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It will be shown and induced that the d-dimensional indices in the Banach spaces
version conditions

∑
n(E‖Xn‖p/|nα|p) < ∞ are sufficient to yield lim min 1≤ j≤d(nj)→∞(1/

|nα|)∑k≤n
∏d

j=1(1− (kj − 1)/nj)Xk = 0 a.s. for arrays of James-type orthogonal random
elements. Particularly, it will be shown also that there are the best possible sufficient con-
ditions for multi-indexed independent real-valued random variables.
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1. Introduction

The laws of large numbers for orthogonal random variables or Banach space-valued
random elements are investigated by several authors. A consequence of Rademacher-
Menshov theorem [2, 3] showed that the sufficient condition for a strong law of large
numbers of a sequence of orthogonal real-valued random variables with 0 means and
finite second moments is

∑∞
k=1(σ2

k /k
2) · [log2(k + 1)]2 <∞. Warren and Howell [4] pro-

posed the sufficient condition
∑∞

k=1(E‖Xk‖1+α/k1+α) · log1+α k <∞, 0 <∞≤ 1, for strong
convergence of the one-dimensional B-valued James-type orthogonal random variables.
Móricz [5] showed that

∑∞
i=1

∑∞
k=1(σ2

ik/i
2k2) · [log2(i+ 1)]2[log2(k + 1)]2 <∞ is the nec-

essary condition for the strong convergence for arrays of quasi-orthogonal real-valued
random variables. Móricz [6] obtained a sufficient condition for strong limit theorems
for arrays of quasi-orthogonal real-valued random variables. Móricz et al. [7] showed that
the sufficient condition for the strong convergence of (1/mαnβ)

∑m
i=1

∑n
k=1Xik for arrays

of orthogonal, type p Banach space-valued random elements is

∞∑

i=1

∞∑

k=1

(
E
∥
∥Xik

∥
∥p

iαpkβp

)

· [ log2(i+ 1)
]p[

log2(k+ 1)
]p

<∞. (1.1)
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In this paper, the strong laws of large numbers will be investigated for James type of or-
thogonality in a Banach space. In order to induce d-dimensional case, d > 2, we wish
to investigate the strongly convergent behavior of a more general Cesaro-type means,
(1/mαnβ)

∑m
i=1

∑n
k=1(1− (i− 1)/m)(1− (k − 1)/n)Xik, as m,n → ∞, for arrays of two-

dimensionally indexed orthogonal random elements in a Banach space of type p, 1 ≤
p ≤ 2, and 1/2 < α, β ≤ 1, though Su [1] showed a case of α= 1= β. In particular, it will
be proven that the sufficient conditions are also the best possible even for independent
real-valued random variables. The definition for an array of orthogonal random elements
and the formulation of previous results and auxiliary lemmas for orthogonality are given
in Section 2. The major results and their proofs are in Sections 3 and 4, respectively.

2. Preliminaries and auxiliary lemmas

The basic definitions and properties of Banach space-valued random variables (or ran-
dom elements) are well established in the literature (e.g., [8]). In these preliminaries, we
only introduce the concepts which are necessary and not easy to read in the literature.

Our sense of orthogonality throughout this manuscript is that of James type orthog-
onality. For elements x and y in a Banach space B, x is said to be James orthogonal to y
(denoted by x ⊥J y) if ‖x‖ ≤ ‖x + ty‖ for all t ∈�. If B is a Hilbert space, then James
type orthogonality agrees with the usual notion of orthogonality where the inner prod-
uct is 0 since ‖x + ty‖2 = (x + ty,x + ty) = ‖x‖2 + t2‖y‖2 + 2t(x, y) ≥ ‖x‖2 for all t ∈�
if and only if (x, y) = 0. However, in a Banach space where the norm is not generated
by an inner product, it is possible for x ⊥J y but y 	⊥J x with (x, y) 	= 0. For instance,
let �2 = {(x1,x2) : ‖(x1,x2)‖ = |x1| + |x2|, x1,x2 ∈ �} and x = (2,0) and y = (2,−2).
Then, it is clear that the usual inner product (x, y) = 4 	= 0. Next, x ⊥J y but y 	⊥J x
since ‖x+ ty‖ = |2 + 2t|+ |− 2t| ≥ 2= ‖x‖ and ‖y + tx‖ = |2 + 2t|+ |− 2| = 3 < ‖y‖ = 4
while picking t =−1/2. Therefore, it is not possible to create a notation of orthogonality
with a good geometrical meaning in an arbitrary Banach space without the inner product.
As a result, James-type orthogonality is adopted to circumvent this shortcoming [7].

Let {Xik, i,k ≥ 1} be a double sequence of random elements in the Banach space Lp(B)
with zero means, that is, E(Xik)= 0 for all i, k and finite pth moments, E‖Xik‖p <∞ for
all i, k, where ‖ · ‖ is the norm of the separable Banach space B. The following is the
extended definition for arrays of orthogonal random variables in Banach spaces.

Definition 2.1. An array of random elements {Xik} is orthogonal in Lp(B), 1≤ p <∞, if

(i) E
∥
∥Xik

∥
∥p <∞ ∀i,k,

(ii) E

∥
∥
∥
∥
∥

n1∑

i=1

n2∑

k=1

aπ1(i),π2(k)Xπ1(i),π2(k)

∥
∥
∥
∥
∥

p

≤ E

∥
∥
∥
∥
∥

n1+m1∑

i=1

n2+m2∑

k=1

aπ1(i),π2(k)Xπ1(i),π2(k)

∥
∥
∥
∥
∥

p

,
(2.1)

for all arrays {aik} ⊆�, for all n1, n2, m1, and m2, and for all permutations π1, π2 of the
positive integers {1,2, . . . ,m1 +n1} and {1,2, . . . ,m2 +n2}, respectively.

In retrospect, a separable Banach space B is of type p (1 ≤ p ≤ 2) if and only if there
is a constant C > 0 (depending on B only) such that E‖∑n

i=1Xi‖p ≤ C
∑n

i=1E‖Xi‖p when
{Xi} are independent random elements with zero means and finite pth moments [8]. In
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order to obtain the desired results, a useful version of moment inequality for arrays that
extend the results of Howell and Taylor [9] is listed below.

Proposition 2.2. The following conditions are equivalent:
(i) B is a Banach space of type p, 1≤ p ≤ 2,

(ii) for each array {Xmn} of orthogonal random elements in Lp(B), there exists a con-
stant C (depending on {Xmn} and B) such that, for all m and n,

E

∥
∥
∥
∥
∥

m∑

i=1

n∑

k=1

Xik

∥
∥
∥
∥
∥

p

≤ C
m∑

i=1

n∑

k=1

E
∥
∥Xik

∥
∥p. (2.2)

The next lemma is from Móricz et al. [7].

Lemma 2.3. If {Xik; i≥ 1, k ≥ 1} is an array of orthogonal (in Lp(B)) random elements in
a Banach space B of type p for some 1≤ p ≤ 2, then

E

[(

max
1≤ j≤m

∥
∥
∥
∥
∥

a+ j∑

i=a+1

b+n∑

k=b+1

Xik

∥
∥
∥
∥
∥

)p]

≤ C1
(

log2 2m
)p

a+m∑

i=a+1

b+n∑

k=b+1

E
∥
∥Xik

∥
∥p (2.3)

for some C1 > 0 and

E

[(

max
1≤ j≤m

max
1≤t≤n

∥
∥
∥
∥
∥

a+ j∑

i=a+1

b+t∑

k=b+1

Xik

∥
∥
∥
∥
∥

)p]

≤ C2
(

log2 2m
)p(

log2 2n
)p

a+m∑

i=a+1

b+n∑

k=b+1

E
∥
∥Xik

∥
∥p

(2.4)

for some C2 > 0.

The following lemma can be derived directly from Proposition 2.2 and Lemma 2.3.
Hence, the proofs are omitted.

Lemma 2.4. Let {Xik} be an array of orthogonal (in Lp(B)) random elements in a Banach
space B of type p for some 1≤ p ≤ 2 and let {aik} be any array of real numbers, then there
exists positive constants C3 and C4 such that, for all m and n, (a,b ≥ 0; m,n≥ 1)

(i) E

∥
∥
∥
∥
∥

a+m∑

i=a+1

b+n∑

k=b+1

aikXik

∥
∥
∥
∥
∥

p

≤ C3

a+m∑

i=a+1

b+n∑

k=b+1

∣
∣aik

∣
∣pE

∥
∥Xik

∥
∥p,

(ii) E

[(

max
1≤t≤n

∥
∥
∥
∥
∥

a+m∑

i=a+1

b+t∑

k=b+1

aikXik

∥
∥
∥
∥
∥

)p]

≤ C4
(

log2 2n
)p

a+m∑

i=a+1

b+n∑

k=b+1

∣
∣aik

∣
∣pE

∥
∥Xik

∥
∥p.

(2.5)

We also need two more crucial lemmas as follows; they are extended from Kronecker’s
lemma and Shiryayev [10], respectively, and will be proven in Section 4.

Lemma 2.5 (two-dimensionally indexed version of Kronecker’s lemma). Let {am} and
{bn} be sequences of positive increasing numbers, both am ↑ ∞ and bn ↑ ∞ when m→∞ and
n → ∞, respectively. Let {xi j ; i, j ≥ 1} be an array of positive numbers such that
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∑∞
i=1

∑∞
j=1(xi j /aibj) converges. Then,

(i)
1
am

m∑

i=1

n∑

j=1

xi j
bj
−→ 0 as m−→∞,

1
bn

m∑

i=1

n∑

j=1

xi j
ai
−→ 0 as n−→∞,

(ii)
1

ambn

m∑

i=1

n∑

j=1

xi j −→ 0 as m−→∞ or n−→∞.

(2.6)

Lemma 2.6. A sufficient and necessary condition that ζmn→ 0 with probability one asm,n→
∞ is that for any ε > 0,

P
(

sup
i≥m

sup
k≥n

∥
∥ζik

∥
∥ > ε

)

−→ 0 as m−→∞, n−→∞. (2.7)

3. Major results

Theorems 3.1 and 3.2 are two-dimensionally indexed versions of strong convergence for
Cesaro-type means for arrays of Banach space-valued random elements and hence their
proofs are more complicated than that in real cases because of the structure of spaces.

Theorem 3.1. Let {Xik} be an array of orthogonal (in Lp(B)) random elements with zero
means in a Banach space B of type p, for some 1≤ p ≤ 2. If

∑∞
i=1

∑∞
k=1(E‖Xik‖p/iαpkβp) <

∞, 1/2 < α, β ≤ 1. Then,

lim
m,n→∞

∥
∥
∥
∥
∥

1
mαnβ

m∑

i=1

n∑

k=1

(

1− i− 1
m

)(

1− k− 1
n

)

Xik

∥
∥
∥
∥
∥
= 0 a.s. (3.1)

Theorem 3.2. Let {Xik} be an array of orthogonal (in Lp(B)) random elements with zero
means in a Banach space B of type p, for some 1 ≤ p ≤ 2. If

∑∞
i=1

∑∞
k=1(E‖Xik‖p/iαpkβp) ·

[log2(k+ 1)]p <∞, 1/2 < α, β ≤ 1. Then,

lim
m,n→∞

∥
∥
∥
∥
∥

1
mαnβ

m∑

i=1

n∑

k=1

(

1− i− 1
m

)

Xik

∥
∥
∥
∥
∥
= 0 a.s. (3.2)

The generalization to d-dimensional arrays random elements of the previous two the-
orems can be obtained easily by the same methods [1]. Theorems 3.3 and 3.4 are to show
that the sufficient conditions in the previous theorems are the best possible conditions
for independent real-valued random variables, since the real line is of type p, 1≤ p ≤ 2.

Theorem 3.3. If {τik} is an array of nonnegative real numbers such that τ
p
ik/i

α(p−1)kβ(p−1) ≤
1 holds for indices i and k and the condition

∑∞
i=1

∑∞
k=1(τ

p
ik/i

αpkβp)=∞, for some 1≤ p ≤ 2
and 1/2 < α, β ≤ 1, then there exists an array {Xik} of independent real-valued random
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variables such that E(Xik)= 0, E|Xik|p = τ
p
ik, and

limsup
m+n→∞

∣
∣
∣
∣
∣

1
mαnβ

m∑

i=1

n∑

k=1

(

1− i− 1
m

)(

1− k− 1
n

)

Xik

∣
∣
∣
∣
∣
=∞. (3.3)

Theorem 3.4. If {τik} is an array of nonnegative real numbers such that τ
p
ik · log

p−1
2 (k +

1)/iα(p−1)kβ(p−1) ≤ 1 holds for indices i and k and the condition
∑∞

i=1

∑∞
k=1(τ

p
ik/i

αpkβp) ·
[log2(k + 1)]p =∞, for some 1≤ p ≤ 2 and 1/2 < α, β ≤ 1, then there exists an array {Xik}
of independent real-valued random variables such that E(Xik)= 0, E|Xik|p = τ

p
ik, and

limsup
m+n→∞

∣
∣
∣
∣
∣

1
mαnβ

m∑

i=1

n∑

k=1

(

1− i− 1
m

)

Xik

∣
∣
∣
∣
∣
=∞. (3.4)

4. Proofs

Here we will verify Lemmas 2.5 and 2.6 first, then prove the case of d = 2, that is, Theo-
rems 3.1, 3.2, 3.3, and 3.4. We may apply the analogous approaches for the d-dimensional
cases, d > 2.

Proof of Lemma 2.5. (i) First, we have
∑∞

i=1(xi j /aibj) <∞ for each j ≥ 1 and
∑∞

j=1(xi j /
aibj) <∞ for each i≥ 1. Then by the one-dimensional version Kronecker’s lemma, we can
conclude that (1/am)

∑m
i=1(xi j /bj)→ 0 as m→∞, for every j, and (1/bn)

∑n
j=1(xi j /ai)→ 0

as n→∞, for every i. Hence, for any ε1 > 0, choose n > N such that (1/bn)
∑n

j=1(xi j /ai)≤
ε1/2i for all i. Then, we have

1
bn

m∑

i=1

n∑

j=1

xi j
ai
=

m∑

i=1

1
bn

n∑

j=1

xi j
ai
≤

m∑

i=1

ε1

2i
< ε1. (4.1)

Similarly, for any ε2 > 0, choose m > M such that (1/am)
∑m

i=1(xi j /bj) ≤ ε2/2 j for all j,
then

1
am

m∑

i=1

n∑

j=1

xi j
bj
=

n∑

j=1

1
am

m∑

i=1

xi j
bj
≤

n∑

j=1

ε2

2i
< ε2. (4.2)

(ii) Apparently, for any ε > 0, when m>M (say), we can conclude that

1
ambn

m∑

i=1

n∑

j=1

xi j ≤ 1
am

m∑

i=1

n∑

j=1

xi j
bj

< ε. (4.3)

�
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Proof of Lemma 2.6. Fix any m ≥ 1, for any ε > 0, let Aε
mn = {ω : supi≥m‖ζin‖ > ε} and

Aε
m = limnAε

mn =
⋂∞

n=1

⋃
k≥nA

ε
mk. Then, {ω : supi≥m‖ζin‖� 0, as n→∞} = ⋃ε≥0A

ε
m =⋃∞

t=1A
1/t
m . However, P(Aε

m)= limnP(
⋃

k≥nA
ε
mk). Hence, for any fixed m≥ 1,

0= P
(

ω : sup
i≥m

∥
∥ζin

∥
∥ / 0 as n−→∞

)

= P

(
⋃

ε≥0

Aε
m

)

⇐⇒ P

( ∞⋃

t=1

A1/t
m

)

= 0 any fixed m≥ 1

⇐⇒ P
(
A1/t
m

)= 0, t ≥ 1, any fixed m≥ 1

⇐⇒ P
(
Aε
m

)= 0 for any ε > 0, any fixed m≥ 1

⇐⇒ P

(
⋃

k≥n
Aε
mk

)

−→ 0 as n−→∞, any fixed m≥ 1

⇐⇒ P

(

sup
k≥n

sup
i≥m

∥
∥ζik

∥
∥ > ε

)

−→ 0 as n−→∞, any fixed m≥ 1

⇐⇒ P

( ∞⋂

m=1

{

sup
k≥n

sup
i≥m

∥
∥ζik

∥
∥ > ε

})

−→ 0 as n−→∞

⇐⇒ P

(

sup
k≥n

sup
i≥m

∥
∥ζik

∥
∥ > ε

)

−→ 0 as m−→∞, n−→∞.

(4.4)

�

Proof of Theorem 3.1. We need some useful arguments in the proof in [1, 7], and Lemmas
2.3 and 2.4. For positive integers u and v, for any ε,

P
[

sup
m>2u,n>2v

∥
∥ξmn

∥
∥ > ε

]

≤
∞∑

r=u

∞∑

s=v
P
[

max
2r<m≤2r+1

max
2s<n≤2s+1

∥
∥ξmn

∥
∥ > ε

]

, (4.5)

where

ξmn = 1
mαnβ

m∑

i=1

n∑

k=1

(

1− i− 1
m

)(

1− k− 1
n

)

Xik. (4.6)

We have

max
2r<m≤2r+1

max
2s<n≤2s+1

∥
∥ξmn

∥
∥≤ ∥∥ξ2r ,2s

∥
∥+

3∑

j=1

A
( j)
rs , (4.7)

where

A(1)
rs = max

2r<m≤2r+1

∥
∥ξm,2s − ξ2r ,2s

∥
∥,

A(2)
rs = max

2s<n≤2s+1

∥
∥ξ2r ,n− ξ2r ,2s

∥
∥,

A(3)
rs = max

2r<m≤2r+1
max

2s<n≤2s+1

∥
∥ξmn− ξm,2s − ξ2r ,n + ξ2r ,2s

∥
∥.

(4.8)
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Therefore,

P
[

max
2r≤m≤2r+1

max
2s≤n≤2s+1

∥
∥ξmn

∥
∥ > ε

]

≤ P
[
∥
∥ξ2r ,2s

∥
∥ >

ε

4

]

+
3∑

j=1

P
[

A
( j)
rs >

ε

4

]

. (4.9)

First, by Markov’s inequality and Lemmas 2.3 and 2.4,

∞∑

r=u

∞∑

s=v
P
[
∥
∥ξ2r ,2s

∥
∥ >

ε

4

]

≤
(

4
ε

)p

Γ1

∞∑

r=u

∞∑

s=v

1
2αrp2βsp

2r∑

i=1

2s∑

k=1

∣
∣
∣
∣1− i− 1

2r

∣
∣
∣
∣

p∣∣
∣
∣1− k− 1

2s

∣
∣
∣
∣

p

E
∥
∥Xik

∥
∥p

≤
(

4
ε

)p

Γ1

∞∑

r=u

∞∑

s=v

1
2αrp2βsp

{ 2u∑

i=1

2v∑

k=1

+
2r∑

i=2u+1

2v∑

k=1

+
2u∑

i=1

2s∑

k=2v+1

+
2r∑

i=2u+1

2s∑

k=2v+1

}

E
∥
∥Xik

∥
∥p

=
(

4
ε

)p

Γ1

4∑

j=1

B
( j)
uv , say, for some Γ1 > 0.

(4.10)

Using some basic calculation, it follows that

B(1)
uv =

2(α+β)p
(
2αp− 1

)(
2βp− 1

) · 1
2αpu2βpv

2u∑

i=1

2v∑

k=1

E
∥
∥Xik

∥
∥p. (4.11)

Next,

B(2)
uv ≤

2(α+β)p
(
2αp− 1

)(
2βp− 1

)

{ ∞∑

i=2u+1

2v∑

k=1

1
2βpv

E
∥
∥Xik

∥
∥p

iαp
+

∞∑

i=2u+1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp

}

. (4.12)

Similarly,

B(3)
uv ≤

2(α+β)p
(
2αp− 1

)(
2βp− 1

)

{ 2u∑

i=1

∞∑

k=2v+1

1
2αpu

E
∥
∥Xik

∥
∥p

kβp
+

∞∑

i=2u+1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp

}

,

B(4)
uv =

∞∑

r=u

∞∑

s=v

1
2αrp2βsp

2r∑

i=2u+1

2s∑

k=2v+1

E
∥
∥Xik

∥
∥p ≤

∞∑

i=2u+1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp
.

(4.13)

Secondly, since

A(1)
rs = max

2r<m≤2r+1

∥
∥ξm,2s − ξ2r ,2s

∥
∥= max

1≤m≤2r

∥
∥
∥
∥
∥

2r+m∑

t=2r+1

(
ξt,2s − ξt−1,2s

)
∥
∥
∥
∥
∥

, (4.14)
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where

ξt,2s − ξt−1,2s =
t∑

i=1

2s∑

k=1

aik(t,s)Xik,

aik(t,s)= 1
2βs

(

1− k− 1
2s

)[

(i− 1)
(

1
(t− 1)α+1

− 1
tα+1

)

−
(

1
(t− 1)α

− 1
tα

)]

,

(4.15)

we have

∣
∣aik(t,s)

∣
∣≤ 1

tα+12βs
. (4.16)

Hence, for some Γ2,Γ∗2 > 0,

∞∑

r=u

∞∑

s=v
P
[

A(1)
rs >

ε

4

]

≤
∞∑

r=u

∞∑

s=v
P

[

max
1≤m≤2r

∥
∥
∥
∥
∥

2r+m∑

t=2r+1

(
ξt,2s − ξt−1,2s

)
∥
∥
∥
∥
∥
>
ε

4

]

≤
(

4
ε

)p ∞∑

r=u

∞∑

s=v
E

[(

max
1≤m≤2r

∥
∥
∥
∥
∥

2r+m∑

t=2r+1

(
ξt,2s − ξt−1,2s

)
∥
∥
∥
∥
∥

)p]

≤
(

4
ε

)p ∞∑

r=u

∞∑

s=v
Γ2
[

log2 2 · 2r
]p

2r+1
∑

m=2r+1

E
∥
∥ξm,2s − ξm−1,2s

∥
∥p

≤
(

4
ε

)p

Γ∗2
∞∑

r=u

∞∑

s=v

(r + 1)p

2sβp

2r+1
∑

m=2r+1

m∑

i=1

2s∑

k=1

E
∥
∥Xik

∥
∥p

m(α+1)p

≈
(

4
ε

)p

Γ∗2
∞∑

r=u

∞∑

s=v

2r+1
∑

m=2r+1

m∑

i=1

2s∑

k=1

r pE
∥
∥Xik

∥
∥p

m(α+1)p2βsp

≤
(

4
ε

)p

Γ∗2
∞∑

r=u

∞∑

s=v

2s∑

k=1

r p

2βsp

[ 2r∑

i=1

2r+1
∑

m=2r+1

+
2r+1
∑

i=2r+1

2r+1
∑

m=i

]
E
∥
∥Xik

∥
∥p

m(α+1)p

≤
(

4
ε

)p

Γ∗2
∞∑

r=u

∞∑

s=v

2s∑

k=1

r p

2βsp

[ 2r∑

i=1

1
2r[(α+1)p−1] +

2r+1
∑

i=2r+1

1
i(α+1)p−1

]

E
∥
∥Xik

∥
∥p

≤
(

4
ε

)p

Γ∗2
∞∑

s=v

2s∑

k=1

1
2βsp

{ ∞∑

r=u

2r∑

i=1

r p

2r[(α+1)p−1] +
∞∑

r=u

2r+1
∑

i=2r+1

r p

i(α+1)p−1

}

E
∥
∥Xik

∥
∥p.

(4.17)
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Since the first term and the second term in the bracket of (4.17) can be expressed, respec-
tively, as

∞∑

r=u

2r∑

i=1

r p

2r[(α+1)p−1] ≤
∞∑

i=1

∑

u<r; i<2r

r2

2r[(α+1)p−1] ≤ 2(α+1)p

( 2u∑

i=1

1
i(α+1)p−1 +

∞∑

i=2u+1

1
i(α+1)p−1

)

,

∞∑

r=u

2r+1
∑

i=2r+1

r p

i(α+1)p−1 ≤
∞∑

i=2u+1

∑

u<r; i<2r+1

r2

2r[(α+1)p−1] ≤ 2(α+1)p
∞∑

i=2u+1

1
i(α+1)p−1 ,

(4.18)

hence,

(4.17)≤ 2(α+1)p
(

4
ε

)p

Γ∗2
∞∑

s=v

[ 2v∑

k=1

+
2s∑

k=2v+1

][ 2u∑

i=1

+2
∞∑

i=2u+1

]
E
∥
∥Xik

∥
∥p

iαp2βsp

≤ 2αp
(

8
ε

)p

Γ∗2

{
1

2βvp

2v∑

k=1

2u∑

i=1

E
∥
∥Xik

∥
∥p

iαp
+

1
2βvp

2v∑

k=1

∞∑

i=2u+1

E
∥
∥Xik

∥
∥p

iαp

+
∞∑

k=2v+1

2u∑

i=1

E
∥
∥Xik

∥
∥p

iαpkβp
+ 2

∞∑

k=2v+1

∞∑

i=2u+1

E
∥
∥Xik

∥
∥p

iαpkβp

}

.

(4.19)

Similarly, for some Γ3 > 0,

∞∑

r=u

∞∑

s=v
P
[

A(2)
rs >

ε

4

]

≤ 2βp
(

8
ε

)p

Γ3

{
1

2αup

2v∑

k=1

2u∑

i=1

E
∥
∥Xik

∥
∥p

kβp
+

1
2αup

2u∑

i=1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

kβp

+
∞∑

i=2u+1

2v∑

k=1

E
∥
∥Xik

∥
∥p

iαpkβp
+ 2

∞∑

i=2u+1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp

}

.

(4.20)

Next, since

max
2r<m≤2r+1

max
2s<n≤2s+1

∥
∥ξmn− ξm,2s − ξ2r ,n + ξ2r ,2s

∥
∥

≤ max
1≤m≤2r

max
1≤n≤2s

∥
∥
∥
∥
∥

2r+m∑

t1=2r+1

2s+n∑

t2=2s+1

(
ξt1,t2 − ξ(t1−1),t2 − ξt1,(t2−1) + ξ(t1−1),(t2−1)

)
∥
∥
∥
∥
∥

,

ξt1,t2 − ξ(t1−1),t2 − ξt1,(t2−1) + ξ(t1−1),(t2−1) =
t1∑

i=1

t2∑

k=1

bik
(
t1, t2

)
Xik,

(4.21)

where

bik
(
t1, t2

)=
[

1
tα1

(

1− i− 1
t1

)

− 1
(
t1− 1

)α

(

1− i− 1
t1− 1

)]

·
[

1

t
β
2

(

1− k− 1
t2

)

− 1
(
t2− 1

)β

(

1− k− 1
t2− 1

)]

,
(4.22)
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so apparently,

∣
∣bik

(
t1, t2

)∣
∣≤ (i− 1)(k− 1)

tα+1
1 t

β+1
2

· 1
(
t1− 1

)(
t2− 1

) ≤ 1

tα+1
1 t

β+1
2

. (4.23)

Hence, for some Γ4 > 0,

∞∑

r=u

∞∑

s=v
P
[

A(3)
rs >

ε

4

]

≤
∞∑

r=u

∞∑

s=v
P

[

max
1≤m≤2r

max
1≤n≤2s

∥
∥
∥
∥
∥

2r+m∑

t1=2r+1

2s+n∑

t2=2s+1

(
ξt1,t2 − ξ(t1−1),t2 − ξt1,(t2−1) + ξ(t1−1),(t2−1)

)
∥
∥
∥
∥
∥
>
ε

4

]

≤
(

4
ε

)p

Γ4

∞∑

r=u

∞∑

s=v

(
log2 2 · 2r

)p(
log2 2 · 2s

)p
2r+1
∑

m=2r+1

2s+1
∑

n=2s+1

m∑

i=1

n∑

k=1

E
∥
∥Xik

∥
∥p

m(α+1)pn(β+1)p

≤
(

4
ε

)p

Γ4

∞∑

r=u

∞∑

s=v
(r + 1)p(s+ 1)p

2r+1
∑

m=2r+1

2s+1
∑

n=2s+1

m∑

i=1

n∑

k=1

E
∥
∥Xik

∥
∥p

m(α+1)pn(β+1)p

≈
(

4
ε

)p

Γ4

∞∑

r=u

∞∑

s=v
r psp

( 2r∑

i=1

2r+1
∑

m=2r+1

+
2r+1
∑

i=2r+1

2r+1
∑

m=i

)( 2s∑

k=1

2s+1
∑

n=2s+1

+
2s+1
∑

k=2s+1

2s+1
∑

n=i

)
E
∥
∥Xik

∥
∥p

m(α+1)pn(β+1)p

≤ 2(α+β)p
(

16
ε

)p

Γ4

{
1

2αup2βvp

2u∑

i=1

2v∑

k=1

E
∥
∥Xik

∥
∥p +

2
2αup

2u∑

i=1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

kβp

+
2

2βvp

∞∑

i=2u+1

2v∑

k=1

E
∥
∥Xik

∥
∥p

iαp
+ 4

∞∑

i=2u+1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp

}

.

(4.24)

Combining the results in (4.9), (4.10), (4.19), (4.20), and (4.24), we can conclude that
P[limm,n→∞‖ξmn‖ = 0] = 1. Since P[supm≥s,n≥t ‖ξmn‖ > ε] → 0 as s, t →∞ by applying
Lemmas 2.5 and 2.6 on the right-hand side of the previous inequalities, then the proof is
completed by a convention that

∑2r

i=1

∑2r

k=1 = 0 = ∑∞
i=1

∑2r

k=1 =
∑2r

i=1

∑∞
k=1 and

∑∞
i=2r

∑∞
k=2r =

∑∞
i=1

∑∞
k=1 if r =−1. �

Proof of Theorem 3.2. Similar to the previous proof, we start out from assuming that 2r ≤
m≤ 2r+1 and 2s ≤ n≤ 2s+1 with nonnegative integers u and v, and letting

τmn = 1
mαnβ

m∑

i=1

n∑

k=1

(

1− i− 1
m

)

Xik. (4.25)



Kuo-Liang Su 11

First, we can write

∞∑

r=u

∞∑

s=v
P
[

max
2r≤m≤2r+1

max
2s≤n≤2s+1

∥
∥τmn

∥
∥ > ε

]

≤
∞∑

r=u

∞∑

s=v
P
[
∥
∥τ2r ,2s

∥
∥ >

ε

4

]

+
3∑

j=1

D
( j)
rs , (4.26)

where

D(1)
rs =

∞∑

r=u

∞∑

s=v
P
[

max
2r<m≤2r+1

∥
∥τm,2s − τ2r ,2s

∥
∥ >

ε

4

]

,

D(2)
rs =

∞∑

r=u

∞∑

s=v
P
[

max
2s<n≤2s+1

∥
∥τ2r ,n− τ2r ,2s

∥
∥ >

ε

4

]

,

D(3)
rs =

∞∑

r=u

∞∑

s=v
P
[

max
2r<m≤2r+1

max
2s<n≤2s+1

∥
∥τmn− τm,2s − τ2r ,n + τ2r ,2s

∥
∥ >

ε

4

]

.

