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1. Introduction

The concept of compactness is one of the most important concepts in general topology.
The concept of compactness in [0, 1]-fuzzy set theory was first introduced by Chang
in terms of open covers [1]. Goguen pointed out a deficiency in Chang’s compactness
theory by showing that the Tychonoff theorem is false [2]. Since Chang’s compactness
has some limitations, Gantner et al. introduced a-compactness [3], Lowen introduced
fuzzy compactness, strong fuzzy compactness, and ultrafuzzy compactness [4, 5], Liu
introduced Q-compactness [6], Li introduced strong Q-compactness [7] which is equiv-
alent to strong fuzzy compactness in [5], and Wang and Zhao introduced N-compactness
[8, 9]. Recently Shi introduced S*-compactness [10].

Near compactness is one of the good weak compactness in topology. It was gener-
alized and studied by many authors in L-topological spaces. In [11], Es introduced a
definition of fuzzy near compactness in [0, 1]-topological spaces by using the notion of
Chang’s compactness which is not a good extension of compactness. In [12], Kudri and
Warner generalized the concept of near compactness to L-topological spaces by using the
notion of Kudri’s compactness which is equivalent to strong compactness in [13]. Meng
also presented a definition of fuzzy near compactness in L-fuzzy topological spaces in
[14] by using the notion of N-compactness. Moreover Biilbiil and Warner introduced
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Lo-fuzzy near compactness of [0, 1]-topological spaces [15] based on Lowen’s fuzzy com-
pactness. Recently, Shi and Xu [16] gave a new definition of fuzzy near compactness in
L-topological spaces by using an inequality, where L is a complete de Morgan algebra.

The aim of this paper is to study near S*-compactness in L-topological spaces. We
will discuss the properties of near S*-compactness and give its characterizations. More-
over we will investigate the relations among different notions of near compactness in
L-topological spaces.

2. Preliminaries

Throughout this paper, (L,V,/\,") is a completely distributive de Morgan algebra, and X
a nonempty set. L is the set of all L-fuzzy sets on X. The smallest element and the largest
element in L* are denoted by 0 and 1.

An element a in L is called a prime element ifa > b A cimpliesa > bora >c.ain Lis
called a coprime element if a” is a prime element [17]. The set of nonunit prime elements
in L is denoted by P(L). The set of nonzero coprime elements in L is denoted by M(L).
The set of nonzero coprime elements in L is denoted by M(LX).

The binary relation < in L is defined as follows: for a,b € L, a < b if and only if for
every subset D < L, the relation b < supD always implies the existence of d € D with
a < d [18]. In a completely distributive de Morgan algebra L, each element b is a sup of
{fae L] a<b}.In the sense of [13, 19], {a € L | a < b} is the greatest minimal family
of b, in symbol S(b). Moreover for b € L, define a(b) ={ae L|a <b'} and a*(b) =
a(b) " P(L).

Fora € L and A € L%, we use the following notations in [10, 20]:

Ag={xeX|A(x)>a}, Aw={xeXlacp(A)},
(2.1)
AW =IxeX|Alx) £al.

An L-topological space (or L-space for short) is a pair (X,J), where J is a subfamily
of LX which contains 0, 1 and is closed with respect to suprema and finite infima. J is
called an L-topology on X. Each member of 7 is called an open L-set and its complement
is called a closed L-set.

Definition 2.1 [13, 19]. For a topological space (X,J), let w;(J) denote the family of all
lower semicontinuous maps from (X,7) to L, that is, w;(T) = {A € LX |[A®WD €T, a €
L}. Then wr(T) is an L-topology on X, in this case, (X,wr(9)) is called topologically
generated by (X, 7).

Definition 2.2 [13, 19]. An L-space (X,J) is called weakly induced if for all a € L, for all
A € 9, it follows that A®@ € [T ], where [T ] denotes the topology formed by all crisp sets
inJ.

