack, “Functions starlike and convex of order α ,” *Journal of the London Mathematical Society. Second Series*, vol. 3, pp. 469–474, 1971.

Shigeyoshi Owa: Department of Mathematics, Kinki University, Higashi-Osaka 577-8502, Osaka, Japan

Email addresses: owa@math.kindai.ac.jp; shige21@ican.zaq.ne.jp

Toshio Hayami: Department of Mathematics, Kinki University, Higashi-Osaka 577-8502, Japan
Email address: ha_ya_to112@hotmail.com

Kazuo Kuroki: Department of Mathematics, Kinki University, Higashi-Osaka 577-8502, Japan
Email address: freedom@sakai.zaq.ne.jp

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru