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Let X be a Banach space and let L®(I,X) denote the space of Orlicz X-valued integrable
functions on the unit interval I equipped with the Luxemburg norm. In this paper, we
present a distance formula disto ( f1, f2,L?(I, G)), where G is a closed subspace of X, and
fi, f» € L®(I,X). Moreover, some related results concerning best simultaneous approxi-
mation in L?(I,X) are presented.
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1. Introduction

A function @ : (—00,00) — [0,0) is called an Orlicz function if it satisfies the following
conditions:

(1) @ is even, continuous, convex, and ©®(0) = 0;

(2) ®(x) >0 for all x # 0;

(3) limy_o @ (x)/x =0 and lim,_. ., P(x)/x = co.

We say that a function O satisfies the A, condition if there are constants k > 1 and
Xo > 0 such that ®(2x) < k®(x) for x > x;. Examples of Orlicz functions that satisfy
the A, conditions are widely available such as ®(x) = [x|?, 1 < p < co, and O(x) = (1 +
|x)log(1+ |x]) — |x]|. In fact, Orlicz functions are considered to be a subclass of Young
functions defined in [1].

Let X be a Banach space and let (I, i) be a measure space. For an Orlicz function @,
let L®(I,X) be the Orlicz-Bochner function space that consists of strongly measurable
functions f : I — X with [;®(all f1)du(t) < o for some a > 0. It is known that L*(I,X)
is a Banach space under the Luxemburg norm
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It should be remarked that if ®(x) = |x|?, 1 < p < oo, the space L?(I,X) is simply the
p-Lebesgue Bochner function space L?(I,X) with

1/
Ifllo = ! Ld)(l\fll)dy(t) - (L IIfIIPd.u(t)) I, (1.2)

On the other hand, if ®(x) = (1 + |x|)log(1 + |x|) — |x|, then the space L®(I,X) is the
well-known Zygmund space, LlogL*. For excellent monographs on L®(I,X), we refer the
readers to [1-3].

For a function F = (fi, f2) € (L®(I,X))?, we define || F|| by

IFI = LA+ AL - (1.3)

In this paper, for a given closed subspace G of X and F = (fi, f2) € (L*(1,X))?, we show
the existence of a pair Gy = (g0,g0) € (L¥(I,G))? such that

||[F = Gol| = inf ||F - (g,8)]l- (1.4)
geG

If such a function g exists, it is called a best simultaneous approximation of F = (f}, f2).
The problem of best simultaneous approximation can be viewed as a special case of
vector-valued approximation. Recent results in this area are due to Pinkus [4], where
he considered the problem when a finite-dimensional subspace is a unicity space. Char-
acterization results for linear problems were given in [5] based on the derivation of an
expression for the directional derivative, and these results generalize the earlier results
presented in [6]. Results on best simultaneous approximation in general Banach spaces
may be found in [7, 8]. Related results on LP(I,X), 1 < p < oo, are given in [9]. In [9], it
is shown that if G is a reflexive subspace of a Banach space X, then L?(I,G) is simultane-
ously proximinal in L?(I,X). If L*(I,X) = L'(I,X), Abu-Sarhan and Khalil [10] proved
that if G is a reflexive subspace of the Banach space X or G is a 1-summand subspace of
X, then L'(I,G) is simultaneously proximinal in L! (I, X).

It is the aim of this work to prove a distance formula diste( fi, fz,L‘D(I ,G)), where
fi.f € L®(1,X), similar to that of best approximation. This will allow us to generalize
some recent results on L' (I,X) to L*(I,X).

Throughout this paper, X is a Banach space, @ is an Orlicz function, and L®(I,X) is
the Orlicz-Bochner function space equipped with the Luxemburg norm.

2. Distance formula

Let G be a closed subspace of X. For x, y € X, define

dist(x, y,G) = in(f;\lx— zll+ 1y -zl 2.1
ze
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For fi, f> € L%(I,X), we define disto ( f1, 2,L*(I,G)) by

disto (f1, /2,L7(1,G)) = inf _[[(fi,f2) — (&)l

g€L®(I,G)

= _inf [[[[AC)—gOl+ LG - gl o

g€L®(1,G)

(2.2)

Our main result is the following.

THEOREM 2.1. Let G be a subspace of the Banach space X and let ® be an Orlicz func-
tion that satisfies the A, condition. If fi, f» € L®(I,X), then the function dist(fi(+), f2(+),G)
belongs to L*(I) and

||dist (fi(+), 2(+), G) ||y = diste (f1, /o, L2(I,G)). (2.3)

Proof. Let fi, f» € L®(I,X). Then there exist two sequences ( f,,1), (f2) of simple func-
tions in L?(I,X) such that

| faa@® = ADI— 0, |[fu2(®) = O] — 0, asn— oo (2.4)
for almost all ¢ in I. The continuity of dist(x, y,G) implies that
| dist ( f,1(£), fu2(£),G) — dist (f1(£), 2(),G) | — 0, asn — oo. (2.5)

Set H,,(t) = dist( f,,,1 (£), fu2(t),G). Then each H, is a measurable function. Thus dist( f; (),
f2(+),G) is measurable and

dist (fi(1), £(,G) < [[fi(t) = 2l| + || fo(t) - 2]] (2.6)
for all z in G. Therefore,
dist (f1(1), 2(1),G) < || fi(t) =g + || 2(t) — g ()| (2.7)
forall g € L°(I,G). Thus
[Idist (fi(+) Gllo < lIA® =g®OI+]£(6) - g®Illo (2.8)
forall g € L°(I,G). Hence dist(fi(-), o(-),G) € L®(I) and
| dist (fi(-) G)|le < disto (f1, £, L%(I,G)). (2.9)

Fix € > 0. Since the set of simple functions are dense in L®(I,X), there exist simple
functions f;* in L®(I,X) such that ||f; — f*|lo < €/6 for i = 1,2. Assume that f;*(t) =
> ko1 XX, (f) with A’s are measurable sets, xj € X, k= 1,2,...,m, i = 1,2, Ay N A;j =
¢, k # j, and U_; Ax = I. We can assume that u(Ax) >0 and ®(1) < 1. For each k =
1,2,...,n,let yx € G be such that

. €
ek = ell = 162 =yl < dist (33,25, G) =+ 3. (2.10)
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Set g(£) = >p_ Yk (f) and

E(t) :dist(fl(t),fz(t),G)+||f1(t)—fl*(t)||+||f2(t)—fz*(t)||+§. (2.11)
Then
T IFllo
_ LA () — g+ (¢t t)||>
—kZlJ ( | Fllo At
< llxi = el + [t — ykll)
‘,;JAk®< 1o Autt)
: dist (x},x%,G) +€/3
<szAfD( IFlo )d”(t)
dist (f;*(1), £,5(1),G) +€/3
= |, IFllo )d“(t)
SJ(D(Hfl(t A O +A) = £ @O +dist (f1(2), fo(8), G)+€/3> du(t)
T ||F||(D
= Jo( ||F||q>)d“(” =l
(2.12)
Consequently,
. . LAC) = A O+ = £
A5 ) =gON+HA ) =gl = +dist(f1(_),f2(_))G)+§ ,
(2.13)
Notice that
disto (f1, 2,L7(I,G)) < disto (i, 555 L°(LG) + [ fi = A¥llo + 112 = £ llo
< S+ =g+ O =gl o
c dist (f1(+), (), G) +|[fi(-) = ()]
<—+
3 +||f2(-)—fz*(')||+§ o (2.14)

g2?6+||dist(f1('),f2(')>G)||q>

HIACG = A Ol +1AG) = Ol
< e+ dist(fi(-), £(-),G)|»
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which (since € is arbitrary) implies that

disto (fi, L%, G)) < || dist (), (), G)lo- (2.15)

Hence by (2.9) and (2.15) the proof is complete. O
A direct consequence of Theorem 2.1 is the following result.

THEOREM 2.2. Let G be a closed subspace of the Banach space X and let ® be an Orlicz
function that satisfies the A, condition. For g € L®(I,G) to be a best simultaneous approx-
imation of a pair of elements (fi, f2) in L®(I,G), it is necessary and sufficient that g(t) is a
best simultaneous approximation of (fi(t), f2(t)) in G for almost all t € I.

3. Proximinality of L®(I,G) in L®(1,X)

A closed subspace G of X is called 1-summand in X if there exists a closed subspace Y
such that X = G, Y, that is, any element x € X can be writtenasx =g+ y,¢ € G,y €Y,
and |[x|l = lIgll + || yIl. It is known that a 1-summand subspace G of X is proximinal in X,
and L'(I,G) is proximinal in L!(I,X), [11].

Our first result in this section is the following.

THeOREM 3.1. If G is simultaneously proximinal in X, then every pair of simple functions
admits a best simultaneous approximation in L®(I,G).

Proof. Let fi, f, be two simple functions in L*(I,X). Then fi, f, can be written as f; (s) =
Shoiupyn(s), f2(s) = Sp_ uiyr, (s), where I’s are disjoint measurable subsets of I sat-
isfying Uy, Ix = I, and yy, is the characteristic function of Ix. Since f; and f, represent
classes of functions, we may assume that y(I) > 0 for each 1 < k < n. By assumption, we
know that for each 1 < k < n there exists a best simultaneous approximation wy in G of
the pair of elements (u},u;) € X? such that

dist (up, uf, G) = [|lug — wl| + ||ug — wil|- (3.1)

Set g = >.i_; wkx1, (s). Then, for any a > 0 and h € L®(I, G), we obtain that

— 2 _
L(D(Ilfl(t)—h(t)||+||f2(t)—h(t)||)dw): EL (D(Ilu,i h(o)||+1]ug h(t)||>dy(t)

[24 k=1 *
e ||ui—Wk||+||ui—Wkll)
_];qu)( - du(t)
_ Iq)(||f1(t)—g(t)||;||ﬁ(t)—g(t)||)dﬂ(t)_
(3.2)

Taking the infimum over all such «’s, we have that

HAC) =BG+ L0 = RO lo = [[1AC) —gOll+ I AO -gOlllle— (33)
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for all h € L®(I,G). Hence

disto (fi, £, L*(LG)) = [[[|A() =g O+ I 2(8) = gOllllo

(3.4)
= I[AC) = RO +1AC) = Al

Now we prove the following 2-dimensional analogous of [12, Theorem 4].

TaeoreM 3.2. Let G be a closed subspace of the Banach space X and let ® be an Orlicz
function that satisfies the A, condition. If L' (I, G) is simultaneously proximinal in L*(I,X),
then L®(I,G) is simultaneously proximinal in L®(I,X).

Proof. Let fi, f, € L®(I,X). Then fi, f € L'(I,X); see [13]. By assumption, there exists
g € L(I,G) such that

A =gON+AC) =gON < HAC) = RO+ ARG =ROII, - (35)

for every h € L'(I,G). By Theorem 2.2 [10],

LA®) =gl +1L0) - gD < || A1) = k(O + ]| fo(t) = h(B)]| (3.6)
for almost all ¢ in I. But 0 € G. Thus
1A =@+ LB - gD < [|AOI + | LDl (3.7)
or
eIl < [ ADI+ LD (3.8)

Hence g € L®(I,G) and

A =gOI+IAC) =gOlllle < HAC) =ROI+AC) =rOIHle — (3.9)

forallh € L\(I,G). O

THEOREM 3.3. Let G be a 1-summand subspace of the Banach space X. Then L®(I,G) is
simultaneously proximinal in L* (I, X).

The proof follows from Theorem 3.2 and [10, Theorem 2.4].

THEOREM 3.4. Let G be a reflexive subspace of the Banach space X. Then L®(1,G) is simul-
taneously proximinal in L (I,X).

The proof follows from Theorem 3.2 and [10, Theorem 3.2].
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