It is obvious that (X, wr (7)) is weakly induced.
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Lemma 2.3 [10]. Let (X,7) be a weakly induced L-space, a € L, A € I. Then A, is an
open setin [T ].

Definition 2.4. A € LX is called (1) semiopen [21] if A < A°~, the complement of a semi-
open L-set is called semiclosed; (2) regularly open [21] if A—° = A, the complement of a
regularly open L-set is called regularly closed; (3) a-open [22] if A < A°~°, the comple-
ment of an a-open L-set is called a-closed.

Definition 2.5. Let (X,J) and (Y,J,) be two L-spaces. Amap f: (X, T;) — (Y,T,) is
called
(1) almost continuous [21] if f;”(G) € I, for each regularly open L-set Gin (Y, J);
(2) completely continuous [23, 24] if f;” (G) is regularly open L-set in (X,J,) for
eachGe I,
(3) R 1rresolute 1f fi (G) is regularly open in (X, J ) for each regularly open L-set G

in (Y,75).

Definition 2.6 [25]. A net S with directed index set D is also denoted by {S(n) | n € D} or
{S(n)}nep. For G € LX, a net S is said to quasicoincide with G if for all n € D, S(n) £ G'.

Definition 2.7 [25]. Let a € M(L). A net {s(n) | n € D} in L is called an ™ -net if there
exists 9 € D such that for all n > ny, V(S(n)) < o, where V(S(n)) denotes the height of
S(n). A net {S(n)},ep in LX is said to be a constant a-net if the height of each S(n) is a
constant value a.

Obviously, each constant a-net must be an a™-net.

Definition 2.8 [13]. Let (X,J) be an L-space. A € J' is called a closed remote neigh-
borhood of a fuzzy point x, if x, £ A. Let 47 (x,) denote the set of all closed remote
neighborhoods of x,

Definition 2.9 [9]. Let A € LX, a € M(L). ® < J' is called an a-remote neighborhood
family (briefly a-RF) of A, if for each x, < A, there is P € ® such that P € 17 (x,). @ is
called an a™-RF of A if there exists b € 5*(a) such that ® is a b-RF of A.

Definition 2.10 [26,27]. Let A € LX,a € L,and Q < LX. Q is called
(1) an a-shading of A if for each x € X, it follows that (A" V \/yeq U)(x) £ a;
(2) a strong a-shading of A if \,ex (A" V Vyeq U)(x) £ a.

It is obvious that for all a € P(L), Q is an a-shading (a strong a-shading) of A if and
only if Q is an a-cover (a*-cover) of A in the sense of [14].
Definition 2.11 [10]. Let (X,9) be an L-space, a € M(L), and G € LX. A subfamily U
of LX is called a B,-cover of G if for any x € X with a € B(G'(x)), there exists an A € U
such that a € f(A(x)). A B,-cover U of G is called an open(regularly open, a-open, etc.)
Ba-cover of G if each member of U is open(regularly open, a-open, etc.).

It is obvious that U is a f3,-cover of G if and only if for any x € X it follows that
a € P(G'(x) V Vacu A(x)).
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Definition 2.12 [10]. Let (X, ) be an L-space, a € M(L) and G € L*. A subfamily U of
L* is called a Q,-cover of G if for any x € X with G(x) £ a’, it follows that \/ ycq; A(x) >

A Qg-cover U of G is called an open(regularly open, a-open, etc.) Q,-cover of G if each
member of U is open(regularly open, a-open, etc.).

Definition 2.13 [10]. Let (X,7) be an L-space and G € LX. G is called $*-compact if for
any a € M(L), each open f3,-cover of G has a finite subfamily " which is an open Q,-cover
of G. (X, ) is said to be S*-compact if 1 is $*-compact.

Definition 2.14 [28]. An L-space (X,J) is said to be regular if and only if each open L-set
A is a union of open L-sets whose closures are less than A.