(4.27)

Comparing (4.9) to (4.24), we can easily obtain that for some Γ5 > 0,

∞∑

r=u

∞∑

s=v
P
[
∥
∥τ2r ,2s

∥
∥ >

ε

4

]

≤
(

4
ε

)p

Γ5

∞∑

i=2u+1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp
(4.28)

and for some Γ6,Γ∗6 > 0,

D(1)
rs ≤

(
4
ε

)p

Γ6

∞∑

r=u

∞∑

s=v

[
log2 2 · 2r

]p
2r+1
∑

m=2r+1

m∑

i=1

2s∑

k=1

E
∥
∥Xik

∥
∥p

m(α+1)p2βsp

≤ 2αp
(

8
ε

)p

Γ∗6

{
1

2βvp

2u∑

i=1

2v∑

k=1

E
∥
∥Xik

∥
∥p

iαp
+

1
2βvp

∞∑

i=2u+1

2v∑

k=1

E
∥
∥Xik

∥
∥p

iαp

+
2u∑

i=1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp
+ 2

∞∑

i=2u+1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp

}

.

(4.29)

Next, we need to examine that

max
2s<n≤2s+1

∥
∥τ2r ,n− τ2r ,2s

∥
∥= max

2s<n≤2s+1

∥
∥
∥
∥
∥

2s+n∑

t=2s+1

(
τ2r ,t − τ2r ,t−1

)
∥
∥
∥
∥
∥

,

τ2r ,t − τ2r ,t−1 =
2r∑

i=1

t∑

k=1

cik(r, t)Xik,

(4.30)

where

cik(r, t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2αr

(

1− i− 1
2r

)[
1
tβ
− 1

(t− 1)β

]

, k = 1,2, . . . , t− 1,

1
2αr

(

1− i− 1
2r

)

· 1
tβ

, k = t.

(4.31)
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Hence, we use basic calculus to obtain

∣
∣cik(r, t)

∣
∣≤ β

2αrtβ(t− 1)β
, k = 1, . . . , t− 1,

∣
∣cik(r, t)

∣
∣≤ 1

2αrtβ
, k = t. (4.32)

Following the arguments in the proof of Theorem 3.1, we can get that for some Γ7,Γ∗7 > 0,

D(2)
rs ≤

∞∑

r=u

∞∑

s=v
P

[

max
1≤n≤2s

∥
∥
∥
∥
∥

2s+n∑

t=2s+1

2r∑

i=1

t∑

k=1

cik(r, t)Xik

∥
∥
∥
∥
∥
>
ε

4

]

≤
(

4
ε

)p

Γ7

∞∑

r=u

∞∑

s=v

[
log2 2s+1

]p

2αrp

2r∑

i=1

2s+1
∑

n=2s+1

n∑

k=1

∣
∣cik(r, t)

∣
∣pE

∥
∥Xik

∥
∥p

≈
(

4
ε

)p

Γ7

∞∑

r=u

∞∑

s=v

[s+ 1]p

2αrp

2r∑

i=1

2s+1
∑

n=2s+1

{n−1∑

k=1

E
∥
∥Xik

∥
∥p

n2βp +
E
∥
∥Xin

∥
∥p

nβp

}

≤ 2βp
(

8
ε

)p

Γ∗7

{
1

2αup

2u∑

i=1

2v∑

k=1

E
∥
∥Xik

∥
∥p

kβp
+

1
2αup

2u∑

i=1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

kβp

+
∞∑

i=2u+1

2v∑

k=1

E
∥
∥Xik

∥
∥p

iαpkβp
+

∞∑

i=2u+1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp

+
∞∑

i=2u+1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp
[
1 + log

p
2 (k+ 1)

]
}

.

(4.33)

The second term in (4.33) is obtained by the following basic calculation. Next, similar to
the procedure of getting (4.24), we have

max
2r<m≤2r+1

max
2s<n≤2s+1

∥
∥τmn− τm,2s − τ2r ,n + τ2r ,2s

∥
∥

≤ max
1≤m≤2r

max
1≤n≤2s

∥
∥
∥
∥
∥

2r+m∑

t1=2r+1

2s+n∑

t2=2s+1

(
τt1,t2 − τt1−1,t2 − τt1,t2−1 + τt1−1,t2−1

)
∥
∥
∥
∥
∥

,
(4.34)

where

τt1,t2 − τt1−1,t2 − τt1,t2−1 + τt1−1,t2−1 =
t1∑

i=1

t2∑

k=1

dik
(
t1, t2

)
Xik,

dik
(
t1, t2

)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
1
tα1

(

1− i− 1
t1

)

− 1
(
t1− 1

)α

(

1− i− 1
t1− 1

)][
1

t
β
2

− 1
(
t2− 1

)β

]

, k ≤ n− 1,

[
1
tα1

(

1− i− 1
t1

)

− 1
(
t1− 1

)α

(

1− i− 1
t1− 1

)]
1

t
β
2

, k = n.

