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Let o4, be the class of certain analytic functions f(z) in the open unit disk U. For f(z) €
Sy, a subclass s, (a,B,y,j) of 9, is introduced. The object of the present paper is to
discuss some properties of functions f(z) belonging to class A, (e, S,y; j).
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1. Introduction
Let 9, denote the class of functions f(z) of the form
fle)=2"+ > az* (peN={1,2,3,...}) (1.1)
k=p+1

which are analytic in the open unit disk U = {z € C: |z] < 1}. Let «,(a,f3,y;j) be the
subclass of &, consisting of functions f(z) which satisfy

Re{af(j)(z) +/3f(j+1)(z)

zP=J zp—j-1

}>y (zeU), (1.2)

for some a (¢ >0), B (f>0),and y (0 =y < pHa+(p—j)B}/(p—j)!), where j =0,1,
2,...,p—1.If p=1and j =0, then the class 4, («,3,9;0) is defined by

Re{a@+[§f’(z)}>)} (zeU) (1.3)
forsome o (¢ >0), 8 (8 >0),and y (0 < y<a+p). This class was studied by Wang et al. [1].
From the definition for the class ,(a, B, y; j), we see the following.
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Remark 1.1. s ,(a,B,y; j) is convex.
Proof. For f(z) € dp(a,f,y;j) and g(z) € Ay (a,B,y;j), we define

F(z)=(1-Df(2) +1g(z) (0<t<1). (1.4)
Then,
F(f)(z) F(f+1)(z)
RC{OC zb=J + zp—j-1 }
_ Re{(x(l - t)f(j)(zf)f tg'(2) +/3(1 - t)f(j+l)(7z,)7+ th*l)(z)}
zP=] zp=j-1
fOl(z)  fUD(z) (1:5)
=(1- t)Re{(x pray +p oy }
) (z2) (G (z)
+ tRe{ochpj +ﬁgzp7j—‘lz } >(I-t)y+ty=1y;
therefore, F(z) € s, (a,B,y;j), that is, s, (a, B, y; j) is convex. O

In the present paper, we consider some properties of functions f(z) belonging to class
ﬁp(“;ﬁ» Y)])
2. Properties of class s, (a, 3, y; j)
We begin with the statement and the proof of the following result.

THEOREM 2.1. A function f(z) € s, is in the class of A, (a, B, y; j) if and only if

> k— i)
Z k!{(]))mxkpzk)dy(x), (2.1)

z) =z +2(6 - J ( ,
fz)=2F+2(8 - y) o\ 2, ok (k—
where u(x) is the probability measure on X = {x € C: |x| = 1} and § = pl{a+(p — j)B}/
(p =
Proof. For f(z) € d,(a,f,y;]), we define

_ a(fD(2)/zP~7) + B(FUD (2)/zP=i-1) — y

F(z) 5y ,

(2.2)

where §=pl{a+ (p — j)B}/(p — j)!. Then, F(z) is the Carathéodory function, since F(0) =
1 and Re F(z) > 0. Hence, we can write (see [2])

F(z) =

a(fO(2)/z0T) +B(fI V(=) ) —y (==

5y et 1= xzdy(x). (2.3)
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Since (2.3) is equivalent to

ﬂ(gf(j)(z) +zf(j+1)(2)> =yzP T+ (8 - y)zF~/ JI | (1 + i 2xk2k>dy(x), (2.4)
x|=1 k=1
we have that

th//i1(%f(j)(z)+zf(j+l)(z)):ﬂ of - 1{521) i+ 8 y) . (szk k+p— ]) ( )}
x|=1 _

(2.5)
Integrating both sides of (2.5), we know that
[ g (%f(f’(() . cf<f“><c>> dt
' 1 . (2.6)
ﬁ {J (S(P jta/B-1 +2(8 — )’) ( Z xk(kJerJr‘x/'Bl))d(}dy(x),
lxl=1 k=1
that is,
2B fD(z) = mzpfjwﬁ +2(8—-y)
> xk k+p—j+a/p d (2'7)
+p—j+a,
XJ\;(\:I (,;oc+(k+p—j)ﬂz > ().
This implies that