3. Definitions and properties of near S*-compactness

Definition 3.1. Let (X,7) be an L-space and G € LX. Then G is called nearly S*- compact
if for any a € M(L), each open f3,-cover of G has a finite subfamily V" such that V" ~°
{A° | A€V} is a Qu-cover of G. (X,7) is said to be nearly S*-compact if 1 is nearly
S$*-compact.

Obviously, we have the following theorems.
THEOREM 3.2. S§*-compactness implies near S*-compactness.

THEOREM 3.3. If G is nearly S*-compact and H is regularly closed, then G A H is nearly
S*-compact.

TueoreM 3.4. Let (X,7) be an L-space and G € LX. Then G is nearly S*-compact if and
only if for any a € M(L), each regularly open ,-cover of G has a finite subfamily which is a
Qq-cover of G.

THEOREM 3.5. Let (X,T) be a regular L-space and G € LX. Then G is nearly S*-compact if
and only if G is S* -compact.

Proof. The sufficiency is obvious, we need only prove the necessity. Let s = {A;};c; be
an open f3;-cover of G. By regularity of (X,7), we know that for each i € I, there exists a
family {B;; | j € Ji} of open L-sets such that A; = Vje,, Bjj and Bj; <A Let B=1{Bjlie
I,j € Ji}, then R is an open fB;-cover of G. By near S*-compactness of G, we know that
?73 has a finite subfamily € such that €7° = {C~° | C € €} is a Q,-cover of G. Suppose

={Bjj li€ly,j € Ji}, where Iy and Jj are finite subfamilies of I and J;, respectively.

Obv10usly, Viet, Ve, B,] < \Vien Viejo Bij < Vier, Ai, hence {A; | i € I} is a finite Qq-
cover of G. Therefore G is S*-compact. O

THEOREM 3.6. If both G and H are nearly S* -compact, then GV H is nearly S* -compact.

Proof. For any a € M(L), suppose that AU is an open f,-cover of G v H, then by

(GVH) (x)v \/ Alx) = (G'(x) vV A(x)) A (H'(x) vV A(x)), (3.1)

AU AU AU
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we obtain that for any x € X, a € B(G'(x) V Vaeq A(x)), and a € B(H' (x) V V gcq  A(x)).
This shows that AU is an open f,-cover of G and H. By near $*-compactness of G and
H, we know that A has finite subfamilies V'; and 7, such that ¥7° is a Q,-cover of
G and V73° is a Qg-cover of H. Hence for any x € X, a < G'(x) V Ve, A™°(x) and
a<H'(x)V Ve, A °(x). Take W =V UT,, then W is a finite subfamily of U and
it satisfies the condition a < G'(x) V Ve A™°(x) and a < H'(x) V Ve A™°(x), hence
a<(GVH)(x)VVaew A °(x). Therefore G v H is nearly $*-compact. O

TaeorEM 3.7. Let f : (X,T,) — (Y,T,) be almost continuous. If G is S*-compact in
(X, T 1), then f{ (G) is nearly S* -compact in (Y, 7).

Proof. For any a € M(L), suppose that U < I, is an open B,-cover of f;"(G). Then
U =1{A"°|AecWU} is a regularly open f,-cover of f;”(G). For any y € Y, we have
that a € B(f (G)' (¥) V Vaeu A™°(y)). Since f is almost continuous, by the following
equation:

L@y VA== A (G'(x)v V f{(A‘°)(x)>, (3.2)

Aeu xef-1(y) A

we know that f;7(U°) = {ff (A°) | A €U} is an open fy-cover of G. By S*-
compactness of G, AU has a finite subfamily 7" such that f;(7°) is an open Q,-cover
of G. Hence for any y € Y, a < ;7 (G)' (y) V Vaerr A °(y). This shows that V"~° is an
open Qg-cover of f;(G). Therefore f; (G) is nearly $*-compact. O

Similarly, we can obtain the following theorems.

TueoreM 3.8. Let f:(X,71) — (Y,T,) be completely continuous. If G is nearly S*-
compact in (X, T 1), then f; (G) is S*-compact in (Y,T>).

