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1. Introduction

Nearrings are one of the generalized structures of rings. Substantial work on nearrings
related to group theory and ring theory was studied by Zassenhaus and Wielandt in 1930.
World War II interrupted the study of nearrings, but in 1950s, the research of nearring
redeveloped by Wielandt, Frohlich, and Blackett. Since then, work in this area has grown
and was diversified to include applications to projective geometry, groups with nearring
operators, automata theory, formal language theory, nonlinear interpolation theory, op-
timization theory [1, 2].

The theory of fuzzy sets was first inspired by Zadeh [3]. Fuzzy set theory has been de-
veloped in many directions by many scholars and has evoked great interest among math-
ematicians working in different fields of mathematics. There have been wide-ranging ap-
plications of the theory of fuzzy sets, from the design of robots and computer simulation
to engineering and water resources planning. Rosenfeld [4] introduced the fuzzy sets in
the realm of group theory. Since then, many mathematicians have been involved in ex-
tending the concepts and results of abstract algebra to the broader framework of the fuzzy
setting (e.g., [4-9]). Triangular norms were introduced by Schweizer and Sklar [10, 11] to
model the distances in probabilistic metric spaces. In fuzzy sets theory, triangular norm
(t-norm) is extensively used to model the logical connective: conjunction (AND). There
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are many applications of triangular norms in several fields of mathematics and artificial
intelligence [12].

Abou-Zaid [13] introduced the notion of a fuzzy subnearring and studied fuzzy left
(right) ideals of a nearring, and gave some properties of fuzzy prime ideals of a nearring.
In this paper, we introduce the notion of fuzzy ideals in nearrings with respect to a -
norm T and investigate some of their properties. Using T-fuzzy ideals, characterizations
of Artinian and Noetherian nearrings are established. Some properties of T-fuzzy ideals
of the quotient nearrings are also considered.

2. Preliminaries
In this section, we review some elementary aspects that are necessary for this paper.

Definition 2.1. An algebra (R,+, -) is said to be a nearring if it satisfies the following con-
ditions:

(1) (R,+) is a (not necessarily abelian) group,

(2) (R, ) is a semigroup,

(3) forallx,y,ze R, x- (y+2z)=x-y+x-z

Definition 2.2. A subset I of a nearring R is said to subnearring if (I, +, - ) is also a nearring.

ProrosITION 2.3. A subset I of a nearring R is a subnearring of Rifand only if x — y, xy € I
forallx,y €.

Definition 2.4. A mapping f : Ry — R; is called a (nearring) homomorphism if f(x+y) =
f(x)+ f(y)and f(xy) = f(x)f(y) forallx,y € R,.

Definition 2.5. An ideal I of nearring (R,+, -) is a subset of R such that
(a) (I,+) is a normal subgroup of (R,+),
(b)RICI,
(c) (r+i)s—rselforallieIandr,s€R.

Note that I is a left ideal of R if I satisfies (a) and (b), and I is a right ideal of R if I
satisfies (a) and (c). If I is both left and right ideal, I is called an ideal of R.

Definition 2.6. A quotient nearring (also called a residue-class nearring) is a nearring
that is the quotient of a nearring and one of its ideals I, denoted R/I. If I is an ideal of a
nearring R and a € R, then a coset of I is a set of the forma+1 = {a+s|s € I}. The set
of all cosets is denoted by R/I.

TaEOREM 2.7. IfI is an ideal of a nearring R, the set R/I is a nearring under the operations
(a+D)+b+I)=(a+b)+Iand (a+I)- (b+I)=(a-b)+1L

Definition 2.8 [14]. A nearring R is said to be left (right) Artinian if it satisfies the de-
scending chain condition on left (right) ideals of R. R is said to be Artinian if R is both
left and right Artinian.

Definition 2.9 [14]. A nearring R is said to be left (right) Noetherian if it satisfies the
ascending chain condition on left (right) ideals of R. R is said to be Noetherian if R is both
left and right Noetherian.



Muhammad Akram 3

LEmMA 2.10. If a nearring R is Artinian, then R is Noetherian.

Definition 2.11 [3]. A mapping y: X — [0, 1], where X is an arbitrary nonempty set and
is called a fuzzy set in X.

Definition 2.12 [13]. A fuzzy subset g in a nearring R is said to be a fuzzy subnearring of
R if it satisfies the following conditions:

(F1) forall x,y € R, u(x — y) = min{u(x),u(y)},

(F2) forall x,y € R, u(xy) = min{pu(x),u(y)}.

Definition 2.13 [13]. A fuzzy subnearring y of R is said to be fuzzy ideal if it satisfies the
following conditions:

(F3) forallx,y € R, u(y +x — y) = p(x),

(F4) forall x,y € R, u(xy) = u(y),

(F5) forall x,y,z € R, u((x+2)y — xy) = p(z).

LEmMA 2.14. If y is a fuzzy ideal of R, then p(0) x) forallx € R.

Definition 2.15 [10]. A t-norm is a function T : [0,1] X [0,1] — [0, 1] that satisfies the
following conditions for all (x, y,z € [0,1]):

(T1) T(x,1) =x,

(T2) T(x,y) = T(y,x),

(T3) T(x,T(y,2)) = T(T(x,y),2),

(T4) T(x,y) < T(x,z) whenever y < z.

A simple example of such defined t-norm is a function T'(x, y) = min(x, y). In general
case, T'(x, y) < min(x, y) and T(x,0) = 0 for all x, y € [0, 1].

3. T-fuzzy ideals in nearrings

Definition 3.1. A fuzzy set y in R is called fuzzy subnearring with respect to a t-norm
(shortly, T-fuzzy subnearring) of R if

(TF1) forallx,y € R, u(x — ) = T(u(x),u(y)),

(TF2) forallx,y € R, u(xy) = T (u(x),u(y)).

Definition 3.2. A T-fuzzy subnearring y in R is called T-fuzzy ideal of R if:
(TF3) forallx,y € R, u(y +x — y) = u(x),

(TF4) forallx,y € R, u(xy) = u(y),

(TF5) forall x, y,z € R, u((x +2)y — xy) = u(z).

Note that p is a T-fuzzy left ideal of R if it satisfies (TF1), (TF2), (TF3), and (TF4),
and y is a T-fuzzy right ideal of R if it satisfies (TF1), (TF2), (TF3), and (TF5). y is called
T-fuzzy ideal of R if y is both left and right T-fuzzy ideal of R.
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Example 3.3. Consider a nearring R = {a,b,c,d} with the following Cayley’s tables:

+|abcd -|abc

ala b ¢ d ala a a a
blb a d ¢ bla a a a
c|lc d b a cla a a a
d{d ¢ a b dla a b b

We define a fuzzy subset y: R — [0,1] by u(a) > u(b) > u(d) = u(c). Let Ty, : [0,1] X
[0,1] — [0,1] be a function defined by T',(x,y) = max(x + y — 1,0) which is a t-norm
for all x,y € [0,1]. By routine calculations, it is easy to check that y is a T),-fuzzy ideal
of R.

The following propositions are obvious.

PROPOSITION 3.4. A fuzzy set yin a nearring R is a T-fuzzy ideal of R if and only if the level
set

U(psa) = {x € R | u(x) = a} (3.1)
is an ideal of R when it is nonempty.

ProrosritioN 3.5. Every T-fuzzy ideal of a nearring R is a T-fuzzy subnearring of R.

Converse of Proposition 3.5 may not be true in general as seen in the following exam-
ple.

Example 3.6. Let R:= {a,b,c,d} be a set with binary operations as follows:

+|abcd -|abcd
ala b ¢ d ala a a a
b|b a d ¢ bla a a a
clc d b a cla a a a
d|{d ¢ a b dla b ¢ d

Then (R, +, ) is a nearring. We define a fuzzy subset 4 : R — [0, 1] by p(a) > u(b) > u(d) =
u(c). Let Ty, : [0,1] X [0,1] — [0,1] be a function defined by T,,(x, y) = max(x+y — 1,0)
which is a t-norm for all x, y € [0,1]. By routine computations, it is easy to see that y is
a T,-fuzzy subnearring of R. It is clear that y is also left T,,-fuzzy ideal of R, but y is not
T,n-fuzzy right ideal of R since u((c +d)d — cd) = u(d) < u(b).