An integration of both sides in (2.8) gives us that

Jf T (p- J)'J ¢ridl+2(0-y)

< xk k+p—j
XJH{L (,Zl arkrp- B ’)df}dﬂx)

(2.9)

or

f Z) f] 1) #'4_1)'21’ ]+1+2(8 )/)

S xk k+p—j+1)
XJ"":I <kzl far+p—jBfk+p—j+1)° du(x).
(2.10)
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Therefore, we obtain that

G-Dipy— P e
fU(2) = TEES) P 28— y)
S xk—p k—j+1>
lexlﬂ<k_zp+1{a+<k—j>/3}<k—j+1>z ()

Applying the same method for (2.11), we see that

(j-2) p! +
fU(2) = (p=j+2) 22 +2(6-y)
k j2
le,”(k_%l {at+ (k= BLk—j+D(k—j+2)° )du(x)

Furthermore, integrating (j — 2) times both sides in (2.12) and noting that f/(0)

(j=0,1,2,...,p — 1), we conclude that

fz)=22+2(8—y) J‘ - ( > ’d‘{(’c(ﬂ{((_%j)ﬁ’}‘xk_ka> du(x).
M= Nk=pr1 ™7

This completes the proof of Theorem 2.1.
Taking p = 1 and j = 0 in Theorem 2.1, we have the following.
CoRroLLARY 2.2. A function f(z) € A, is in the class of (e, 3,9;0) if and only if

f(z)—z+2(06+ﬁ_y).[x_1(Z‘Hlkﬁ . k)d#( ’

where u(x) is the probability measureon X = {x € C: x| =1} and 0 Sy < a+ .
In view of Theorem 2.1, we have following corollary for a.

CoroLLARY 2.3. If f(z) is in the class A, (a, B, y; j), then

2(6 —y)(k—j)!

lax| < = ffa+ k= B} (k=p+1),

where § = pl{a+ (p — j)B}/(p — j)I. Equality holds for the function f(z) given by

o k !
f(z):zP+2(5—)’)( Z k'{(x(-l-k])]ﬁ} k)

k=p+1

Further, the following distortion inequality follows from Theorem 2.1.

(2.11)

(2.12)

=0

(2.13)

(2.14)

(2.15)

(2.16)
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CoroLLARY 2.4. If f(2) is in class A (e, B,y; j), then

00

P! P=i_ (s < S S k+pj>}
max{O,(p_j)!Izl 2(6—-y) Zoc+(k+p—j)ﬂlzl

k=1

(Y]

< fig)| <P s - ( SR
:|f](Z)|: |z] +2(6 Y) g“+(k+P_j)ﬁ

|z|"+Pf> (ze ),

(p =)
(2.17)
where j =0,1,2,...,p — 1.
Next we derive the following.
TueoreM 2.5. A function f(z) € d,(a,B,y;j) satisfies
zf'(2)
- - 2.18
for |z| < 1o, where
. 1/(k=p)
vo— inf ((k—z)!p{p—y){a+(k—1)ﬁ}> ’ (2.19)
kZpt1 (k= j)12(8 - y)(k =)

0Su<p, and0<y<pl{a+(p—j)BY/(p— j). Therefore, f(z) is p-valently starlike of
order y for |z| < ry.

Proof. Note that

zf'(2) ‘: 2f (@) —pf@) | _ | Litpnlk— plarzt
f(z) f(z) 2P+ Dk per A ZF
(2.20)
< Zliozpﬂ(k_p)'ak' |Z|k _ Zlio:p+1(k_p)|ak| |Z|k7p
I S P TE R T S PR T
Now, if
> (k—wa|lzl* P <p-u, (2.21)
k=p+1
that is, using Corollary 2.3, if
o 20-pk—wk— !y
. < N 2 2.22
2 Rlark- g A <p (222
then we see that
leo:p+1(k_P)|ak||Z|k_P (2.23)

1= S8 et lax | 121577
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Furthermore, considering that

[eY]