TaeorEM 3.9. Let f:(X,T,) — (Y,T,) be R-irresolute. If G is nearly S*-compact in
(X,T1), then sois f; (G) in (Y, T ).

The following theorem shows that near $*-compactness is a good extension of near
compactness in general topology.

TaeoreM 3.10. If (X,T) is a weakly induced L-space, then (X,7) is nearly S*-compact if
and only if (X,[T]) is nearly compact.

Proof. Let (X,[J]) be nearly compact. For a € M(L), let U be an open f,-cover of 1 in
(X,7).By Lemma 2.3, {A(4) | A € U} is an open cover of (X,[J]). By near compactness
of (X,[J]), we know that there exists a finite subfamily V" of U such that (V) ° =
{(A@) ° lAeV}isacover of (X, [T ]). Forany A € V', by (A() ° S (Ajq]) ° € (A" °)(q)
we know that ¥'~° is a Q,-cover of 1 in (X,J). This shows that (X,J) is nearly S*-
compact.

Conversely, let (X, J) be nearly $*-compact and W' be an open cover of (X, [T]). Then
foreacha € f*(1), {ya | A € W} isan open f,-cover of 1 in (X, ) since (ya)° = ya- = xa
for any A € W. By near S*-compactness of (X,7), we know that there exists a finite
subfamily V" of W such that {(ya)° | A € 1} is a Qu-cover of 1 in (X, 7). Obviously,
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V= is a cover of (X, [T]) since (ya) ° = ya- for any A € V. This shows that (X, [T ]) is
nearly compact. O

As is well known, if (X, w(7)) is generated topologically by the topological space (X, 1),
then (X, w(7)) is an induced L-space; naturally, it also is a weakly induced L-space. Hence
we obtain the following result.

CoroLLARY 3.11. Let (X, ) be a topological space and (X,w(7)) be generated topologically
by (X, 7). Then (X,w(7)) is nearly S*-compact if and only if (X, 1) is nearly compact.

4. Some other characterizations of near S*-compactness
In this section, we will show that near $*-compactness can be characterized by nets.

Definition 4.1. Let (X,J) be an L-space, a regularly open L-set U is called a strong regu-
larly open neighborhood of a fuzzy point xy, if A € S(U(x)).

Definition 4.2. Let {S(n) | n € D} be anetin (X,7), xx € M(LX), x) is called a weak Og-
cluster point of S, if for each strong regularly open neighborhood U of x), S is frequently
in U; x), is called a weak Og-limit point of S, if for each strong regularly open neighbor-
hood U of x3, S is eventually in U, in this case, we also say that S weakly Og-converges to

x), denoted by S WOr X).

From [10], we know that S weakly O-converges to x) implies that S weakly Og-
converges to x), and x; is a weak O-cluster point of S implies that x) is a weak Og-cluster
point of S.

THEOREM 4.3. An L-set G is nearly S*-compact in (X, %) if and only if for all a € M(L),
each constant a-net quasicoinciding with G has a weak Og-cluster point x, & f(G").

Proof. Suppose that G is nearly S*-compact. For a € M(L), let {S(n) | n € D} be a con-
stant a-net quasicoinciding with G. Suppose that S has no weak Og-cluster point x, &
B(G’), then for each x, ¢ B(G"), there exists a strong regularly open neighborhood U, of
x, and ny € D such that for all n > ny, S(n) & U,. Take ® = {Uy | x, & B (G')}, then @
is a regularly open f3,-cover of G. Since G is nearly $*-compact, ® has a finite subfamily
V= {Us |i=1,2,...,k} such that ¥ is an open Q,-cover of G. Since D is a directed set,
there exists ny € D such that ny > n,: for each i < k. Thus we obtain that for all n > ny,
S(n) ;{ V{Us | i=1,2,...,k}. This contradicts ¥ being an open Q,-cover of G. Therefore
S has a weak Og-cluster point x, ¢ 5(G’).