Definition 3.7. Let R, and R, be two nearrings and f a function of R; into R,. If vis a
fuzzy set in R,, then the image of y under f is the fuzzy set in R; defined by

sup u(x), if fl(y) + O,
f(u)(x) =</ (3.2)

0, otherwise,

for each y € Ry.
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TaEOREM 3.8. Let f : Ry — R, be an onto homomorphism of nearrings. If u is a T-fuzzy
ideal in Ry, then f(u) is a T-fuzzy ideal in R,.

Proof. Let y1,, € Ry. Then
xlxe f -y 2{a-xlxae (), xef(nh (3.3)
and hence
F@ (i =y2) =sup{ux) | £~ (31 = y2)}
= sup {T(u(x1),p(x2)) [ x1 € 71 (1), %2 € f71(32) }
2 sup {p(xi —x2) [x1 € 71 (), 2 € 7 (32}

= T(sup{u(x1) |xi € f7 (y1)}, sup{p(x) | x2 € f71(32)})

=T(f(@ () fW(x2),
(3.4)
and since
xlxe fT )l 2xlxae f (n), e f ()l
f@) (ry2) =sup {u) | f~ (r132)}
> sup {T (u(x1),4(x2)) 1 x1 € (), x2 € ()}
= sup {p(xix) |21 € f7H (), € f7H(32)}
=T (sup {u(x1) | x1 € 7 (y1)}, sup{u(n) [x2 € f7H(y2)})
=T(f(Wn), f(W(y2))
(3.5)

This shows that f(y) is a T-fuzzy subnearring in R,.
Let y1,¥2, 3 € Ry. Then

F@ i +y2=y1) =sup{u@) | f (y1+y2—y1)}
= sup {p(xi+x,—x1) |x1 € f (), x2€ [ (1)}
=sup {u(x) [x € 7 ()} = fFw (),
F@)(y1y2) =sup{ux) [ £~ (y1y2)}
> sup {pu(xix) [x1 € f7H (), 2 € f(52)}

= sup{u(x2) |2 € 1 (n)} = FW(y2),
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F@ (1 +y2)ys = yiys) = sup{ux) | f (71 +22)ys = y1y3) }
> sup {p((x1+x2)x3 —x1x3) | x1 € £~ (1)
x € f 1 (»),xe f(y)}

= sup {p(x3) x5 € f71(33)} = f()(y3).
(3.6)
Hence f(u) is a T-fuzzy ideal of nearring in R,. O
The following proposition is trivial.

ProrosITION 3.9. If y and A are T-fuzzy ideals of a nearring R, then the function y A A :
R — [0,1] defined by

(u AN () = T (u(x),A(x)) (3.7)

forall x € R is a T-fuzzy ideal of R.
Definition 3.10. A fuzzy ideal y of a nearring R is said to be normal if u(0) = 1.

TaEOREM 3.11. Let y be a T-fuzzy ideal of a nearring R and let u* be a fuzzy set in R
defined by yu* (x) = u(x) + 1 — u(0) for all x € R. Then y* is a normal T-fuzzy ideal of R
containing |.

Proof. Foranyx,y €R,
pr(x—y)=plx—y)+1—p0) = T(ulx),pu(y)) +1—u0)

=T (u(x) +1 = p(0),u(y) +1-p(0)) = T (" (x),4™ (),

u*(xy) = plxy) +1-p(0) = T (u(x),u(y)) +1 - u(0) o
= T (p(x) +1 = p(0),u(y) +1-p(0)) = T (" (x),4™ (y)).
This shows that y* is a T-fuzzy subnearring of R. For any x, y,z € R,
Wy +x—y) =pu(y+x—y)+1—p0) = pu(x) +1 - pu0) = u* (x),
ur(xy) = pulxy)+1-p0) 2 pu(y) +1—u(0) = u* (), (3.9)

W ((xt+y)z—xz) = p((x+ )z —x2) + 1 = p(0) = p(z) + 1 — (0) = p*(2).