(4.35)
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Similarly

∣
∣dik

(
t1, t2

)∣
∣≤ β

tα+1
1 t

2β
2

, k ≤ n,
∣
∣dik

(
t1, t2

)∣
∣≤ 1

tα+1
1 t

β
2

, k = n. (4.36)

Then, by the analogous approaches of the proof of Theorem 3.1, for some H > 0, we have

D(3)
rs ≤

(
4
ε

)p

H ·
{

(lower order terms) +
∞∑

i=2u+1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp

+
∞∑

i=2u+1

∞∑

k=2v+1

E
∥
∥Xik

∥
∥p

iαpkβp
· [1 + log

p
2 (k+ 1)

]
}

.

(4.37)

Consequently, following the analogous arguments in the previous proof, we can conclude
the desired result. �

Proof of Theorem 3.3. By
∑∞

i=1

∑∞
k=1(τ

p
ik/i

αpkβp)=∞, there exists an array {εik} of nonin-
creasing positive numbers converging to 0 as max{i,k} →∞ such that

∑∞
i=1

∑∞
k=1(τ

p
ikε

p
ik/

iαpkβp)=∞. Next, define an array of independent random variables {Wik} with the fol-
lowing properties [8]:

P

[

Wik = iαkβ

εik

]

= τ
p
ikε

p
ik

iαpkβp
, P

[
Wik = 0

]= 1− τ
p
ikε

p
ik

iαpkβp
. (4.38)

Then, it is easy to have that

E|Wik|p = τ
p
ik, 0≤ E(Wik)= τ

p
ikε

p−1
ik

iα(p−1)kβ(p−1) ≤ ε
p−1
ik . (4.39)

Now let Xik = τik · ((Wik −E(Wik))/δik)= X+
ik −X−ik , where δ

p
ik = E|Wik −E(Wik)|p, X+

ik =
τikWik/δik, and X−ik = τikE(Wik)/δik. Since Wik and E(Wik) are all positive, and by the
dominated convergence theorem for δik, we have

τik
δik
≥ 1, lim

i+k→∞
τik
δik
= 1. (4.40)
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Consequently, we can obtain that X+
ik ≥max{0,Wik}, i,k = 1,2,3, . . . , and |X−ik | ≤ 2ε

p−1
ik ,

when i+ k is sufficiently large. Then,

∣
∣
∣
∣

1
mαnβ

m∑

i=1

n∑

k=1

(

1− i− 1
m

)(

1− k− 1
n

)

Xik

∣
∣
∣
∣

≥
∥
∥
∥
∥

∣
∣
∣
∣

1
mαnβ

m∑

i=1

n∑

k=1

(

1− i− 1
m

)(

1− k− 1
n

)

X+
ik

∣
∣
∣
∣

−
∣
∣
∣
∣

1
mαnβ

m∑

i=1

n∑

k=1

(

1− i− 1
m

)(

1− k− 1
n

)

X−ik

∣
∣
∣
∣

∥
∥
∥
∥

≥ 1
mαnβ

m∑

i=1

n∑

k=1

(

1− i− 1
m

)(

1− k− 1
n

)

X+
ik −

2ε
p−1
11

mαnβ

(
m+ 1

2

)(
n+ 1

2

)
(
X+
ik ≥ 0

)

≥ C

mαnβ

{ m∑

i=[m/2]

(

1− i− 1
m

) n∑

k=[n/2]

(

1− k− 1
n

)}

X+
[m/2],[n/2]−

C1mn

mαnβ
,

C,C1 > 0,
(
X+
ik are nondecreasing when i+ k is large enough

)

≥ C

mαnβ
· m

4
· n

4
·X+

[m/2],[n/2]−
C1mn

mαnβ

≥ C

mαnβ
· m

4
· n

4
· τ[m/2],[n/2]

δ[m/2],[n/2]
W[m/2],[n/2]− C1mn

mαnβ

≥ C

mαnβ
· m

4
· n

4
· [m/2]α[n/2]β

ε[m/2],[n/2]
− C1mn

mαnβ

≈ C ·m ·n
64 · ε[m/2],[n/2]

− C1mn

mαnβ
≈ C2

ε[m/2],[n/2]
· m ·n
mαnβ

, C2 > 0,

(4.41)

where [·] denotes the greatest integer function. Finally, employing the Borel-Cantelli
lemma and the assumption conditions can yield that

limsup
m+n→∞

∣
∣
∣
∣
∣

1
mαnβ

m∑

i=1

n∑

k=1

(

1− i− 1
m

)(

1− k− 1
n

)

Xik

∣
∣
∣
∣
∣
=∞, a.s. (4.42)

This completes the desired proof. �

Proof of Theorem 3.4. Here we define an array {Wik} of independent random variables as
follows [8]:

P

[

Wik = iαkβ

εik log2(k+ 1)

]

= τ
p
ikε

p
ik

iαpkβp
log

p
2 (k+ 1),

P
[
Wik = 0

]= 1− τ
p
ikε

p
ik

iαpkβp
log

p
2 (k+ 1).

(4.43)
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Hence, we also have that

E
∣
∣Wik

∣
∣p = τ

p
ik, 0≤ E

(
Wik

)= τ
p
ikε

p−1
ik log

p−1
2 (k+ 1)

iα(p−1)kβ(p−1) ≤ ε
p−1
ik . (4.44)

Then, choosing {Xik} and following the similar steps as in the proof of Theorem 3.3, we
can obtain the desired results. �
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