Conversely, suppose that for each a € M (L), each constant a-net quasicoinciding with
G has a weak Og-cluster point x, ¢ f(G’). We now prove that G is nearly S*-compact. Let
® be a regularly open f3,-cover of G. If each finite subfamily ¥ of ® is not an open Q,-
cover of G, then for each finite subfamily ¥ of ®@, there exists S(¥) € M (LX) with height a
such that S(¥) £ G’ and S(¥) £ \/ V. Take S = {S(¥) | ¥ is a finite subfamily of @}, then
S is a constant a-net quasicoinciding with G. Suppose that S has a weak Og-cluster point
Xz & B(G"). Then for each finite subfamily ¥ of ®, we have that x, ¢ f(\/ V) (because if
xq € B(VW), so there exists an A € ¥ such that x, € $(A), that is, A is a strong regularly
open neighborhood of x,. Hence there exists a finite subfamily ¥, of ® such that for
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all ¥ < V¥, it follows that S(¥y) <A < V¥ <V ¥. This contradicts the definition of S),
in particular x, ¢ (B) for each B € ®. But since ® is a regularly open f3,-cover of G,
we know that there exists B € @ such that x, € (B). This yields a contradiction with
Xz € B(B). So G is nearly $*-compact. O

THEOREM 4.4. An L-set G is nearly S*-compact in (X,7T) if and only 1ffor all a € M(L),
each a™-net quasicoinciding with G has a weak Og- cluster point x, & (G

The proof is omitted.
Definition 4.5. Let A € LX. The a-closure of A is defined to be

cle(A) = /\{B | A < Band B is a-closed}. (4.1)

The a-interior of A is defined to be cly(A”)’, written as int,(A).

LemMA 4.6. If A is a semiopen L-set, then clo(A) = A™. If A is a semiclosed L-set, then
int,(A)=A

Proof. Obviously, cl,(A) < A™. In order to prove that A~ < cl4(A), suppose that x, %
cle(A). There exists an a-closed set B such that A < B and x, ;( B. Hence A= < A°~ <
B°~ < B7°~ < B since A is semiopen and B is a-closed. And so x, ;{ A~, which implies
that A~ < cly(A). Therefore cl,(A) = A™. Similarly, we can prove the other result. O

THEOREM 4.7. An L-set G is nearly S*-compact in (X,7) if and only if for all a € M(L),
each a-open B,-cover WU of G has a finite subfamily °V such that int,(cly (V")) is a Qz-cover
of G.

Proof. (=) Suppose that G is nearly S*-compact. For any a € M(L), let U be an a-open
Ba-cover of G. Let W = {A°~° | A € U}, then W is an open S,-cover of G. By near S*-
compactness of G, there exists a finite subfamily V" of U such that {A° > |A €V} isa
Qqu-cover of G. Since A°~°° = A™° = int,(cly(A)), int,(cly (V")) = {int,(clu(A)) | A €V}
is also a Q,-cover of G.

(<) For any a € M(L), let U be an open B,-cover of G. Then U is also an a-open f,-
cover of G. By the hypothesis, there exists a finite subfamily V" of U such that int,(cly (7))
is a Qu-cover of G. Since int,(cly(A)) = A~° for any A € V', G is nearly $*-compact. [

5. The relationships between different notions of near compactness

In this section, we will investigate some relationships between different notions of near
compactness. Firstly, we recall some other notions of near compactness.

Definition 5. 1 [16]. Let (X, ) be an L-space. G € L is called nearly compact if for every
family U < 7, it follows that

A (G’(x)v \/ A(x)) <V A (G’(x)v \/ A-°(x)>. (5.1)

xeX Aea Y e xeX AV
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LemMa 5.2 [16]. Let (X,T) be an L-space and G € LX. Then G is nearly compact if and
only if for any a € M(L) and any b € 5*(a), each open Q,-cover of G has a finite subfamily
V' such thatV'~° is a Qp-cover of G.