Hence y* is a T-fuzzy ideal of nearring of R. Clearly, y*(0) = 1 and y C p*. This ends the
proof. O

THEOREM 3.12. If pis a T-fuzzy ideal of a nearring R, then for all x € R,

p(x) =sup {t € [0,1] | x € U(us;1)}. (3.10)
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Proof. Lets:=sup{te€[0,1] | x € U(u;t)},andlete >0.Thens— € < tforsomet € [0,1]
such that x € U(y;t), and so s — € < u(x). Since € is an arbitrary, it follows that s < u(x

Now let u(x) = v, then x € U(y;v) and sov € {t € [0,1] | x € U(y;t)}. Thus p(x) = v
sup{t € [0,1] | x € U(p;t)} = s. Hence p(x) = s. This completes the proof. O

).

We now consider the converse of Theorem 3.12.

THEOREM 3.13. Let {R,, | w € A}, where A < [0,1], be a collection of ideals of a nearring R
such that

(i) R= UWE/\RW’

(ii) a > B if and only if Ry C Rg for all a, f € A.
Then a fuzzy set y in R defined by

p(x) =sup{we A |x€R,} (3.11)

is a T-fuzzy ideal of R.

Proof. In view of Proposition 3.4, it is sufficient to show that every nonempty level set
U(y;«) is an ideal of R. Assume U(y; ) # o for some o € [0;1]. Then the following cases
arise:

(1)

a=sup{fen|B<a}l=sup{feAl|RyCRg}, (3.12a)
(2)
a#sup{fen|B<al =sup{feA|RsCRg}. (3.12b)
Case (1) implies that

xeU(pa) =x€R, Vw<as=x€c ﬂRW. (3.13)

w<la

Hence U(y; ) = (<o Rw> which is an ideal of R.

For case (2), there exists € > 0 such that (o« — €,a)NA = . We claim that in this case
U(usa) = Up=q« Rp- Indeed, if x € Up- o Rp, then x € Rg for some B > a, which gives u(x) >
B = a. Thus x € U(y; «), that is, U/;Za Rg < U(u; ). Conversely, x & U!;Zu Rg, then x & Ry
for all B > «, which implies that x & Rg for all § > a — €, that is, if x € Rg, then f < a — €.
Thus p(x) < a—€. So x & U(usa). Thus U(psa) < Up-qoRp. Hence U(wsa) = Up=a Rp,
which is an ideal of R. This completes the proof. O

4. Characterizations of Artinian and Noetherian nearrings

LemMA 4.1. Let y be a T-fuzzy ideal of a nearring R and let s,t € Im(u). Then U(y;s) =
U(wst) & s=t.

Proof. Routine. O

THEOREM 4.2. Every T-fuzzy ideal of a nearring R has a finite number of values if and only
if a nearring R is Artinian.
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Proof. Suppose that every T-fuzzy ideal of a nearring R has a finite number of values and
R is not Artinian. Then there exists strictly descending chain

R=Uy>oU;DU;D -~ (4.1)
of ideals of R. Define a fuzzy set y in R by p being a fuzzy set in R defined by

n .
m 1fx€Un\Un+1,n=0,1,2,...,
u(x) = o (4.2)
1 ifx € () Un.

n=0

Let x,y € R, then x — y, xy € U, \ Upy; for some n =0,1,2,..., and either x & U, or
y & Upi. So for definiteness, let y € U, \ Uy for k < n. It follows that

n k
ux—y) =7 2 17 = Tubuy),
(4.3)
k
uley) = = o = T(Eu0)).

In (TF3)—(TF5) the process of verification is analogous. Thus y is T-fuzzy ideal of R and
y has infinite number of different values. This contradiction proves that R is Artinian
nearring.

Conversely, let a nearring R be an Artinian and let y be a T-fuzzy ideal of R. Suppose
that Im(y) is an infinite. Note that every subset of [0, 1] contains either a strictly increas-
ing or strictly decreasing sequence.

Let t; <t, <t3 < --- beastrictly increasing sequence in Im(y). Then

U(usty) D U(wsty) DU (wst3) D - - - (4.4)

is strictly descending chain of ideals of R. Since R is Artinian, there exists a natural number
i such that U(y;t;) = U(ustisn) for all n = 1. Since t; € Im(y) for all 4, it allow that from
Lemma 4.1 that t; = t;;, for all n > 1. This is a contradiction since t; are different.

On the other hand, if t; >, > t3 > - - - is a strictly decreasing sequence in Im(y), then

Upst1) CU (1) CU(st3) C - - (4.5)

is an ascending chain of ideals of R. Since R is Noetherian by Lemma 2.10, there exists
a natural number j such that U(u;t;) = U(u;tj4,) for all n > 1. Since ¢; € Im(u) for all
j> by Lemma 4.1 t; = t;4, for all n > 1, which is again contradiction since ¢; are distinct.
Hence Im(u) is finite. |
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TueOREM 4.3. Let a nearring R be Artinian and let u be a T-fuzzy ideal of R. Then |U,| =
[ Im(u)|, where U, denote a family of all level ideals of R with respect to p.

Proof. Since R is Artinian, it follows from Theorem 4.2 that Im(y) is finite. Let Im(y) =
{t1,t25...,t,} where t; <t; < --- < t,. It is sufficient to show that U, consists of level
ideals of R with respect to y for all t; € Im(u), that is, U, = {U(u;t;) | 1 <i < n}. Clearly,
U(usti) € Uy for all t; € Im(u). Let 0 < ¢ < u(0) and let U(y;t) be a level ideal of R with
respect to p. Assume that t & Im(u). If t < t;, then clearly U(u;t) = U(y;11), and so let
ti < t <ty for some i. Then U(ustis1) < U(pst). Let x € U(pst). Then p(x) >t since
t & Im(u), and so u(x) = U(ustir1). Thus U(ust) = U(pstisr), which shows that U, con-
sists of level ideals of R with respect to u for all t; € Im(u). Hence |U,| = [Im(u)|. [l

THEOREM 4.4. Let a nearring R be Artinian and let y and v be a T-fuzzy ideals of R. Then
Uyl = |U,| and Im(u)=Im(v) if and only if y=v.

Proof. If u = v, then clearly U, = U, and Im(u) = Im(v). Now suppose that U, = U, and
Im(u) = Im(v). By Theorems 4.2 and 4.3, Im(u) = Im() are finite and |U,| = |Im(u)|
and |U,| = |Im(v)|. Let

Im(u) = {t1,t2,..» ta}, Im(v) = {51,52,...,5n}» (4.6)

where t) <t < ---<tyand s; <s; < - - - <s,. Clearly, t; = s; for all i. We now prove that
U(pst;) = U(vst;) for all i. Note that U(u;t1) = R = U(»;t1). Consider U(us;t2), U(v;t2),
suppose that U(y;ty) # U(v;tz). Then U(ustz) = U(w;tx) for some k > 2 and U(v; ) =
Ul(ustj) for some j > 2. If there exist x € R such that u(x) = t,, then

plx)<t; Vj>2. (4.7)

Since U(p;tz) = U 1), x € U(v;tx). Then v(x) = t; > t, k > 2. Thus x € U(»; ). Since
U(v;ta) = Ulust), x € U(ystj). Thus

p(x) = t; forsome j>2. (4.8)

Clearly, (4.7) and (4.8) contradict each other. Hence U(y;t,) = U(v;t,). Continuing in
this way, we get U(u;t;) = U(v;1;) for all i.