1
> m) (2.24)

k=p+1

p—u=p(p—u)(

we know that the inequality (2.23) can be written by

S 2(8—)/)(k—[fl)(k_j)!|z|k—p<p(p_u)( S 1 ) (2.25)
k=p+1

Pt k! o+ (k- j)B} k(k—1)
Thus, if
kp_ (k=2)p(p —pw{a+ (k- j)B}
A e - k- 2.26)
forall k = p+1, then
Z]{(S) —p' <p-—H. (2.27)
Therefore, we obtain
o ((k=2)ip(p — e+ (k- j)B} ) vy
o<, (k) | (228
O
Letting p = 1 and j = 0 in Theorem 2.5, we have the following.
CoROLLARY 2.6. If f(z) is in class A, (a, 3, 7;0), then
Z}((S) “1l<l-u (2.29)
for
1/(k-1)
. (a+kp)(d —u)
@ <i§§(zk<k—1><k—m<a+ﬂ—y>> ! (230

where0 S pu<land0<y<a+p.

3. Application of Jack’s lemma

We give an application of Jack’s lemma for class 94, (a,3,y; j). The next lemma was given
by Jack [3].
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LEmMA 3.1. Let w(z) be analytic in U with w(0) = 0. If there are zy € U such that

max |w(z)| = [w(z)], (3.1)
then
2w (20) =kw(z0) (k=1). (3.2)

Now we show the following.

Tueorem 3.2. If f(z) belongs to class A ,(a,B,y;j +1) for j =0,1,2,...,p — 1, then

fl2) € s, (oc/p’,ﬁ,i;f);.);j), (3.3)

where0<f<aand0Sy<p{a+(p—j— 1B (p—j— DL
Proof. For f(z) € dp(a,B,y5j+1)and A = 1/2+ (1+4y)/4(p — j), we define w(z) by

)f(j)(z) . f(j“)(z)  w(2)

B BT T, A @A), (3.4)
Then, we have that
(=B fD(z2) +Bzfi)(z) = zlP:J::;((Zz)) +AZP T (3.5)

It follows from (3.5) that

(p—zP 7 w(z) 2P iw'(z)

af U0 (2) +fzf2) = (p— AL+ T s w9
or
fU()  fU(z) SaL P | zw'(2)
e B e DAY +(1_W(Z))2. (3.7)
Therefore, f(2) € o, (B, j + 1) satisfies
e
(3.8)

o - w(z) _aw'(z)
=(p=A+(p J)Re<1—w(z)>+R€{(1—w(z))2}>y
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for z € U. Since w(z) is analytic in U and w(0) = 0, if there are z; € U such that

max [w(z)| = |w(z)| =1, (3.9)
[EARSEN
then, we can write

w(zo) =€,  zow (20) = kw(z) =ke®® (k=1) (3.10)

by Lemma 3.1. For such a point z; € U, we obtain that

(j+1) (42 . ' 0 et
Re{afzopj(zl(’) +/3fzopj(zz°) } = (p— j)A+(p—j)Re <1i69> +Re<(e.2)

1—eif)

p—j k

2 +2(c056— 1)
1
2 +2(c059— 1)

. - 1
<@p-pa-EL- -y

(3.11)

which contradicts our assumption. Hence there is no zy € U such that |w(z)| = 1. This
implies that |w(z)| < 1 for all z € U. Noting that

w(z) 1
Re(l—w(z))>2 (zeU) (3.12)

for [w(z)| < 1, we have

(j) (j+1)
Re{(oc—ﬁ)le(jz)+ﬁfj 1‘(Z)}>—1+;+ Irdy _ 144y (3.13)

zpi-1 272 4(p—j) 4lp-j)
which shows that
1+4y
f(z)eﬂp(oc—/j’,[)’ a(p- ]) ) (3.14D)

Letting p = 1 and j = 0 in Theorem 3.2, we see the following.
CoRrOLLARY 3.3. If f(z) belongs to class s, (a, 3, y;1), then

(@) e&dl( pp L0 ) (3.15)

where 0 < f<aand0 < y<a.
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