Definition 5.3 [29]. Let (X,J) be an L-space and G € LX. Then G is called nearly N-
compact if for any a € M (L), each a-RF ® of G has a finite subfamily ¥ such that ¥°~ =
{P°~ | PeV¥}isan a -RF of G. (X,7) is said to be nearly N-compact if 1 is nearly N-
compact.

Definition 5.4 [12]. Let (X,7) be an L-space and G € LX. Then G is called nearly
strongly compact if for each a € P(L), each open a-shading U of G has a finite subfamily
V" such that ¥"~° is an a-shading of G. (X, ) is said to be nearly strongly compact if 1 is
nearly strongly compact.

THEOREM 5.5. Near S*-compactness implies near compactness.

Proof. Let G be nearly S*-compact. For each a € M(L), suppose that ® is an open Q,-
cover of G. Then a < G'(x) V Vo A(x) for any x € X. Thus for all b € *(a), @ is an
open f-cover of G. By near $*-compactness of G we know that @ has a finite subfamily
W such that ¥~° is Qp-cover of G. Therefore G is nearly compact by Lemma 5.2. g

But near compactness need not imply near S*-compactness in general. This can be
seen in the following example.

Example 5.6. Let L =[0,1], X = {2,3,4,...}, and let J be an L-topology generated by
O ={A,, B, | ne€ X}, where

1 1 1 1
—+—, x=n, ——=, x=n,
Ap(x)=12 n By(x)=12 =n (5.2)
0, x#n, 0, x#n
By
1 1 1 1
, ST T, X=n, , -t =n,
Ax)=1-A,(x)=12 n B (x)=1-By(x)=12 n (5.3)
1, x # n, 1, X #n,
we obtain
l+l xX=n
— 2 ’ o . 1 1
A, (x) = " B, (x) =~~~ (5.4)
1 1 2 X
P x#”)
2 x

Obviously, for any a € (0.5,1], none of all subfamilies of ® is an open Q,-cover of 1.
Thus we only need to consider a € (0,0.5]. Suppose that U is an open Q,-cover of 1. For
each b € (0,a), we can take A,, KU €W or B, < U €WU. Then b < A,°(x) < U °(x) or
b<B,°(x) U °(x) whenx>1=1/(0.5-b)andx € X. Let = {x | x € X and x < [},
then I is finite. For each x € I, there exists U, € U such that b < U,(x). Let ¢ = {U,, x €
I} U{U}. Then € is a finite subfamily of U and €~° is a Q,-cover of 1. Therefore (X,J)
is nearly compact.
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At the same time, obviously U = {A,} ,ex is an open By 5-cover of 1, but U has no finite
subfamily V" such that " ~° is a Qg 5-cover of 1. Hence (X, ) is not nearly $*-compact.

The following lemma is obvious.

LemMa 5.7. Let (X, ) be an L-space and G € L*, Q = J'. Then
(1) Qis a-RF of G if and only if a £ G(x) A NacqA(x) for any x € X;
(2) Qisa -RF of Gif and only if a £ \/ xex (G(x) A Nacq A(x)).

THEOREM 5.8. Near N-compactness implies near strong compactness.

Proof. Suppose that G is near N-compact. For any r € P(L), let U be an open a-shading
of G. Then AW’ is an r'-RF of G. By near N-compactness of G, we know that there exists a
finite subfamily 9" of AU such that ' £ \/,ex(G(x) A Agey A°7 (x)). Since

r & \/ (G(x) AN A’°(x)> = A\ (G’(x) v/ A’°’(x)> r

xeX AV xeX AT

= /A (G’(x)\/ \Y; A°(x)> &1

xeX AV

(5.5)

forany x € X, G'(x) v \/ g4er A™°(x) £ r, that is, ¥ ~° is an a-shading of G. Therefore G is
nearly strongly compact. O

But near strong compactness need not imply near N-compactness. This can be seen
from the following example.