Now let x € R. Suppose that ju(x) = t; for some i. Then x & U(y;t;) foralli+1 < j <n.
This implies that x ¢ U(»;t;) forall i+ 1 < j < n. But then v(x) < ¢t; foralli+1 < j<n.
Suppose that v(x) = t,, for some i < m < i. If i # m, then x € U(»;¢;). On the other hand,
since p(x) = t;, x € U(u;t;) = U(w;t;). Thus we have a contradiction. Hence i = m and
u(x) = t; = v(x). Consequently, u = . O

THEOREM 4.5. A nearring R is Noetherian if and only if the set of values of any T-fuzzy ideal
of R is a well-ordered subset of [0,1].
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Proof. Suppose that y is a T-fuzzy ideal of R whose set of values is not a well-ordered
subset of [0, 1]. Then there exists a strictly decreasing sequence {1, } such that y(x,) = A,.
Denote by U, the set {x € R | u(x) = A,,}. Then

UycU,cU;s--- (49)

is a strictly ascending chain of ideals of R, which contradicts that R is Noetherian.

Conversely, assume that the set of values of any T-fuzzy ideal of R is a well-ordered
subset of [0,1] and R is not Noetherian nearring. Then there exists a strictly ascending
chain

UycU,cU;s--- (*)

of ideals of R. Define a fuzzy set 4 in R by

for x € U\ U1,

(4.10)

1
k
u(x) :=
0

for x & U Uk.

k=1

It can be easily seen that y is a T-fuzzy ideal of R. Since the chain () is not terminating,
 has a strictly descending sequence of values, contradicting that the value set of any T'-
fuzzy ideal is well ordered. Consequently, R is Noetherian. g

ProposITION 4.6. Let R = {A, € (0,1) | n € N} U {0}, where A; > A; whenever i < j. Let
{U, | n € N} be a family of ideals of nearring R such that Uy C Uy C Us C - --. Then a
fuzzy set y in R defined by

Al 1fx e U,
u(x) = A ifx e Uy \Uyoy, n=2,3,..., (4.11)
0 ifxeR\|JU,
n=1
is a T-fuzzy ideal of R.
Proof. Straightforward. O

THEOREM 4.7. Let R = {A1,As,...,Ap,... } U {0} where {A,} is a fixed sequence, strictly de-
creasing to 0 and 0 < A, < 1. Then a nearring R is Noetherian if and only if for each T-fuzzy
ideal y of R, Im(y) C R = 3ny € N such that Im(p) C {A1,A2,...,4,4,} U {0}.

Proof. If R is Noetherian, then Im(y) is a well-ordered subset of [0,1] by Theorem 4.5
and so the condition is necessary by noticing that a set is well ordered if and only if it
does not contain any infinite descending sequence.
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Conversely, let R be not Noetherian. Then there exists a strictly ascending chain of
ideals of R:

UycU,cUs---. (4.12)
Define a fuzzy set p in R by
/\1 ifx e Uy,
Ay ifxeU,\U,_1, n=2,3,...,
p(x) = \Uny (4.13)

0 ifxeR\|JU.

n=1

Then, by Proposition 4.6, y is a T-fuzzy ideal of R. This contradicts our assumption.
Hence R is Noetherian. O

THEOREM 4.8. If R is a Noetherian nearring, then every T-fuzzy ideal of R is finite valued.
Proof. Lety:R — [0,1] bea T-fuzzy ideal of R which is not finite valued. Then there exists

an infinite sequence of distinct numbers y(0) = t; >, > - -- >t, > - - -, where t; = u(x;)
for some x; € R. This sequence induces an infinite sequence of distinct ideals of R:

U(ust1) CU(pstz) C--- CU(pstn) C - -y (4.14)
which is a contradiction. This completes the proof. O

5. The quotient nearrings via fuzzy ideals

TueoreM 5.1. Let I be an ideal of a nearring R. If p is a T-fuzzy ideal of R, then the fuzzy
set i of R/I defined by

pla+I) =supu(a+x) (5.1)

x€l

is a T-fuzzy ideal of the quotient nearring R/I of R with respect to 1.

Proof. Leta,b € Rbesuchthata+I =0b+1. Then b =a+ y for some y € I. Thus

pb+1I) =supu(b+x) =supu(a+y+x)= sup (a+z)=pu(a+I). (5.2)

x€el x€l x+y=z€Il
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This shows that j is well-defined. Let x + I, y +I € R/I, then

E((x+1) = (y+1)) =a((x—y)+1I) = supu((x — y) +z)

zel

= sup p((x—y)+(u—-v))

z=u—vel

> sup T{u(x+u),u(y+v)}

u,vel

= T{sup‘u(x+u),sup‘u(y+v)}
vel

uel

= T{u(x+D),u(y+1)}, 53
5.3
E((x+D)(y+1)) =pa(xy+1I) =supu(xy+z)

zel

= sup p(xy+uv)

z=uvel

> sup T{u(x+u),u(y+v)}

u,vel

= T{ supp(x+u),supu(y + V)}

uel vel
=T{a(x+1),u(y+D)}.

In (TF3)—(TF5) the process of verification is analogous. Thus z is a T-fuzzy ideal of R/I.
a

TaEOREM 5.2. Let I be an ideal of a nearring R. Then there is a one-to-one correspondence
between the set of T-fuzzy ideals y of R such that u(0) = u(s) for all s € I and the set of all
T-fuzzy ideals i of R/I.

Proof. Let y be a T-fuzzy ideal of R. Using Theorem 5.1, we prove that zi defined by

pla+1I)=supu(a+x) (5.4)

xel
is a T-fuzzy ideal of R/I. Since pu(0) = u(s) forall s € I,
pla+s) = T(u(a),u(s)) = u(a). (5.5)
Again,
ua) = pla+s—s) = T(ula+s),u(s)) = pla+s). (5.6)
Thus y(a+s) = u(a) forall s € I, thatis, g(a +I) = u(a). Hence the correspondence y — fi

is one-to-one. Let g be a T-fuzzy ideal of R/I and define fuzzy set ¢ in Rby u(a) = p(a+1)
forallael.
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For x, y € R, we have
plx—y)=p((x=y)+I) =p((x+1) = (y +1))

> T{u(x+1),a(y+D} = T{u(x),u(y)},
(5.7)
u(xy) =pa((xy)+I) =a((x+1I) - (y+1))

> T{a(x+1),a(y+D} = T{ux),u(y)}.

In (TF3)—(TF5) the process of verification is analogous. Thus u is a T-fuzzy ideal of R.
Note that p(z) = i(z +I) = a(I) for all z € I, which shows that u(z) = u(0) forall z € I.
This ends the proof. O

THEOREM 5.3. Let T be a t-norm and I an ideal of a nearring R. Then for all A € [0,1],
there exists a T-fuzzy ideal y of R such that u(0) = A and U(u;1) = 1.

Proof. Let y: R — [0,1] be a fuzzy subset of R defined by

p(x) = (5.8)

0 otherwise,

{A ifxel,

where A is fixed number in [0,1]. Then clearly, U(p;A) = I. Let x, ¥ € R, then a routine
calculation shows that y is a T-fuzzy ideal of R. O

THEOREM 5.4. Let y be a T-fuzzy ideal of a nearring R and let u(0) = A. Then the fuzzy
subset u* of the quotient nearring R/U (u;A) defined by u* (x + U(u;1)) = u(x) for all x € R
is a T-fuzzy ideal of R/U (u;1).

Proof. Straightforward. O

TaEOREM 5.5. Let I be an ideal of a nearring R and ¢ T-fuzzy ideal of R/I such that ¢(x +
I) = ¢(x) only ifx € I. Then there exists a T -fuzzy ideal of R such that U(u;A) = I, A = u(0),
and ¢ = pu*.

Proof. Define a T-fuzzy ideal y of R by p(x) = ¢(x+1) for all x € R. It is easy to see that
p is T-fuzzy ideal of R. Next, we prove that U(u;A) = I. Let x € U(u;1),

= u(x) =u(0) = ¢(x+1) =¢(I) =xel (5.9)

Hence U(y;A) = I. Finally, we prove that y* = ¢,

Since p*(x+1) = u* (x+ U(ps1)) = p(x) = ¢p(x+1). (5.10)
Hence y* = ¢. This completes the proof. O
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