Example 5.9. Let X = (0,1), J an L-topology generated by A, B, and all constant L-sets,
where A(x) = x, B(x) = 1 — x. It is obvious that A=° = A, B~° = B.
For a € [0,1), suppose that AU is an open a-shading of 1.

(1) If a > 0.5, take x = 0.5, then A(x) = B(x) = 0.5. In this case, there exists U € U
such that U(x) > a > 0.5. This implies that there exists a constant fuzzy set s < U
such that s > a. Therefore {U~°} is an a-shading of 1.

(2) If a < 0.5, then from the structure of I, we know that there exists a subfamily %
of {r,rAnA,rAB,r A AAB|r€[0,1]} such that % is a refinement of U and
9B is a-shading of 1. Obviously, % has a finite subfamily 9 which is an a-shading
of 1, hence U has a finite subfamily which is an a-shading of 1.

This shows that (X, J) is nearly strongly compact.

Take U = {A}. Then W is a 1-RF of 1. But there is no t < 1 such that t £ A(x) = A° (x)
for all x € X. So (X, ) is not nearly N-compact.

THEOREM 5.10. When L = [0,1], near strong compactness implies near S* -compactness.

Proof. Suppose that G is nearly strongly compact and U is an open f3;-cover of G. Then
U is an a-shading of G since

a eﬁ(G’(x) v\ A(x)) =a<G)Vv \ Ax) =GV Ax)La (5.6)

AeU AeU AeU
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By near strong compactness of G, we know that there exists a finite subfamily V" of U
such that V> = {A™° | A € '} is an a-shading of G. Obviously V" ~° is a Q,-cover of G.
Therefore G is nearly S$*-compact. O

Remark 5.11. When L# [0, 1], does near strong compactness imply near S*-compactness?
We leave it as an open question.

In general, near $*-compactness need not imply near strong compactness. This can be
seen from the following example.

Example 5.12. Let L =[0,1], X = {2,3,4,...} and I be an L-topology generated by {A,,
B,, C, | n € X}, where

1 1
1 1 4 1
~ T T = 2+}’Z’ r=n ~ X =n,
An(x)_ 2 n Bn(x): Cn(x): 2
0, X #n, 1, x4n, 0, x#n
2
(5.7)
It is obvious that when m # n, we have that
A NAL=C, ANC,,=A, NC,, =0, Bn/\Bm=%, A, ANB,=A,,
- (5.8)
C,AB,=C A/\l—A B/\l—l C/\l—C
n m — n» n ;_ n» n ;_l) n l_ ne
Thus {A,, By, Cy | n=2,3,4,...} U {1/2} is a base of (X, ). By
11 11 1
E+E’ X =n, E_;’ X =n, 5) X =n,
AL (x) = B, (x)= ) C,(x)=
1, x # n, > x # n, 1, x+#n,
(5.9)
we have that
1
11 N1 2’ x=n
ArW=3-1 BB, (3) -3 &w—, |
-, X#n
2
(5.10)

Obviously, for any a € (0.5,1], none of all subfamily of @ is an open f,-cover of 1. Thus
we only need to consider a € (0,0.5]. Suppose that AU is an open S,-cover of 1. If we
can take By < U € WU or 1/2 < U € AU, then {U~°} is an open Q,-cover of 1. Otherwise
a<0.5. We can take A,, U €U or C, < U €WU. Then a < A,°(x) <U°(x) ora<
C,°(x) U °(x)whenx>1=1/(0.5-a)and x € X. Let I = {x | x € X and x < I}, then
I is finite. For each x € I, there exists U, € AU such that a < U,(x). Let € = {Uy, x €
I} U{U}, then € is a finite subfamily of U and €~° is a Q,-cover of 1. Hence (X,7) is
nearly $*-compact.
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Take U = {B,}nex, a 0.5-shading of 1. For any finite subfamily V" of AU, there exists

x € X such that \/ ey A7°(x) = 0.5. So (X, ) is not nearly strongly compact.

Co

ROLLARY 5.13. When L = [0, 1], near N-compactness implies near S*-compactness.
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